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Abstract: This study aimed to evaluate changes in neuromuscular function and pain perception
in latent trigger points (TrPs) in the gastrocnemius muscle after a single session of dry needling.
A randomized within-participant clinical trial was conducted. Fifty volunteers with latent TrPs
in the gastrocnemius muscles were explored. Each extremity was randomly assigned to a control
or experimental (dry needling) group. Viscoelastic parameters and contractile properties were
analyzed by tensiomyography. Ankle dorsiflexion range of motion was assessed with the lunge
test. Pressure pain thresholds (PPT) and pain perceived were also analyzed. The results observed
that three viscoelastic proprieties (myotonometry) showed significant differences in favor of the
experimental extremity in the lateral gastrocnemius: stiffness (p = 0.02), relaxation (p = 0.045), and
creep (p = 0.03), but not in the medial gastrocnemius. No changes in tensiomyography outcomes
were found. The control extremity showed a higher increase in PPTs (i.e., decrease in pressure pain
sensitivity) than the experimental extremity (p = 0.03). No significant effects for range of motion
or strength were observed. In general, gender did not influence the effects of dry needling over
latent TrPs in the gastrocnemius muscle. In conclusion, a single session of dry needling was able to
change some parameters of neuromuscular function, such as muscle tone, relaxation, pressure pain
sensitivity, and creep in the lateral (but not medial) gastrocnemius but did not improve strength or
range of motion.

Keywords: dry needling; myofascial pain; trigger points; gastrocnemius

1. Introduction

Trigger points (TrPs) are a common musculoskeletal source of local and referred
muscle pain and are classified as active or latent, depending on their relationship with
symptoms [1]. The clinical difference between active and latent TrPs is that active TrPs
reproduce the pain symptoms experienced by an individual [2], while latent TrPs can
be present without spontaneous symptoms, and when elicited, they do not reproduce
the symptoms of an individual [1]. It has been observed that latent TrPs can induce
motor dysfunctions, such as stiffness, restriction of range of motion, and muscle fatigue,
supporting their clinical relevance [3].
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Latent TrPs in the gastrocnemius muscles are common [4,5], and their presence may
increase the risk of injury in the lower extremity, particularly in individuals with a moderate
level of activity and genetic predisposition [6]. In fact, repetitive micro-traumatic events,
due to biomechanical alterations during gait, running, or sport practice, could lead to the
development of TrPs in the lower extremity muscles [7]. Accordingly, proper evaluation
and treatment of latent TrPs could be essential for the prevention of muscle injuries. In
such a scenario, a small number of trials have shown that the treatment of gastrocnemius
muscle TrPs reduces pain, improves health-related quality of life, and increases range of
motion [8]. However, few studies have assessed the changes in neuromuscular function by
using myotonometry after the treatment of latent TrPs in the gastrocnemius muscle [9,10].

Neuromuscular function is a combination of mechanical properties of the muscle
that are related to basic properties, such as strength, contractibility, or flexibility. Tools
used to evaluate the neuromuscular function include myometry and tensiomyography.
Myometry provides viscoelastic information of the muscle throughout parameters, such
as tone, stiffness, relaxation, or elasticity [11,12]. Tensiomyography assesses contractile
parameters of the muscle [13,14], being the most frequent maximum radial displacement
(Dm) and contraction speed (Tc). Despite the fact that myometry and tensiomyography
assess muscle stiffness, it has been found that they do not analyze same properties, since
they have low correlations between them [15].

A potential effect of manual therapy and dry needling approaches on stiffness of
gastrocnemius muscle after the treatment of latent TrPs has been recently published [9,10].
However, no study has assessed whether dry needling of gastrocnemius muscle latent
TrPs is able to generate changes in neuromuscular function through tensiomyography,
myometry, pain sensitivity, and range of motion.

The objective of this randomized, within-participant clinical trial was to evaluate the
effects of a single session of dry needling on latent TrPs in the gastrocnemius muscle on
neuromuscular function, sensitivity to pressure pain, range of motion, and strength. The
hypothesis was that a single session of dry needling into gastrocnemius muscle latent
TrPs improves neuromuscular function, range of motion, and strength, and conversely
decreases pressure pain sensitivity.

2. Materials and Methods
2.1. Study Design

A single-blind, within-participant clinical trial was performed. The randomization of
the lower extremity, on which the needling intervention was conducted, was done by using
a computer program (www.random.org, accessed on 20 May 2021). This study was ap-
proved by the local committee (CBAS201802) and conducted, according to the Declaration
of Helsinki. The study was prospectively registered at clinicaltrials.gov (NCT04851743).
Participants were previously informed of the procedure and declared their willingness to
participate in the current trial through the signing of a written informed consent.

2.2. Participants

A total of 50 volunteers (100 lower extremities) were recruited from 10 May to 1 July
2021 from the general population. They were excluded if they had previous surgery or
injury in the lower extremities, any underlying medical condition, pregnancy, the presence
of muscle pain after strenuous exercise, or belonephobia. Participants were screened for
the presence of latent TrPs in both gastrocnemius muscles, according to the following
criteria: 1, palpable taut band; 2, hypersensitive spot on the taut band; and 3, pain referral
to palpation which does not reproduce any familiar symptom [2].

2.3. Primary Outcomes: Neuromuscular Function

Viscoelastic properties and muscle contractile properties were considered primary out-
comes, whereas pressure pain sensitivity, ankle dorsiflexion, and strength were considered
secondary outcomes. All outcomes were evaluated before and after 2 min of intervention.

www.random.org


J. Clin. Med. 2021, 10, 3848 3 of 15

Viscoelastic properties: Viscoelastic properties of neuromuscular function were as-
sessed with a MyotonPro instrument (MytonPro, Myoton Ltd.s., Tallin, Estonia) with
participants in a prone position with the ankle slightly flexed. The MyotonPro was placed
perpendicular to the skin over the muscle belly of the medial and lateral gastrocnemius
(Figure 1).
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Figure 1. Viscoelastic properties of gastrocnemius muscles were assessed by myotonometry.

The measuring device was stable while it automatically performed the predefined
three trials of measurements. On each muscle, three measurements were made with an
interval of 1 s between each, and the mean was used in the analysis. The reliability of the
MyotonPro device has been shown to be good–excellent (ICC 0.8–0.93) in people with and
without pain [9,16–19]. The oscillations recorded by the device were used to calculate the
frequency that represents muscle tone. In the current study, the following variables were
extracted [9,20]:

- Muscle tone (Hz): the frequency of oscillation that characterizes whether a muscle is
in its passive or resting state, without any voluntary contraction.

- Stiffness (N/m): biomechanical property of a muscle that characterizes its resistance
to a contraction or to the external force necessary to deform its initial shape.

- Elasticity (arbitrary units): the biomechanical property of a muscle characterizing its
ability to regain its initial shape after eliminating the external force that has deformed it.

- Relaxation (ms): time taken by the muscle to regain its initial shape after deformation,
following the elimination of an external force.

Muscle contractile properties: The contractile properties of neuromuscular function
were obtained by using tensiomyography (TMG), again with participants in prone, with the
ankle slightly flexed. All TMG parameters depend on the maximum radial displacement
(Dm), which is the radial movement of the muscle belly after the application of an electrical
stimulus (mm). Other parameters registered with TMG were: 1, the contraction time (Tc),
which is the time between 10% and 90% of Dm [21]; 2, the delay time (Td), i.e., the time that
the muscle takes to reach 10% of Dm from the start of the stimulus; 3, the relaxation time
(Tr), the time between 90% and 50% of the relaxation; and 4, sustained time (Ts), the time
from 50% of the displacement reached in the contraction phase to 50% of the displacement
reached in the relaxation phase.
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The measurement was performed perpendicular to the tissue with two adhesive elec-
trodes (TMGTMG-BMCd.oo, Ljubljana, Slovenia) equidistantly placed, proximal (anode) and
distal (cathode) to the sensor, with a distance of 5 cm between electrodes (Figure 2) [15]. The
electrical stimulation was applied by using a TMG-100 System electrostimulator (TMGBMCd.
O.o., Ljubljana, Slovenia). The amplitude was progressively increased from 20 to 100 mA, in
20 mA increments, until there was no further increase in Dm, or the maximum stimulator
output was reached (i.e., 110 mA) [16]. A 10 sec-rest period was provided between stimuli to
minimize the effects of fatigue and the enhancement of muscle activity [15].
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2.4. Secondary Outcomes: Pain Sensitivity, Range of Motion, and Strength

Pressure pain threshold (PPT) is the minimum amount of pressure necessary to first
produce a pain sensation. Pressure pain sensitivity, over the latent TrP identified in the
gastrocnemius muscle, was evaluated with a manual algometer (Trigger Plus, Palpatronic,
Hagen, Germany). Pressure was applied at approximately 10 N/cm2/s at each point until
the participant reported that the pressure became painful (Figure 3). The intra-examiner
reliability of this tool has been shown to be good [9,22,23]. At the time the participant
perceived the pressure as painful, the evaluator asked the patient how much pain they
experienced on an 11-point, numerical pain rating scale (NPRS) (0 = no pain, 10 = maximum
pain) [9,24].
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Figure 3. Pressure pain threshold in the gastrocnemius muscle was evaluated with a manual algometer.

Ankle dorsiflexion range of motion was assessed with the lunge test [9]. The test was
carried out by placing the foot perpendicular to a wall, with the sole resting on the ground,
and bringing the knee forward towards the wall. The foot was then moved further away
from the wall until the maximum range of dorsiflexion was reached. To keep the heel
from lifting off the ground, the examiner placed a band under the heel and applied tension
(Figure 4), and the angulation from the tibia bone to the ground was measured. This test
has shown good intra- and inter-examiner reliability (ICC 0.97) [25].
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maximum force was measured with the dynamometer, with an accuracy of 0.1 N. The
dynamometer was placed over the heads of the metatarsals on the sole of the foot, and the
subjects were asked to exert the greatest amount of isometric force possible towards the
flexion. Ankle plantar strength was assessed with participants in supine (Figure 5). Each
contraction was held for 3 s. The test was repeated 3 times, with a 5 sec-rest, and the mean
was calculated [9,26,27].
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2.5. Dry Needling Intervention

Participants were used as their own controls. One of the lower limbs received the
intervention randomly, whereas the other limb acted as a control and did not receive any
intervention. Outcomes were evaluated with a 2 min difference between both legs.

A single dry needling treatment session was performed on the experimental limb in the
latent TrP found during the exploration on the gastrocnemius muscle. If multiple TrPs were
found, dry needling was applied on the most painful latent TrP in one gastrocnemius muscle.
With participants in a prone position, 0.30 mm × 50 mm disposable stainless-steel needles
(3B Scientific, Paterna, Spain) were inserted into the skin over the latent TrP (Figure 6).
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Once the TrP was located, the skin was cleaned with an antiseptic. In this study,
the “fast-in and fast-out” technique, described by Hong [28], was used. The needle was
inserted between 5 and 10 mm until the first local twitch response occurred. The technique
was performed in different directions for a total of 45 s, and the number of local twitch
responses obtained was recorded. Once the needle was removed, manual pressure was
immediately applied to the skin area with a cotton ball to generate hemostasis.

2.6. Sample Size

The sample size was calculated with the GRANMO version 7.12 software. A previous
pilot study (n = 10) was conducted to determine the sample size. Subjects used in the pilot
study were not included in final trial to avoid potential bias. The primary outcome used
for sample size calculation was the muscle tone of the medial gastrocnemius. An initial
standard deviation of 0.62 was obtained, a difference between extremities of 0.36 with
bilateral contrast, alpha risk of 0.05, beta risk of 0.2, and with a 5% probability of error. The
probability of error (1 − β) was 0.80 and the probability of error α was 0.05. With this data,
a necessary sample of 50 subjects (100 limbs) was calculated.

2.7. Statistical Analysis

Statistical analysis was performed with the SPSS 25.0 package (IBM, Armonk, NY,
USA). The Kolmogorov-Smirnov test was used to determine a normal distribution of
the quantitative data (p > 0.05). A 2 × 2 mixed model of repeated-measures analysis of
covariance (ANCOVA) was used to compare the main effect of time (before and after) and
group (extremity needled or not needled), with gender as covariate. The main hypothesis
of interest was the group × time interaction. A secondary analysis was conducted to
determine the effect of gender in the observed changes. Effect sizes were calculated using
Cohen’s d coefficient [29]. An effect size of >0.8 was considered large, about 0.5 was
considered intermediate, and <0.2 was small [29]. All enrolled subjects were included in
the final analysis. The statistical analysis was done by intention to treat (Little’s random
complete absence test and maximization of expectations). The level of significance was set
at p < 0.05.

3. Results

From the 55 consecutive volunteers initially screened, 50 met the inclusion criteria.
The details of the recruitment procedure are reflected in the flow chart (Figure 7). The final
sample consisted of 15 men and 35 women, mean age (±SD) of 22.4 ± 8.4 years, height
173.1 ± 8 cm, weight 68.9 ± 14.5 kg, and BMI 22.82 ± 3.61 kg/m2. The right leg was
dominant in 70% of the participants, whereas the left leg was dominant in the remaining
30%. The medial gastrocnemius was needled in 55%, whereas the lateral gastrocnemius
was needled in 45% of participants. The mean number of local twitch responses obtained
during the needling intervention was 2.5 (SD 3.6) on each TrP. All subjects experienced a
transient discomfort after the needling intervention lasting 24–48 h in the targeted area. No
other adverse event was reported from any participant.

3.1. Changes in Neuromuscular Function—Myotonometry

The ANCOVA revealed significant group × time effects in the lateral gastrocnemius
for stiffness (F = 5.928; p = 0.02), relaxation (F = 4.113; p = 0.045), and creep (F = 5.203;
p = 0.03), but not for tone (F = 3.353; p = 0.073) or elasticity (F = 0.012; p = 0.914): the
experimental extremity experienced higher decreases in stiffness and higher increases
in relaxation and creep in the lateral gastrocnemius, compared to the control extremity
(Table 1). No significant effect of time or group was observed for tone (time: F = 0.993,
p = 0.324; group: F = 0.001, p = 0.985) or elasticity (time: F = 0.047, p = 0.839; group: F = 0.352,
p = 0.556) of lateral gastrocnemius. The inclusion of gender did not influence any result
(tone: F = 0.423, p = 0.529; stiffness: F = 2.416, p = 0.127; elasticity: F = 0.003, p = 0.954;
relaxation: F = 2.755, p = 0.105; creep: F = 0.377, p = 0.542).
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Table 1. Mean changes in neuromuscular function, according to myotonometry and tensiomyography.

Intervention Extremity (Group) Control Extremity (Group)

Baseline Final Within-Group Difference (Pre-Post) Baseline Final Within-Group Difference (Pre-Post)

Mean ± SD Mean ± SD Mean 95% CI ES Mean ± SD Mean ± SD Mean 95% CI ES

Lateral Gastrocnemius

Tone (Hz) 15.88 ± 2.08 15.48 ± 1.95 −0.36 (−0.545; −0.173) 0.20 15.67 ± 2.72 15.69 ± 1.97 0.06 (−0.440; 0.564) 0.01
Stiffness (N/m) * 283.72 ± 47.64 274.10 ± 43.58 −8.28 (−12.838; −3.725) 0.21 279.72 ± 45.29 276.02 ± 43.09 −2.65 (−7.423; 2.125) 0.08

Elasticity 1.17 ± 0.19 1.19 ± 0.18 0.02 (−0.002; 0.059) 0.11 1.16 ± 0.20 1.18 ± 0.19 0.02 (−0.002; 0.055) 0.10
Relaxation (m/s) * 19.56 ± 3.56 20.13 ± 3.13 0.50 (0.136; 0.863) 0.17 19.80 ± 3.45 19.97 ± 3.11 0.11 (−0.252; 0.471) 0.05

Creep (m/s) * 1.20 ± 0.21 1.23 ± 0.18 0.03 (0.006; 0.052) 0.15 1.23 ± 0.25 1.22 ± 0.18 −0.02 (−0.063; 0.029) 0.05
TC (m/s) 35.59 ± 20.72 37.57 ± 21.38 1.98 (−2.958; 6.913) 0.09 34.62 ± 21.69 38.04 ± 21.60 3.43 (−2.431; 9.285) 0.16
TD (m/s) 23.54 ± 18.68 21.69 ± 3.83 −1.85 (−7.322; 3.629) 0.14 20.75 ± 3.14 22.18 ± 7.22 1.43 (−0.519; 3.381) 0.26
TR (m/s) 59.70 ± 36.97 54.51 ± 42.05 −5.19 (−20.199; 9.810) 0.13 52.78 ± 34.68 48.18 ± 22.34 −4.60 (−14.777; 5.571) 0.16
DM (mm) 3.46 ± 2.25 3.47 ± 2.48 0.01 (−0.374; 0.401) 0.00 3.41 ± 2.22 3.71 ± 2.38 0.30 (−0.165; 0.772) 0.13
TS (m/s) 231.21 ± 56.24 222.33 ± 50.75 −8.88 (−30.636; 12.868) 0.17 226.48 ± 68.99 208.50 ± 6.74 −17.98 (−39.849; 3.879) 0.37

Medial Gastrocnemius

Tone (Hz) 15.09 ± 1.66 14.70 ± 1.61 −0.38 (−0.554; −0.208) 0.24 15.17 ± 1.55 14.87 ± 1.57 −0.28 (−0.438; −0.113) 0.001
Stiffness (N/m) 254.48 ± 54.46 250.52 ± 34.47 −3.42 (−14.70; 7.856) 0.09 258.24 ± 36.35 252.38 ± 33.58 −5.26 (−10.101; −0.421) 0.034

Elasticity 1.17 ± 0.18 1.18 ± 0.14 0.01 (−0.039; 0.064) 0.06 1.13 ± 0.22 1.18 ± 0.14 0.05 (−0.003; 0.098) 0.064
Relaxation (m/s) 20.88 ± 3.13 21.51 ± 2.79 0.59 (0.220; 0.955) 0.13 20.86 ± 3.07 21.35 ± 2.77 0.43 (0.067; 0.798) 0.021

Creep (m/s) 1.27 ± 0.18 1.30 ± 0.16 0.03 (0.009; 0.054) 0.18 1.26 ± 0.18 1.29 ± 0.16 0.03 (0.002; 0.049) 0.032
TC (m/s) 22.68 ± 10.62 22.60 ± 7.71 −0.08 (−1.953; 1.797) 0.01 24.14 ± 12.60 23.34 ± 10.30 −1.02 (−3.276; 1.329) 0.369
TD (m/s) 19.33 ± 2.20 19.21 ± 2.41 −0.11 (−0.640; 0.417) 0.05 20.45 ± 8.05 19.29 ± 2.99 −1.24 (−3.769; 1.293) 0.330
TR (m/s) 59.38 ± 70.41 58.05 ± 55.33 −1.33 (−22.370; 19.705) 0.02 75.30 ± 137.71 52.59 ± 58.37 −24.12 (−62.792; 14.552) 0.216
DM (mm) 1.87 ± 1.25 1.72 ± 1.24 −0.16 (−0.309; −0.007) 0.12 1.87 ± 1.24 1.81 ± 1.17 −0.09 (−0.317; 0.132) 0.412
TS (m/s) 203.80 ± 96.94 211.15 ± 92.63 7.35 (−12.566; 27.256) 0.08 212.72 ± 170.68 227.31 ± 104.74 10.69 (−44.470; 65.450) 0.696

DM: maximum radial displacement; TC: contraction time; TD: delay time; TR: relaxation time; TS: sustained time; ES. Effect Size. * Significant group × time interaction (ANCOVA, p < 0.05).
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For the medial gastrocnemius, no significant group × time effect, in any outcome, was
found (tone: F = 1.079, p = 0.304; stiffness: F = 0.176, p = 0.677; elasticity: F = 1.071, p = 0.306;
relaxation: F = 1.179, p = 0.283; creep: F = 0.414, p = 0.523; Table 1). No significant effect of
gender was observed in any outcome of the medial gastrocnemius (all, p > 0.209)

3.2. Changes in Neuromuscular Function—Tensiomyography

The ANCOVA did not reveal significant group × time interactions for any variable
assessed with tensiomyography (TMF), in either lateral (TC: F = 0.163, p = 0.689; TD:
F = 0.805, p = 0.374; TR: F = 0.004, p = 0.950; DM: F = 1.142, p = 0.290; TS: F = 0.586, p = 0.448)
or medial (TC: F = 0.428, p = 0.516; TD: F = 0.755, p = 0.389; TR: F = 0.971, p = 0.329; DM:
F = 0.269, p = 0.606; TS: F = 0.060, p = 0.808) gastrocnemius (Table 1). Again, no significant
effect of gender was observed (all, p > 0.112).

3.3. Changes in Sensitivity to Pressure Pain

A significant group × time interaction (F = 5.667; p = 0.03) for PPT over the latent TrP
was observed: the control extremity experienced a higher increase in PPTs (i.e., decrease
in pressure pain sensitivity) than the experimental extremity (Table 2). The inclusion of
gender as covariate revealed that women exhibited general lower PPT than men (F = 18.586;
p < 0.001), but changes after the needling intervention were similar. No significant group
× time interaction (F = 0.132; p = 0.721), time (F = 2.616; p = 0.127), or group (F = 0.132;
p = 0.721) effect was observed in pain elicited during PPT (Table 2).
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Table 2. Mean changes of the lunge test, strength, and pressure pain sensitivity in both extremities.

Intervention Control

Baseline Final Difference between Baseline Baseline Final Difference between Baseline

Mean ± SD Mean ± SD Mean 95% CI ES Mean ± SD Mean ± SD Mean 95% CI ES

LUNGE (◦) 40.86 ± 6.18 41.32 ± 7.05 0.46 (−0.557; 1.481) 0.07 41.15 ± 6.79 40.94 ± 7.45 −0.22 (−1.552; 1.120) 0.03
FORCE (N) * 43.57 ± 10.94 43.05 ± 11.92 −0.68 (−2.875; 0.151) 0.05 44.94 ± 11.55 41.68 ± 12.19 −3.26 (−5.352; −1.177) 0.28

PPT (Kg/cm2) * 5.35 ± 2.56 5.57 ± 2.84 0.22 (−0.226; 0.660) 0.08 5.33 ± 2.50 6.45 ± 2.63 1.13 (0.374; 1.876) 0.44
NPRS (0–10) 4.12 ± 1.87 3.14 ± 1.38 −0.97 (−1.468; −0.479) 0.60 3.28 ± 1.13 2.75 ± 0.97 −0.53 (−1.162; 0.112) 0.50

PPT: Pressure Pain Threshold; NPRS: Numerical Pain Rating Scale; N: Newton; ES: Effect Size. * Significant group × time interaction (ANCOVA, p < 0.05).



J. Clin. Med. 2021, 10, 3848 11 of 15

3.4. Ankle Dorsiflexion (Lunge Test)

The ANCOVA revealed neither a significant group × time interaction (F = 0.930;
p = 0.340) nor a main effect for time (F = 0.067; p = 0.797) or group (F = 0.007; p = 0.932,
Table 2). The inclusion of gender, as a covariate, did not influence the results (F = 0.235;
p = 0.630).

3.5. Strength

The ANCOVA revealed a significant group × time (F = 6.259; p = 0.016), without
an effect of gender (F = 0.082; p = 0.776): the control extremity experienced a significant
decrease in ankle strength when compared with the needle extremity (p = 0.003).

4. Discussion

The objective of this clinical trial was to evaluate the effects of a single session of dry
needling over latent TrPs on neuromuscular function, sensitivity to pressure pain, range
of motion, and strength in a sample of asymptomatic subjects. We observed that a single
session of dry needling changed some parameters of neuromuscular function, such as
muscle tone, relaxation, creep in the lateral (but not medial gastrocnemius), and pressure
pain sensitivity, but did not improve strength or range of motion.

4.1. Changes in Neuromuscular Function

Our findings observed in myotonometry are similar to those previously observed after
the application of manual therapy [9,30] or dry needling [10]. These studies also reported
a decrease in muscle tone and an increase of relaxation after the treatment of latent TrPs.
Some studies have associated the presence of stiffness with a greater predisposition to
experience muscle injuries [31–33], which could strengthen the proposed initial hypothesis
that treating healthy or subclinical individuals with latent TrPs could be associated with a
reduction in the risk of injury [34]. Future studies investigating this hypothesis in sport
players are needed, since changes in neuromuscular function were mainly observed in the
lateral (but not the medial) gastrocnemius.

We also found a trend towards a decrease of muscle contraction time, as assessed with
tensiomyography, particularly in the maximum radial displacement (dm) of the lateral
gastrocnemius. Current findings suggest a better muscle efficacy in contractility [35] after
the application of dry needling. The decrease in the contraction time at rest, despite not
being significant, is a consistent finding observed in previous studies, which deserves
future research. Rusu et al. [36] explained that a decrease in contraction time is related to a
greater recruitment of muscle fibers. In such a scenario, dry needling could be used as a
coadjutant treatment in sport players to induce changes in muscle recruitment. Current
results suggest a trend that dry needling could improve muscle contraction and decrease
contraction time; nevertheless, these results should be considered preliminary.

Our findings could be interesting for injury prevention. An increase in muscle con-
traction time has been shown to be related to an increased risk of muscle injuries [37].
Specifically, the speed of contraction of the triceps sural is crucial for stabilizing the knee
joint functioning as an agonist in anterior cruciate ligament (ACL) injuries [38,39]. Inter-
ventions helping to modify muscle contraction time could help for better or more efficient
muscle recruitment during preventive exercise programs in this population.

It is important to consider that we only observed changes in neuromuscular function
in the lateral (but not the medial) gastrocnemius. These findings are intriguing. Cadav-
eric [40] and in vivo [41] studies described differences in the structural characteristics
between the medial and lateral gastrocnemius. The medial gastrocnemius has a unipen-
nate structure, whereas the lateral gastrocnemius has a bipennate structure [42]. These
anatomical differences could lead to different muscle responses to the application of dry
needling. In fact, latent TrPs in the medial (but not lateral) gastrocnemius muscle have been
associated with muscle cramps [43]. One hypothesis explaining the pathophysiological
effects of latent TrPs on muscle cramps suggests the presence of spontaneous discharges
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or abnormal excitability from motor nerves and over-excitability of the motor unit in the
presence of spinal disinhibition of the medical gastrocnemius muscle [43]. Accordingly,
potential differences in excitability of the motor units, between the medial and lateral gas-
trocnemius, could explain the difference found in our study. It is possible that the medial
gastrocnemius needs greater stimulation with the needle, e.g., more local twitch responses
or consecutive sessions, for obtaining changes in neuromuscular function. In line with
this hypothesis, a preliminary study observed a decrease in superficial electromyographic
activity of the medial gastrocnemius with consecutive local twitch responses elicited during
the application of dry needling over latent TrPs [44]. Future studies investigating the effects
of consecutive treatment sessions or higher number of local twitch responses would help
to elucidate this hypothesis.

4.2. Changes in Sensory and Motor Outcomes

We observed a small increase in PPT over the latent TrPs and a decrease on the pain
intensity perceived (NPRS) after a single session of dry needling, although these changes
did not reach neither statistical significance nor clinical relevance. These small changes
could likely be associated with type I errors.

Interestingly, the control leg experiment showed a higher increase in PPT, probably
related to post-needling pain soreness associated with the intervention, due to the described
tissue damage [45]. Our results would agree with the fact that manual therapies are more
effective for immediate effects on pain sensitivity [9,34]. This contralateral increase in PPT
observed may be due to the potential spinal neurophysiological effect of dry needling [46].
It has been reported that manual techniques generate hypoalgesia, changes in electrical
conduction, and changes in muscle properties both locally and distally to the treated
area [47–51]. These mechanisms occur through segmental inhibitory pathways, spinal
pathways, or descending inhibitory pathways [52,53]. These changes would explain
the presence of contralateral changes in sensitivity to pressure pain in the current study.
However, despite these findings, it seems clear that changes in the treated areas seem to be
more substantial than those in distant areas [54–56].

No significant changes in range of motion were found, either. A single treatment
session may not be enough to obtain the range of motion changes which have been
reported by others [57]. In fact, differences are found when a greater number of sessions are
applied [58]. Another possible reason may be that the patients did not exhibit a reduction in
range of motion prior to the needling intervention, as they were asymptomatic. Therefore,
it is possible that changes in range of motion would occur if dry needling were applied on
symptomatic populations. Finally, it should be also considered that the small changes seen
after the intervention could be likely represent type I errors.

Finally, regarding strength, we observed a decrease of ankle strength within the control
group. These data are similar to a previous study [9] and to a previous meta-analysis
showing that most of the studies suggest no effect of dry needling on force production [59].
It is possible that the between-groups differences are due to the fact that the TrPs have
not been treated in the control group and the evaluation itself has generated the irritation
of muscle tissue, leading to a decrease in strength; however, these data are inconclusive.
Again, the possibility of type I error is present.

4.3. Limitations

We should consider that this study included people with latent TrPs; therefore, they
did not exhibit any painful pathology. This sample does not represent usual clinical practice.
It would be interesting to conduct future studies, including pain populations exhibiting
active TrPs. Second, we only evaluated the immediate effects of the intervention, so we
do not know if the results will be maintained in subsequent follow-ups or if they will
disappear. Furthermore, only the effect of a single treatment session was assessed, so it is
possible that carrying out multiple sessions may lead to better results. Finally, it is probable
that type I errors could be present, mostly in secondary outcomes.
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5. Conclusions

The results of this study indicate that a single dry needling session on latent TrPs can
improve some parameters of neuromuscular function, such as tone, relaxation, creep, and
pressure pain, but not improve strength or range of motion. These changes were identified
for the lateral, but not the medial, gastrocnemius.
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