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Abstract: Background: Emergency medicine is acuity-based and focuses on time-sensitive treatments
for life-threatening diseases. Prolonged time in the emergency department, however, is associated
with higher mortality in critically ill patients. Thus, we explored management after an acuity-based
intervention, which we call perpetuity, as a potential mechanism for increased risk. To explore
this concept, we evaluated the impact of each hour above a lung-protective tidal volume on risk
of mortality. Methods: This cohort analysis includes all critically ill, non-trauma, adult patients
admitted to two academic EDs between 1 November 2013 and 30 April 2017. Cox models with
time-varying covariates were developed with time in perpetuity as a time-varying covariate, defined
as hours above 8 mL/kg ideal body weight, adjusted for covariates. The primary outcome was the
time to in-hospital death. Results: Our analysis included 2025 patients, 321 (16%) of whom had at
least 1 h of perpetuity time. A partial likelihood-ratio test comparing models with and without hours
in perpetuity was statistically significant (χ2(3) = 13.83, p = 0.0031). There was an interaction between
age and perpetuity (Relative risk (RR) 0.9995; 95% Confidence interval (CI95): 0.9991–0.9998). For
example, for each hour above 8 mL/kg ideal body weight, a 20-year-old with 90% oxygen saturation
has a relative risk of death of 1.02, but a 40-year-old with 90% oxygen saturation has a relative risk of
1.01. Conclusions: Perpetuity, illustrated through the lens of mechanical ventilation, may represent
a target for improving outcomes in critically ill patients, starting in the emergency department.
Research is needed to evaluate the types of patients and interventions in which perpetuity plays
a role.

Keywords: perpetuity; acuity; emergency department; critical care; critically ill; mechanical ventila-
tion; intubation

1. Introduction

Emergency department (ED) visits in the United States totaled over 146 million in
2016, a 12% increase over five years [1,2]. The percentage of those patients requiring critical
care, time providing critical care, and admissions to the intensive care unit (ICU) has
increased disproportionately, despite decreasing ED- and ICU-bed availability [3–5]. This
prolongs ED boarding and creates difficult ICU triage decisions that can lead to delayed
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or inappropriate care and poorer outcomes [6–12]. A recent study reported improved
outcomes with a dedicated ICU-level area in the ED [13], suggesting a need to identify
contributing factors and targets for interventions to reduce this risk.

Conceptually, the flow of time-related events in ED care is one potential factor. Patients
are treated based on triage acuity and time-sensitive interventions for high-acuity processes
(e.g., sepsis, stroke, myocardial infarction, and cardiac arrest) are performed to attenuate,
or even reverse, the propagation of disease. There is not, however, enough dependable
data on how outcomes are shaped by the care that follows such interventions. Data are
increasingly important as the transition between the ED and ICU becomes blurred.

Acute respiratory failure represents one such paradox. Most patients with acute
respiratory failure present to the ED. In many of these patients, early intubation is associated
with improved outcomes [14], and is performed earlier with higher acuity. Mechanical
ventilation after intubation, however, is often suboptimal [15–18], persists into the ICU,
and is closely associated with outcomes [18–21].

We conceptualized care provided after an acuity-based intervention as the “perpetuity”
of disease, where suboptimal or even injurious management perpetuates risk from critical
illness, and hypothesized that it may play a role in mortality. We aimed to explore the
concept of perpetuity by evaluating one type of management known to be associated with
affecting outcomes after a defined acuity-based intervention: ventilator management after
intubation.

2. Methods
2.1. Study Setting

This study was conducted at two academic medical centers where the EDs are staffed
with emergency medicine faculty and residents, and the ICUs are staffed with pulmonary
and critical care faculty, fellows, and internal medicine residents. The Banner–University
Medical Center Tucson (BUMCT) is a Level 1 trauma center with an annual ED census of
85,000. The Banner–University Medical Center South (BUMCS) has an annual ED census of
54,000. Neither hospital operates a formal ED–ICU. After the decision is made to transition
care from the ED to the ICU, the ICU team is responsible for the patient’s care, including
the remaining time that the patient is boarded in the ED.

All ED patients requiring ICU care are incorporated into a quality improvement
registry, which is maintained by data downloaded from the hospitals’ electronic medical
record (EPIC systems, Verona, WI, USA). This project adhered to the STROBE reporting
guidelines and Patient-Centered Outcomes Research Institute (PCORI) standards for reg-
istry studies [22], and it was granted exemption from informed consent and approved by
the University of Arizona Institutional Review Board (#1607695679).

2.2. Study Design

This is a retrospective cohort analysis of adult patients (>18 years), intubated in the
prehospital setting or ED, and admitted to the ICU for non-traumatic critical illness at two
academic hospitals between 1 November 2013 and 30 April 2017 and followed until death
or hospital exit (whichever came first). We excluded patients intubated in the ICU (see
Appendix A: Methods). We defined a period of time as contributing to perpetuity if the
patient was charted as receiving tidal volumes > 8 mL/kg predicted body weight over
that period of time after intubation. Tidal volumes are documented at the initiation of
mechanical ventilation and then semi-regularly (with an hourly goal) by the respiratory
therapy staff. We followed the patient until death or hospital exit (whichever came first).

2.3. Calculation of Time in Perpetuity

The exact amount of time each patient spent in perpetuity cannot be known because we
do not have continuous tidal volume readings. We thus approximated time in perpetuity
as follows: at every time stamp, we determined whether or not the tidal volume was
>8 mL/kg. If it was, we added the period of time between the previous and current
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time stamps to the previous total time in perpetuity. The new total time in perpetuity
was designated as the value of perpetuity at that time stamp. Thus, time in perpetuity
either remained the same or increased at every time stamp, depending on whether the
observed tidal volume at that time stamp was ≤8 mL/kg or >8 mL/kg, respectively. The
accumulation of perpetuity began at intubation or ED arrival, whichever came last. It
stopped accumulating at ICU exit, death, or hypothesized extubation, whichever came first
(Figure 1). The primary outcome was time to in-hospital death.
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Figure 1. Time course for a hypothetical patient.

Figure 1 Legend: This figure demonstrates how perpetuity is calculated for a hypothet-
ical patient given the preprocessing assumptions. The upper panel shows the tidal volumes
(y-axis) and the lower panel shows the hours accumulated in perpetuity (y-axis) over time
(x-axis). Time zero is intubation time, and intervals between charted tidal volumes (solid
dots) accumulate perpetuity time if they are >8 mL/kg. For this patient, each tidal volume
charted for the first 6 h was >8 mL/kg and accumulated time in perpetuity. However,
no time was accumulated after that until 18–25 h, when tidal volumes again crossed the
threshold. The large gap between 25 h and the next charted tidal volume exceeds the
cutoff threshold for assumed extubation and reintubation and thus does not contribute to
perpetuity time.

2.4. Hypothesized Extubation

To mitigate potential issues with inflating time in perpetuity, we made assumptions
regarding long durations between successively charted tidal volumes. Specifically, we
were concerned that long intervals could have resulted from undocumented extubations.
After an analysis of time intervals, and accounting for typical staff shift hours, we chose
two durations (eight and twelve hours) between charted tidal volumes as cut-offs (see
Appendix A). No periods of time over the 8 mL/kg threshold after the first interval of
greater than eight or twelve hours were included in the perpetuity calculation. We did this
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for two primary reasons: (a) we did not want to include tidal volumes possibly resulting
from re-intubations, and (b) we did not want to include long periods of unintubated time
in the total time in perpetuity (Figure 1). Each cut-off choice resulted in the creation of a
different data set.

2.5. Sensitivity Analysis

We conducted a sensitivity analysis to better explore the effects of our preprocessing
decisions, specifically those related to hypothesized extubation and the calculation of time
in perpetuity. These preprocessing choices could affect later inference; thus we examined
the data sets for the two choices. We explored the effect of the choices of eight and twelve
hours as cut-offs by allowing the cut-offs to be four, five, six, seven, and twenty-four
hours. We explored the effect of disallowing further incrementation of hours in perpetuity
after the first cut-off interval by (a) allowing intervals of all sizes at any point in time to
increment the time in perpetuity (no adjustment data set) and (b) allowing only intervals
less than six hours long to increment the time in perpetuity (gaps ≥ 6 h removed data set).
The key difference between the “gaps ≥ 6 h removed” data set and the six-hour cut-off
dataset is that in the first, but not the second, small intervals after the first long interval
are still allowed to increment the time in perpetuity. We examined the effect of assuming a
constant charted tidal volume in large intervals by instead interpolating linearly between
the first and second tidal volumes in intervals greater than or equal to six hours (linear
interpolation in gaps ≥ 6 h data set). Only the portion of the intervals predicted to be
over the 8 mL/kg threshold was added to the time in perpetuity. We explored the effect of
propagating charted tidal volumes backward by instead assuming the last charted tidal
volume carried forward (last-one-forward data sets), see Appendix A.

2.6. Data Analysis

Cox models with time-varying covariates were fit to the eight- and twelve-hour cut-
off data. The models had identical specifications. The outcome variable was time to
death during the hospital stay. Patients were censored at hospital discharge. The primary
predictor of interest was hours in perpetuity, which was treated as a time-varying covariate.
Other predictors that are potential confounders or indicate severity of illness were chosen,
and included age, initial oxygen saturation at triage, hours in acuity, mode of arrival
(ground transport, air transport, private vehicle, and other), hospital campus (BUMCT or
BUMCS), whether or not the patient was on non-invasive positive pressure ventilation
prior to intubation, ideal body weight, body mass index, and the Emergency Severity
Index score at ED triage. Heart rate, systolic blood pressure, and mean arterial pressure
were included as static covariates set to their first recorded values. Two interactions we
thought were clinically important were included a priori as well: the interaction of hours
in perpetuity with age and the interaction of hours in perpetuity with oxygen saturation.

Penalized splines were used to handle nonlinearity of continuous predictors [23].
To decide which predictors were best included as nonlinear, we fit a separate model per
continuous predictor. In each of these models, we included a single predictor as nonlinear
and allowed the optimal degrees of freedom for the nonlinear portion to be estimated
with Akaike’s Information Criterion [24]. All other predictors in these models were left as
linear. We tested whether that nonlinear portion of the spline predictor was statistically
significant, at a 5% false positive rate, using the Wald χ2 test. We next fit a model that
included, as nonlinear, all predictors indicated by the previous step. For each spline term,
we set the degrees of freedom to be the previously identified optimal degrees of freedom.
The interactions of hours in perpetuity with age and oxygen saturation were included in
this model as well. As a final check on the form of the nonlinear predictors, we again tested
the statistical significance of the nonlinear portion of each spline term. Only those spline
terms with nonlinear portions statistically significant at a 5% false positive rate (hours in
acuity and heart rate) were included as nonlinear in the final model.
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An additional (reduced) model was fit to each data set that did not include any of
the terms involving time in perpetuity (the main effect of hours in perpetuity and both
interactions with hours in perpetuity). The full and reduced models for a given data set
were compared using a partial likelihood-ratio test in order to test whether the inclusion of
perpetuity in its three forms resulted in a meaningfully better model fit. For the sensitivity
analysis, only the final full and reduced models described above were fit to each data set.

Data processing and statistical analyses were conducted in the R statistical computing
language [25]. Data manipulation was handled with the tidyr and dplyr packages [26,27],
plots were created with the ggplot2 package [28], and results tables were constructed with
the xtable package [29]. The Cox models with time-varying covariates were fit with the
coxph function in the survival package [30,31].

We conducted a simple power calculation in order to gain insight into the number
of participants needed to detect various hazard ratios corresponding to a one-hour in-
crease in perpetuity time. Our approach follows van Belle in assuming survival times
are exponentially distributed [32]. We assume we have two groups of participants, one
with one hour longer in perpetuity than the other. Then, with 1000 participants per group
(2000 participants in total) and a 5% significance level, we will have ≥80% power to detect
a hazard ratio less than 0.89 or greater than 1.13. As (a) hazard ratios of 0.89 and 1.13 are
fairly small, and (b) we collected data on around 2000 participants, we are confident that
the study is well-powered.

3. Results

Our final analyses were based on 2025 participants (Figure 2). Demographic data are
found in Table 1. Sixteen percent (321) patients had at least one hour of perpetuity time. For
both the eight- and twelve-hour cut-off models, the following were statistically significant
(all p < 0.05): the interactions of age/perpetuity and oxygen saturation/perpetuity as well
as the main effects of perpetuity, age, oxygen saturation, hours in acuity (the nonlinear
component), campus, non-invasive positive pressure ventilation, heart rate (the nonlinear
component), and triage score, see Tables 2 and 3 for estimated coefficients. Note that systolic
blood pressure and mean arterial pressure were highly correlated (ρ̂ = 0.92), and in models
that left out either predictor, the other was statistically significant (p < 0.05). For both
models, a partial likelihood-ratio test indicated that the inclusion of perpetuity significantly
improved model fit (eight-hour model: χ2 = 13.83, df = 3, p = 0.0031; twelve-hour model:
χ2 = 8.61, df = 3, p = 0.0348—Appendix B Tables A2 and A4).

Table 1. Demographics.

Characteristic Number (Total n = 2025) Percent or Mean (SD)

Demographics
Age, mean (SD) – 56 (18)

Male 1198 59%
Height (cm) – 170.5 (10.2)
Weight (kg) – 82.2 (26.8)

Ideal Body Weight – 64.6 (10.6)
Body Mass Index – 28.3 (9.2)

Mode of arrival
EMS Ground 1621 80%

Private Vehicle 251 12%
EMS Air 83 4%

Other 70 3%
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Table 1. Cont.

Characteristic Number (Total n = 2025) Percent or Mean (SD)

Campus
BUMCT * 1282 63%
BUMCS * 743 37%

Hospital Shift at ED Arrival
Day Shift (7 a.m.–7 p.m.) 1146 57%

Night Shift (7 p.m.–7 a.m.) 879 43%

Admitting Diagnosis
Neurologic/psychiatric 557 28%
Respiratory, all causes 525 26%

Cardiac arrest 204 10%
Infectious/Allergic/Immunologic 203 8%

Toxin/Toxidrome 156 7%
Cardiovascular 134 6%

GI 112 2%
Renal/GU 39 2%
Endocrine 33 1%

Hematologic/Oncologic 29 1%
Musculoskeletal 15 1%

Trauma 13 1%
No Diagnosis Given 5 0%

Location of Intubation
Prehospital 269 13%

Emergency Department 1756 87%

Noninvasive ventilation use 315 16%

Emergency Severity Index
1 940 46%
2 985 49%
3 98 5%
4 2 <1%

Vital Signs
Heart Rate – 105 (28.5)

Systolic Blood Pressure – 133.2 (36.4)
Diastolic Blood Pressure – 98.4 (24.7)
Mean Arterial pressure – 96.5 (27.1)

Oxygen Saturation – 93.3 (10.5)

Acuity # Minutes – 99.9 (167.7)
Acuity Hours – 1.7 (2.8)

Outcomes
Discharged Alive 1570 78%
In-hospital death 455 22%

Standard deviation [SD]; Emergency medical services [EMS]; * BUMCT (Banner–University Medical Center
Tucson); BUMCS (Banner University Medical Center South); Emergency Department [ED]; Gastrointestinal [GI];
Genitourinary [GU]. # Acuity is the time between ED arrival and the time of intubation.
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Figure 2. Patient flow chart. Other includes: missing or clearly incorrect height, weight, systolic blood
pressure, mean arterial blood pressure, questionable death status, having a documented hospital
discharge before ICU discharge, and charted tidal volumes that occurred after ICU discharge.

Table 2. 8 h Cut-Off Model: Cox model with hours in perpetuity as a time-varying covariate.

Estimated Coefficient (95% CI) Relative Risk (95% CI) χ2 df p Value

Hours in Perpetuity
(>8 mL/kg) 0.1558 (0.0737, 0.2379) 1.1686 (1.0765, 1.2686) 13.8442 1 0.0002

Age 0.028 (0.0219, 0.0342) 1.0284 (1.0221, 1.0348) 79.0050 1 0.0000
O2 −0.0135 (−0.02, −0.0071) 0.9865 (0.9802, 0.993) 16.7289 1 0.0000

Hours in Acuity (Linear) 0.0148 (−0.042, 0.0717) 1.015 (0.9589, 1.0743) 0.2621 1 0.6087
Hours in Acuity (Nonlinear) 9.3494 3 0.0250

Arrival by EMS Ground 0.0645 (−0.4077, 0.5367) 1.0666 (0.6652, 1.7104) 0.0717 1 0.7889
Other Mode of Arrival 0.0459 (−0.6304, 0.7222) 1.047 (0.5324, 2.059) 0.0177 1 0.8942
POV Mode of Arrival −0.2503 (−0.8365, 0.3359) 0.7786 (0.4332, 1.3992) 0.7004 1 0.4026

BUMCS 0.4478 (0.248, 0.6476) 1.5648 (1.2814, 1.9109) 19.2972 1 0.0000
NIPPV prior to intubation −0.9528 (−1.2801, −0.6255) 0.3857 (0.278, 0.535) 32.5512 1 0.0000

Ideal Body Weight −0.0016 (−0.0111, 0.0078) 0.9984 (0.9889, 1.0079) 0.1161 1 0.7333
BMI 0.0015 (−0.0087, 0.0117) 1.0015 (0.9913, 1.0117) 0.0788 1 0.7789

Heart Rate (Linear) 7 × 10−4 (−0.0022, 0.0036) 1.0007 (0.9978, 1.0036) 0.2327 1 0.6296
Heart Rate (Nonlinear) 11.6439 2 0.0033
Systolic Blood Pressure −0.0024 (−0.0089, 0.0042) 0.9976 (0.9911, 1.0042) 0.4916 1 0.4832
Mean Arterial Pressure −0.0052 (−0.014, 0.0037) 0.9949 (0.9861, 1.0037) 1.2898 1 0.2561

Acuity Score −0.4362 (−0.6355, −0.2368) 0.6465 (0.5297, 0.7891) 18.3887 1 0.0000
Hours in Perpetuity × Age −5 × 10−4 (−9 × 10−4, −2 × 10−4) 0.9995 (0.9991, 0.9998) 7.4002 1 0.0065
Hours in Perpetuity × O2 −0.0014 (−0.0023, −6 × 10−4) 0.9986 (0.9977, 0.9994) 10.8938 1 0.0010

Confidence interval [CI]; Noninvasive positive-pressure ventilation [NIPPV]; Privately-owned vehicle [POV]; Body mass index [BMI]. The
estimated coefficient is on the log(hazard rate) scale. A relative risk over one indicates that having the associated covariate (or each unit of
the associated covariate) increases the hazard of dying in the hospital. The nonlinear portion of the spline terms for hours in acuity and
heart rate do not have single estimated coefficients. Thus, only χ2 tests and the associated p values are given for these rows. 2025 patients
are included in this model.
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Table 3. 12 h Cut-Off Model: Cox model with hours in perpetuity as a time-varying covariate.

Estimated Coefficient (95% CI) Relative Risk (95% CI) χ2 df p Value

Hours in Perpetuity
(>8 mL/kg) 0.1042 (0.0254, 0.183) 1.1099 (1.0257, 1.2009) 6.7183 1 0.0095

Age 0.0279 (0.0217, 0.0341) 1.0283 (1.022, 1.0347) 78.1274 1 0.0000
O2 −0.014 (−0.0205, −0.0076) 0.9861 (0.9797, 0.9924) 18.2653 1 0.0000

Hours in Acuity (Linear) 0.0145 (−0.0423, 0.0712) 1.0146 (0.9586, 1.0738) 0.2491 1 0.6177
Hours in Acuity (Nonlinear) 9.4794 3 0.0236

Arrival by EMS Ground 0.0743 (−0.3989, 0.5475) 1.0771 (0.671, 1.729) 0.0947 1 0.7583
Other Mode of Arrival 0.0663 (−0.6111, 0.7437) 1.0685 (0.5427, 2.1037) 0.0368 1 0.8479
POV Mode of Arrival −0.2338 (−0.8186, 0.351) 0.7915 (0.4411, 1.4205) 0.6140 1 0.4333

BUMCS 0.4415 (0.242, 0.6409) 1.555 (1.2738, 1.8983) 18.8148 1 0.0000
NIPPV prior to intubation −0.94 (−1.2658, −0.6142) 0.3906 (0.282, 0.5411) 31.9737 1 0.0000

Ideal Body Weight −6 × 10−4 (−0.01, 0.0089) 0.9994 (0.99, 1.0089) 0.0141 1 0.9054
BMI 0.0011 (−0.009, 0.0112) 1.0011 (0.991, 1.0113) 0.0442 1 0.8334

Heart Rate (Linear) 7 × 10−4 (−0.0021, 0.0036) 1.0007 (0.9979, 1.0036) 0.2398 1 0.6244
Heart Rate (Nonlinear) 11.4993 2 0.0035
Systolic Blood Pressure −0.0025 (−0.0091, 0.0041) 0.9975 (0.991, 1.0041) 0.5474 1 0.4594
Mean Arterial Pressure −0.0049 (−0.0137, 0.004) 0.9951 (0.9863, 1.004) 1.1622 1 0.2810

Acuity Score −0.4323 (−0.6313, −0.2332) 0.649 (0.5319, 0.792) 18.1107 1 0.0000
Hours in Perpetuity × Age −4 × 10−4 (−7 × 10−4, 0) 0.9996 (0.9993, 1) 4.4328 1 0.0353
Hours in Perpetuity × O2 −9 × 10−4 (−0.0017, −1 × 10−4) 0.9991 (0.9983, 0.9999) 5.1694 1 0.0230

The estimated coefficient is on the log(hazard rate) scale. A relative risk over one indicates that having the associated covariate (or each
unit of the associated covariate) increases the hazard of dying in the hospital. The nonlinear portion of the spline terms for hours in acuity
and heart rate do not have single estimated coefficients. Thus, only χ2 tests and the associated p values are given for these rows. 2025
patients are included in this model.

Because perpetuity occurs in the models in two interactions and as a main effect, it
is easiest to see its impact by fixing age and oxygen saturation and then examining the
hazard ratio associated with a one-hour increase in perpetuity for those fixed values.

Our results show that for a fixed age, the hazard of dying in the hospital decreases
with an increase in oxygen saturation and decreases with increasing age for a fixed oxygen
saturation. In examining the effect of perpetuity, these patterns indicate that for younger
people and for older people with low/moderate oxygen saturation, a one-hour increase
in perpetuity is associated with an increased hazard of dying in the hospital. This pat-
tern holds across both primary models, although it is stronger for the eight-hour model
(Figures 3 and 4).
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The sensitivity analyses showed that the inclusion of hours in perpetuity resulted in
a statistically significant improvement in the model fit for the four-, six-, and seven-hour
cut-off models and in the eight-hour last-one-forward model (Appendix B). However,
perpetuity did not significantly improve the model fit for the five- and twenty-four-hour
cut-off models, the no-adjustment model, the model with intervals ≥ six hours removed
from perpetuity, the model with linear interpolation in intervals ≥ six hours, and the
twelve-hour last-one-forward model.
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4. Discussion

The aim of this study was to explore the concept of perpetuity using an aspect of
mechanical ventilation widely considered to be injurious (high tidal volumes) that can only
occur after an acuity-based intervention (intubation). Our results support the concept of
perpetuity as a contributing factor to risk after acuity-based interventions, where risk accu-
mulates from inappropriate, inadequate, or injurious management after that intervention
and is indefinite unless something changes. To our knowledge, only two other studies have
shown an increase in risk of death per unit of time receiving injurious mechanical ventila-
tion; one with tidal volumes >8 mL/kg for >24 h [33], and the other with injurious driving
pressure or mechanical power per day [34]. Our results extend this knowledge to include
accumulated risk per hour of injurious mechanical ventilation, even when discontinuous.

Interestingly, we found that younger age and more severe hypoxemia poses more
risk from time in perpetuity. We hypothesize that those patients may have respiratory
failure etiologies (e.g., acute respiratory distress syndrome [ARDS]) that tend to reduce
lung compliance and thus increase susceptibility to perpetuity-based injury (i.e., ventilator-
induced lung injury [VILI]).

Given the concerning data on mechanical ventilation in the ED as well as the debate
about its management, we used intubation as our acuity-based intervention and mechanical
ventilation as our perpetuity-based management [35,36]. Patients require intubation for
many etiologies, and the higher the risk of respiratory arrest, the sooner the patient will
be intubated (i.e., acuity). However, mechanical ventilation in the ED has proved to be
troublesome. Lung protective ventilation is used infrequently and some patients progress
to ARDS shortly after hospital admission, indicating VILI may contribute [15–17]. A recent
study showed that most patients do not receive lung protective ventilation while in the ED
and are less likely to have ventilator adjustments during times of ED strain [18]. Inertia
dictates that management strategies in the ED often carry over into the ICU for significant
periods of time [18–20].

High tidal volume is an attractive option for evaluating perpetuity as volutrauma is
known to be injurious regardless of the precipitating requirement for intubation [37–39].
While tidal volumes may only be injurious in proportion to reductions in lung compliance,
and mechanical power research is evolving our understanding of ventilator-induced lung
injury [40–43], large tidal volumes are still widely considered to be injurious. Unfortunately,
PEEP values were not available in our dataset. Given the observed interaction with age
and degree of hypoxemia, it is possible that our association is an underestimation of the
risk of perpetuity. Future research should evaluate this concept using driving pressure and
mechanical power, adjusted for severity of lung injury.

Another example of perpetuity is antibiotic timing in sepsis. The data on timing of
antibiotics have some limitations, but generally indicated earlier appropriate antibiotics
improves outcomes. Thus, initiatives mainly focus on initial antibiotic timing. However,
the second dose is delayed in one third of patients, which worsens outcomes irrespective
of the timing of the first dose and, paradoxically, more commonly with optimal first-dose
timing [44]. Studies are needed to explore what other interventions and in what other
diseases, perpetuity may play a role in accumulated risk over time.

Our sensitivity analyses showed that the inclusion of hours in perpetuity resulted
in a statistically significant improvement in the model fit for the four-hour, six-hour, and
seven-hour cut-off models and the last-one-forward eight-hour cut-off model, but not for
the five- and twenty-four-hour and no-adjustment models, the model where intervals ≥ six
hours were removed from perpetuity, the model with linear interpolation in intervals ≥ six
hours, and the last-one-forward 12 h cut-off model. The first conclusion that can be reached
is that while the results from the eight- and twelve-hour models are not due to finely tuned
preprocessing choices; preprocessing does have the ability to affect inference. Second, the
no-adjustment model results are not entirely unexpected. Assuming that long intervals
between successive tidal volumes are indicative of extubation and possible reintubation,
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the no-adjustment data set leaves possibly large periods of extubation in some perpetuity
calculations. This could result in substantial noise in the data.

The five- and twenty-four-hour cut-off results initially appear to be outliers given that
all the other basic cut-off models resulted in the same inference. However, the χ2 values for
the five-, six-, twelve-, and twenty-four-hour cut-off models are all close to the test’s critical
value. Thus, while the inferences for these tests differ, the results are not substantially
different.

The results for the remaining data sets are more challenging to explain. However, they
highlight the need for documentation of (1) extubation and reintubation, (2) changes to
the ordered tidal volume, and (3) the use of spontaneous breathing mode. Having these
three types of information could dramatically reduce the noise in the data by giving more
information on the patients’ charted tidal volumes at each point in time. This could lead to
more accurate estimates of the time in perpetuity and its effect on the risk of dying in the
hospital.

The time to ICU-level of care, not the time to the ICU, improves outcomes, and
delaying perpetuity-focused care until ICU admission is a missed opportunity [13,45].
Gunnerson and colleagues found that an ED-based ICU program reduced 30-day mortality
and ICU admissions [13]. These findings, along with our results, and those by Sjoding [33],
and Leisman [44], suggest that targeted interventions focused on reducing perpetuity are
opportunities to improve outcomes for patients regardless of their physical location.

Clinical and philosophical implications of perpetuity are potentially immense. As the
critical care requirements of ED patients increases, there is substantial debate about what
the response to this burden should entail. EDs provide an increasing majority of hospital
associated medical care [46], and are under pressure to transfer care to admitting services
after completing time-sensitive goals. The American College of Emergency Physicians
(ACEP) has a policy statement that “the ED should not be utilized as an extension of
the ICU and other inpatient units for admitted patients because this practice adversely
affects patient safety, quality, and access to care” [47]. Similarly, the American Academy of
Emergency Medicine (AAEM) has a policy statement that critically ill patients should be
transferred to the ICU within six hours of arrival to the ED, as “further delay can deplete
the ED of resources” [48]. While ACEP believes that hospitals have the responsibility to
provide the appropriate inpatient beds and staffing [47], critically ill patients remain at
high risk of delayed critical care delivery, and our data suggest perpetuity-based injury
contributes to poor outcomes. More than one third of ICU patients spend more than six
hours in the ED, which is not based on physiologic or outcome parameters, rather it is the
mean boarding time for critical care beds in overcrowded hospitals [9]. Some intubated
patients may have shorter stays in the ED [49], but time to ICU admission is associated
with mortality even when boarding time is significantly fewer than six hours [50].

Our study has several limitations. We evaluated the effect of duration in perpetuity
(time receiving tidal volumes > 8 mL/kg) on mortality, rather than the effect of the inter-
vention itself (incidence of tidal volumes > 8 mL/kg or the magnitude of tidal volumes) or
the magnitude of excess tidal volumes. Given the potential influence of the magnitude of
tidal volumes in addition to time, we fit a model where the time in perpetuity is weighted
by the tidal volume’s percent over the 8 mL/kg threshold (Appendix B, Tables A3 and A5).
Results for these models parallel results for the last-one-forward eight- and twelve-hour
models on which they are based, with relative risk of weighted time in perpetuity of 3.7723
(1.2652, 11.2468) in the 8 h cutoff model.

Our results could be influenced by the intervention itself, and most importantly, by
the limitations of time-stamped data and the assumptions made in preprocessing. Each
assumption was made in the context of the most likely clinical explanation and biased
against the hypothesis. We performed several sensitivity analyses to ensure that our
assumptions did not inadvertently affect the results. Sensitivity results indicated that pre-
processing does affect inference but that many preprocessing choices lead to the conclusion
that time in perpetuity impacts the risk of in-hospital mortality. Regardless, even digitally
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time-stamped data should be interpreted with caution, and the sensitivity analyses may
not have adequately detected concerns with the assumptions.

Furthermore, time in perpetuity was accumulated at any point during the initial
mechanical ventilation period and it is unclear if early perpetuity is more, or less, injurious
than perpetuity that occurs later in the course. Missing data presents another limitation.
Eleven percent of patients (242/2267) meeting our inclusion criteria were missing data.
Of those, 176 patients died shortly after arrival in the ED (median time 24 min); and no
charted tidal volumes were available on those patients. These patients could have biased
our results as they were not included in our analysis.

In summary, our results from this large dataset of critically ill patients suggest the
presence of a time-based risk from high tidal volume ventilation that varies based on
age and degree of hypoxemia. This time-dependent risk, which we term perpetuity, is a
potential target in emergency and critical care research design as well as clinical care to
improve outcomes.

This work was presented at the National Foundation of Emergency Medicine annual
meeting at the SAEM meeting in Las Vegas, Nevada, in May 2019.
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Appendix A. Methods

Appendix A.1. Target Population

The primary goal of this study is to better understand the impact of time in perpetuity
while in the emergency department (ED) or intensive care unit (ICU) on the time to dying
in the hospital. However, identifying the endpoint of acuity (equally, the beginning of
perpetuity) for all ED patients is challenging because of the wide range of conditions
with which patients present upon arriving at the ED. Thus, we chose to isolate a more
uniform sub-population of all ED patients in which to investigate the role of perpetuity.
This population is composed of people for whom intubation marks the point at which their
most immediate medical needs have been met. In other words, we consider here people
for whom intubation is the endpoint of acuity and the beginning of perpetuity.

To pull from this target sub-population, of all ED patients admitted to the Banner
University Medical Center-Tucson and South EDs between 1 November 2013 and 30 April
2017, we only include in the analyses those who were at least 18 years old, were intubated
either before arriving at the hospital or while in the ED and were classified as medical
admissions (not trauma). Note that we exclude patients intubated in the ICU. We do
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this because intubation in the ICU could have occurred for two reasons: (1) intubation is
delayed and should have been completed earlier and (2) intubation is only necessary as the
result of a worsening condition in the ED and/or ICU and does not represent the endpoint
of acuity. While the first group of people is part of our sub-population, the second group is
not. There is not enough information in the data to separate these two groups of patients,
and thus they must all be either included in or excluded from our sample. Because we feel
it preferable to exclude part of the sub-population than to include people who are not part
of it, we exclude from analysis patients intubated in the ICU.

Appendix A.2. Data Pre-Processing

Our data consist of a variety of pieces of demographic and medical information
including, for example, time of arrival at the ED, time of intubation, charted tidal volumes
and their corresponding time stamps, ICU entry time, ICU exit time, hospital exit time, and
death status. Pre-processing included:

A. All nonsensical (e.g., single-digit tidal volumes, abnormally large volumes) and
missing values were manually checked and corrected if possible.

B. For all patients intubated before reaching the hospital, their intubation time was
changed to be their hospital arrival time.

C. Some charted tidal volumes appeared to occur before intubation (an impossible
scenario). For these people, we moved their intubation time back so that it aligned
with their first charted tidal volume time.

D. For some of the people marked as intubated in the ED, their intubation time was
recorded as being prior to their ED arrival. For these people, we moved their ED
arrival time back so that it aligned with their intubation time. This change was made
after the previous change.

E. An additional issue that arose with the data set related to the time between succes-
sively charted tidal volumes. While some of these intervals were short (e.g., a few
minutes), others were quite long (e.g., a few days). This is not inherently unusual
or problematic outside of the context of this data set. However, the concern here
was that long intervals between successive tidal volumes were likely indicative of
unmarked extubation then reintubation sometime before the interval’s latter end-
point. Because of this, we adjusted the calculation of time in perpetuity as follows:
if a patient had a period of time over eight hours between any two tidal volume
observations, we stopped incrementing the time in perpetuity at the beginning of
that interval. Thus, time in perpetuity stopped changing after the beginning of the
first interval over eight hours in length. In order to confirm final results, we also set
the cut-off to twelve hours with the assumption that twelve hours between charted
values would cross more than one staff shift and would be unlikely to be a mistake,
oversight, or due to being busy on shift and not able to keep up with charting.

F. The period of time between initial intubation and first charting was not checked for
length (see previous bullet point) because this interval looked like it was artificially
inflated for some people by recording only a date and not a time at intubation. For
these people, a default time at the start of that day was set by the system. Checking
this interval for the extubation cut-off would have resulted in unnecessary removal
of too many patients from the data set. This data anomaly (having an intubation date
but not an intubation time) affected 178 people, and many of them were consequently
affected by the pre-processing decisions made in C and D. In order to challenge
the default intubation time and subsequent pre-processing for these people, we
constructed two additional data sets. In the first, for all 178 people, we moved their
intubation time to align with their ED arrival time. In the second, we moved their
intubation time one day later (the end of the day they were intubated rather than the
beginning). In the analysis of these two new data sets, we only fit the two primary
models as determined in the analyses of the original data sets. For both data sets, no
inference changed for the 8-h cutoff model. However, the partial likelihood ratio test
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comparing nested models with and without perpetuity terms was not statistically
significant at a 5% false positive rate in either data set’s 12 h model.

G. Calculating time spent in perpetuity also required pre-processing. The exact amount
of time each patient spent in perpetuity cannot be known because we do not have
continuous tidal volume readings. We thus approximated time in perpetuity as
follows: for any two consecutive charted tidal volumes, if the latter tidal volume
exceeded the patient’s threshold, the entire interval was considered to be spent
in perpetuity. Moreover, because our research question is on the role of time in
perpetuity while in the ED or ICU on the risk of death in the hospital, and because
the time in perpetuity changes over the course of each patient’s hospital stay, we
constructed an analysis dataset that updated each patient’s cumulative time in
perpetuity at each of that patient’s charted tidal volumes. Note that as per our
research question, time in perpetuity was not allowed to increase past ICU exit. If a
patient had a charted tidal volume that exceeded threshold after ICU exit, the only
portion of the interval of time straddling the ICU exit that was added to perpetuity
was the portion before the ICU exit. We continued to follow the patient until death
or hospital exit (whichever came first).

Appendix A.3. Sensitivity Analyses

In addition to the primary analysis, we conducted a sensitivity analysis to better
explore both (a) the effect of the choices of eight and twelve hours as cut-offs; (b) the effect
of disallowing further incrementation of hours in perpetuity after the first cut-off interval;
and (c) the effect of the specific calculation of hours in perpetuity (at least in large intervals).
We examined data sets that made different preprocessing choices to account for the effect
of these choices on inferences. The specific data sets used in the sensitivity analysis are
described below.

To explore the effect of cut-off, we constructed data sets with cut-offs of four, five,
six, seven, and 24 h. We constructed a data set with no cut-off (thus removing the as-
sumption that intervals of time over a particular threshold were indicative of extubation
and reintubation). To explore the effect of disallowing perpetuity incrementation after
cut-off, we constructed a data set in which no periods of time between successive tidal
volume chartings that were greater than or equal to six hours were allowed to increment
time in perpetuity. However, smaller intervals, even after the first interval greater than or
equal to six hours, were allowed to increase time in perpetuity if appropriate. To explore
the perpetuity calculation in large intervals, we constructed a data set with the following
property: for tidal volume intervals greater than or equal to six hours, we assume the
tidal volume changed linearly from the first endpoint to the second. Using this linear
interpolation, we found the portion of the interval predicted to be over threshold. We
incremented the total time in perpetuity by only that portion. Note that we only use linear
interpolation for gaps greater than or equal to six hours. For smaller gaps, we use the tidal
volume at the right endpoint of the interval to determine whether or not to add the interval
into the perpetuity summation. Additionally, in both of the previous data sets, the interval
between intubation and the first charted tidal volume was not considered when searching
for gaps greater than or equal to six hours. To explore the decision to assign the tidal
volume charted at the latter endpoint of each interval to that interval, we constructed two
data sets that instead assigned the tidal volume charted at the beginning of each interval
to that interval. In these data sets, because we assumed that the tidal volume at the start
of each interval carried forward, we allowed perpetuity to increment every minute when
the tidal volume was over 8 mL/kg. Note that we continued to implement the eight- and
twelve-hour cutoffs with these last-one-forward data sets.

For each dataset, we fit both the full and reduced models described above. The only
difference was that no spline predictors were included in any of the models. For each
data set, the full and reduced models were compared with a partial likelihood ratio test to
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determine whether or not perpetuity in all its forms makes a statistically significant impact
on the model fit.

Appendix A.4. Other Models

In addition to the full, adjusted models, we also fit two other models per primary
data set. The first was an unadjusted model. This model included hours in perpetuity
as the only predictor. The second was a model that weighted each interval in perpetuity
by how far it was above the 8 mL/kg threshold (as a percentage of the threshold). For
example, if an interval of one hour in length was 10% over the threshold and an interval
of two hours in length was 30% over the threshold, the total time in perpetuity for those
two intervals was 1 h*0.1 + 2 h*0.3. Note that weighted perpetuity models are based on the
last-one-forward models. Fitted model estimates and partial likelihood ratio test results
(for the second type of model) are given in the section below.

Appendix B. Results

Appendix B.1. Non-Linearity of Hours in Acuity and Heart Rate
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Appendix B.2. Unadjusted Model Results

Table A1. 8 h Cut-Off.

Estimated Coefficient (95% CI) Relative Risk (95% CI) χ2 df p Value

Hours in Perpetuity - 0 0.1855 1 0.6667

Table A1: 8 h Cut-Off, Unadjusted Model: Cox model with hours in perpetuity as a time-varying covariate. The estimated coefficient is on
the log(hazard rate) scale. A relative risk over 1 indicates that having the associated covariate (or each unit of the associated covariate)
increases the hazard of dying in the hospital. The non-linear portion of the spline terms for hours in acuity and heart rate do not have single
estimated coefficients. Thus, only χ2 tests and the associated p values are given for these rows. 2025 patients are included in this model.

Table A2. 12-h Cut-Off.

Estimated Coefficient (95% CI) Relative Risk (95% CI) χ2 df p Value

Hours in Perpetuity −0.0012 (−0.0069, 0.0045) 0.9988 (0.9932, 1.0045) 0.1703 1 0.6798

Table A2: 12 h Cut-Off, 8 mL/kg Threshold Unadjusted Model: Cox model with hours in perpetuity as a time-varying covariate. The
estimated coefficient is on the log(hazard rate) scale. A relative risk over 1 indicates that having the associated covariate (or each unit of the
associated covariate) increases the hazard of dying in the hospital. The non-linear portion of the spline terms for hours in acuity and heart
rate do not have single estimated coefficients. Thus, only χ2 tests and the associated p values are given for these rows. 2025 patients are
included in this model.
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Appendix B.3. Results from Models with Perpetuity Weighted by the Magnitude of the Charted
Tidal Volume

Table A3. 8 h Cut-Off Model.

Estimated Coefficient (95% CI) Relative Risk (95% CI) χ2 df p Value

Weighted Hours in Perpetuity 1.3277 (0.2353, 2.4201) 3.7723 (1.2652, 11.2468) 5.6743 1 0.0172
Age 0.0279 (0.0217, 0.0342) 1.0283 (1.0219, 1.0348) 77.1117 1 0.0000
O2 −0.0144 (−0.0208, −0.0079) 0.9857 (0.9794, 0.9921) 18.9938 1 0.0000

Hours in Acuity (Linear) 0.014 (−0.0428, 0.0708) 1.0141 (0.9581, 1.0734) 0.2333 1 0.6291
Hours in Acuity (Non-Linear) 14.4508 3 0.0024

Arrival by EMS Ground 0.0921 (−0.3801, 0.5644) 1.0965 (0.6838, 1.7583) 0.1462 1 0.7022
Other Mode of Arrival 0.1327 (−0.5432, 0.8085) 1.1419 (0.5809, 2.2446) 0.1480 1 0.7004
POV Mode of Arrival −0.1992 (−0.7843, 0.3858) 0.8194 (0.4564, 1.4708) 0.4455 1 0.5045

BUMCS 0.4127 (0.2129, 0.6125) 1.5109 (1.2373, 1.8451) 16.3948 1 0.0001
Had NIPPV −0.9321 (−1.2587, −0.6056) 0.3937 (0.284, 0.5458) 31.2938 1 0.0000

Ideal Body Weight −0.0022 (−0.0116, 0.0073) 0.9978 (0.9885, 1.0073) 0.2005 1 0.6543
BMI 0.003 (−0.0072, 0.0132) 1.003 (0.9928, 1.0133) 0.3312 1 0.5649

Heart Rate (Linear) 7× 10−4 (−0.0022, 0.0035) 1.0007 (0.9978, 1.0035) 0.2235 1 0.6364
Heart Rate (Non-Linear) 11.0571 2 0.0044
Systolic Blood Pressure −0.0024 (−0.009, 0.0042) 0.9976 (0.991, 1.0042) 0.5168 1 0.4722
Mean Arterial Pressure −0.0052 (−0.0141, 0.0037) 0.9948 (0.986, 1.0037) 1.3198 1 0.2506

Acuity Score −0.3774 (−0.579, −0.1758) 0.6856 (0.5605, 0.8388) 13.4658 1 0.0002
Weighted Hours in Perpetuity × Age −0.0056 (−0.0121, 8 × 10−4) 0.9944 (0.988, 1.0008) 2.9704 1 0.0848
Weighted Hours in Perpetuity × O2 −0.0116 (−0.0224, −8 × 10−4) 0.9885 (0.9778, 0.9992) 4.3987 1 0.0360

Table A3: 8 h Cut-Off, Last-One-Forward, Minute-Increment Model with Hours in Perpetuity Weighted by the Charted Tidal Volume’s
Percent Over the 8 mL/kg Threshold: Cox model with hours in perpetuity as a time-varying covariate. The estimated coefficient is on
the log(hazard rate) scale. A relative risk over 1 indicates that having the associated covariate (or each unit of the associated covariate)
increases the hazard of dying in the hospital. The non-linear portion of the spline terms for hours in acuity and heart rate do not have single
estimated coefficients. Thus, only χ2 tests and the associated p values are given for these rows. 2025 patients are included in this model.

Table A4. 8 h Cut-Off.

Loglik Chisq Df p (>|Chi|)

1 −3051.34

2 −3055.74 8.8 3 0.0321
Table A4: 8 h Cut-Off, Last-One-Forward, Minute-Increment Model with Hours in Perpetuity Weighted by the
Charted Tidal Volume’s Percent Over the 8 mL/kg Threshold: Partial likelihood ratio test comparing models with
and without any terms involving perpetuity. Model with perpetuity has main effect of perpetuity, interaction of
perpetuity and age, interaction of perpetuity and O2, and other covariates. Reduced model removes the three
named terms but still contains the other covariates. Both models incorporate non-linear effects of hours in acuity
and HR1.
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Table A5. 12-h Cut-Off Model.

Estimated Coefficient (95% CI) Relative Risk (95% CI) χ2 df p Value

Weighted Hours in Perpetuity 0.5459 (−0.3614, 1.4532) 1.7261 (0.6967, 4.2766) 1.3906 1 0.2383
Age 0.0279 (0.0217, 0.0341) 1.0283 (1.0219, 1.0347) 76.8969 1 0.0000
O2 −0.015 (−0.0214, −0.0086) 0.9851 (0.9789, 0.9914) 21.2007 1 0.0000

Hours in Acuity (Linear) 0.0133 (−0.0435, 0.0701) 1.0134 (0.9575, 1.0726) 0.2112 1 0.6458
Hours in Acuity (Non-Linear) 14.4563 3 0.0024

Arrival by EMS Ground 0.0982 (−0.3742, 0.5706) 1.1032 (0.6878, 1.7693) 0.1660 1 0.6837
Other Mode of Arrival 0.1441 (−0.5321, 0.8202) 1.1549 (0.5874, 2.2709) 0.1744 1 0.6762
POV Mode of Arrival −0.1916 (−0.7764, 0.3933) 0.8257 (0.46, 1.4819) 0.4121 1 0.5209

BUMCS 0.4114 (0.2118, 0.611) 1.5089 (1.2359, 1.8423) 16.3148 1 0.0001
Had NIPPV −0.9255 (−1.2518, −0.5992) 0.3963 (0.286, 0.5493) 30.9002 1 0.0000

Ideal Body Weight −0.0012 (−0.0106, 0.0083) 0.9988 (0.9895, 1.0083) 0.0580 1 0.8096
BMI 0.0032 (−0.0069, 0.0132) 1.0032 (0.9931, 1.0133) 0.3758 1 0.5398

Heart Rate (Linear) 7 × 10−4 (−0.0021, 0.0036) 1.0007 (0.9979, 1.0036) 0.2488 1 0.6179
Heart Rate (Non-Linear) 10.9098 2 0.0047
Systolic Blood Pressure −0.0023 (−0.0089, 0.0043) 0.9977 (0.9911, 1.0043) 0.4831 1 0.4870
Mean Arterial Pressure −0.0053 (−0.0142, 0.0036) 0.9947 (0.9859, 1.0037) 1.3410 1 0.2468

Acuity Score −0.3801 (−0.5816, −0.1787) 0.6838 (0.559, 0.8364) 13.6775 1 0.0002
Weighted Hours in Perpetuity

× Age −0.0038 (−0.0089, 0.0013) 0.9962 (0.9912, 1.0013) 2.1370 1 0.1438

Weighted Hours in Perpetuity
× O2 −0.0039 (−0.0128, 0.005) 0.9961 (0.9873, 1.005) 0.7305 1 0.3927

Table A5: 12 h Cut-Off, Last-One-Forward, Minute-Increment Model with Hours in Perpetuity Weighted by the Charted Tidal Volume’s
Percent Over the 8 mL/kg Threshold: Cox model with hours in perpetuity as a time-varying covariate. The estimated coefficient is on
the log(hazard rate) scale. A relative risk over 1 indicates that having the associated covariate (or each unit of the associated covariate)
increases the hazard of dying in the hospital. The non-linear portion of the spline terms for hours in acuity and heart rate do not have single
estimated coefficients. Thus, only χ2 tests and the associated p values are given for these rows. 2025 patients are included in this model.

Table A6. 12 h Cut-Off.

Loglik Chisq df p (>|Chi|)

1 −3053.17

2 −3055.74 5.14 3 0.1615
Table A6: 12 h Cut-Off, 8 mL/kg Threshold Last-One-Forward, Minute-Increment Model with Hours in Perpetuity
Weighted by the Charted Tidal Volume’s Percent Over the 8 mL/kg Threshold: Partial likelihood ratio test
comparing models with and without any terms involving perpetuity. Model with perpetuity has main effect of
perpetuity, interaction of perpetuity and age, interaction of perpetuity and O2, and other covariates. Reduced
model removes the three named terms but still contains the other covariates. Both models incorporate non-linear
effects of hours in acuity and HR1.

Appendix B.4. Sensitivity Results

The plots below present the coefficient estimates and partial likelihood ratio test
statistics from the sensitivity analyses. The y-axis for the coefficient estimates is on the log
hazard rate scale. The y-axis for the partial likelihood ratio test statistics is on the scale of
the χ2 test statistic. For the partial likelihood ratio test sections of the plots, a large χ2 test
statistic and corresponding small p-value indicates that the presence of perpetuity in the
model statistically significantly improves the model fit. In general, color corresponds to
the p value of the associated Wald χ2 test (for coefficient estimates) or the partial likelihood
ratio χ2 test (for model comparisons). Finally, note that all these models include data from
2025 patients.
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