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Abstract: Background: Acute respiratory distress syndrome (ARDS) is an intense inflammatory 
process of the lungs. Most ARDS patients require mechanical ventilation (MV). Few studies have 
investigated the prediction of MV duration over time. We aimed at characterizing the best early 
scenario during the first two days in the intensive care unit (ICU) to predict MV duration after ARDS 
onset using supervised machine learning (ML) approaches. Methods: For model description, we 
extracted data from the first 3 ICU days after ARDS diagnosis from patients included in the publicly 
available MIMIC-III database. Disease progression was tracked along those 3 ICU days to assess 
lung severity according to Berlin criteria. Three robust supervised ML techniques were imple-
mented using Python 3.7 (Light Gradient Boosting Machine (LightGBM); Random Forest (RF); and 
eXtreme Gradient Boosting (XGBoost)) for predicting MV duration. For external validation, we used 
the publicly available multicenter database eICU. Results: A total of 2466 and 5153 patients in 
MIMIC-III and eICU databases, respectively, received MV for >48 h. Median MV duration of ex-
tracted patients was 6.5 days (IQR 4.4–9.8 days) in MIMIC-III and 5.0 days (IQR 3.0–9.0 days) in 
eICU. LightGBM was the best model in predicting MV duration after ARDS onset in MIMIC-III with 
a root mean square error (RMSE) of 6.10–6.41 days, and it was externally validated in eICU with 
RMSE of 5.87–6.08 days. The best early prediction model was obtained with data captured in the 
2nd day. Conclusions: Supervised ML can make early and accurate predictions of MV duration in 
ARDS after onset over time across ICUs. Supervised ML models might have important implications 
for optimizing ICU resource utilization and high acute cost reduction of MV. 

Keywords: intensive care unit; acute respiratory distress syndrome; mechanical ventilation; ma-
chine learning; prediction models 
 

1. Background 
The acute respiratory distress syndrome (ARDS) is an important cause of morbidity, 

mortality, and costs in intensive care units (ICUs) worldwide [1]. It is a life-threatening form 
of acute respiratory failure characterized by inflammatory pulmonary edema leading to se-
vere hypoxemia, requiring endotracheal intubation and mechanical ventilation (MV) in 
most cases [2]. The number of days on MV during the ICU stay is a major driver of high 
acute care costs [3–5]. We believe that an important intervention to mitigate these costs is 
timely recognition and treatment of conditions that can cause serious complications. 
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The Berlin definition of ARDS identifies three mutually exclusive categories of lung 
severity with PaO2/FiO2 ratios in the ranges >200–300 mmHg (mild ARDS), >100–200 mmHg 
(moderate ARDS), and ≤100 mmHg (severe ARDS) [6,7]. Some studies [8,9] have reported a 
progression of costs from mild, to moderate, to severe ARDS. Despite global acceptance of 
the Berlin criteria [10], some authors have questioned its ability to assess the “true” severity 
of lung injury [11]. A recent study argues that mild ARDS should be considered “severe in 
terms of level of care” [12]. This quality criterion (i.e., level of care) could be measured in 
terms of MV duration, but accurate predictions of MV duration are difficult for critical care 
physicians [13,14], particularly for patients requiring prolonged MV [14]. 

Predicting MV duration could influence important clinical decisions, such as timing 
of tracheostomy and initiation of oral nutrition [14]. In this context, one approach for an 
accurate prediction of MV duration is the use of artificial intelligence (AI) approaches, 
such as machine learning (ML). ML is a subset of AI in which machines extract knowledge 
from the data provided. ML is an exploratory process where there is no one-method-fits-
all solution [15,16]. ML merges statistical analysis techniques with computer science to 
produce algorithms capable of “statistical learning” [17]. ML algorithms are divided into 
two categories: supervised and unsupervised [17]. Supervised learning algorithms, the 
ones used in our study, detect relationships between potential explanatory features and a 
known target outcome [16]. They are commonly used in ICUs to predict clinical outcomes 
[16–21]. Troché and Moine addressed the critical question on whether MV duration is pre-
dictable [22]. Herein, we present the use of three powerful supervised ML methods to 
develop novel models to predict MV duration in ARDS after onset over time, using the 
single-center MIMIC-III dataset under three different scenarios. Then, the eICU multicen-
ter dataset was used to externally validate the best MIMIC-III prediction model. 

2. Methods 
2.1. Study Design and Patient Population 

We used two publicly available clinical databases for development and external val-
idation of the best ML predictive model: MIMIC- III [23] and eICU, respectively [24]. Data 
of the first 3 ICU days (day 1 for representative data within the first 24 h after ARDS onset, 
day 2 for data within 24–48 h after onset, and day 3 for data within 48–72 h after onset) (n 
= 2466, 1445, and 1278 patients, respectively) were extracted from the single-center dataset 
MIMIC-III (MetaVision, 2008–2012) [23]. Similarly, data of the first 3 ICU days after ARDS 
onset (n = 5153, 2981, and 2326 patients, respectively) were extracted from the multicenter 
dataset eICU (2014–2015) [24]. Patients <18 years were excluded. Data extraction from 
both datasets was performed using Python 3.7. The selection of clinical variables was 
based on prior studies [9,19,25–27]. All extracted patients from both datasets fulfilled the 
Berlin definition for ARDS [6]. For the purpose of this study, prolonged MV was defined 
as being ventilated for >48 h [22,28]. Disease progression in each dataset was tracked along 
those 3 ICU days. 

2.2. MIMIC-III 
Medical Information Mart for Intensive Care III (MIMIC-III) is a large single-center 

database containing de-identified health-related data of about 60,000 ICUs patients ad-
mitted to the Beth Israel Deaconess Medical Center (Boston, MA, USA) between 2001 and 
2012 [23]. There were six predictors: baseline demographic information (age); ventilator 
parameters including PEEP; blood gas parameters including FiO2, PaO2, PaO2/FiO2, and 
PaCO2. The main target variable was MV duration. 
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2.3. eICU 
eICU is a multicenter ICU database and it has a high granularity of data of more than 

200,000 ICU admissions [24]. We used this database for external validation of the best 
prediction model obtained from MIMIC-III in order to obtain the MV duration prediction 
in the eICU database. 

2.4. Predictive Models 
During the first 24 h of ARDS onset, misdiagnosis can occur if clinicians consider qual-

ifying PaO2 values resulting from acute events unrelated to the disease process (such as en-
dotracheal tube obstruction, barotrauma, or hemodynamic instability), instead of consider-
ing only PaO2 values while patients are clinically stable. It is also well established that 
changes in PEEP and FiO2 within the first few hours of routine intensive care management 
alter the PaO2/FiO2 ratio in ARDS patients [11]. Since in a substantial proportion of patients 
diagnosed as having ARDS did not meet ARDS criteria within the first 24 h of care, we de-
cided to examine supervised ML models in the following three scenarios during the first 
two ICU days: (i) scenario I: predicting MV duration using information captured in the 1st 
ICU day; (ii) scenario II: predicting MV duration using information captured in the 2nd ICU 
day; (iii) scenario III: predicting MV duration using information captured in the 1st and 2nd 
ICU days, then comparing these three scenarios with scenario IV for predicting MV duration 
using the information captured in the 3rd ICU day exclusively. 

We implemented three robust supervised ML algorithms via Python 3.7, including 
Light Gradient Boosting Machine (LightGBM) [29], Random Forest (RF) [30], and eXtreme 
Gradient Boosting (XGBoost) [31] to generate predictive models for MV duration after 
ARDS onset over time in the development database. For external validation purposes, we 
used the multicenter eICU dataset, as these three methods sacrifice the explicitness of the 
model in favor of predictive quality, and the generated models should be seen as “black 
box” with a high predictive robustness. For the development database, we optimized each 
model’s parameters through a grid search over the respective model’s hyperparameter 
space and the quality of all prediction models was computed based on a 10-fold cross-
validation approach, which means that the dataset was divided into 10 folds, and in each 
run, 9 were used for training, and the remaining 1 was used for testing. Root-mean-square 
error (RMSE) was used to assess the predictive quality of the models. RMSE flags more 
significant differences between the predicted and the actual patient readings when they 
occur [32]. MV duration was expressed in days. 

3. Results 
For development and validation databases, mean values and 95% confidence inter-

vals (CI) of baseline parameters during the first three ICU days after ARDS onset are re-
ported in Table 1. The median and interquartile range (IQR) of MV duration are reported 
in Table 2. 

Table 1. Predictors and their descriptive statistics in MIMIC-III and eICU at 24 h, 48 h, and 72 h. 

 24-h 48-h 72-h 
A. MIMIC-III ARDS Pa-

tients 
2466 (100%) 1445 (58.6%) 1278 (51.8%) 

B. Means and 95% CI 
Age 

62.2 (61.5, 62.8] 60.8 (59.9, 61.6) 60.9 (60.0, 61.8) 

PEEP 7.6 (7.5, 7.7) 9.1 (8.9, 9.4) 8.9 (8.8, 9.2) 
FiO2 0.66 (0.65, 0.67) 0.54 (0.53, 0.55) 0.51 (0.49, 0.51) 
PaO2 114.5 (112.8, 116.2) 97.6 (96.3, 98.9) 95.4 (94.1, 96.6) 

PaCO2 43.4 (42.9, 43.9) 42.3 (41.8, 42.9) 42.9 (42.4, 43.6) 
PaO2/FiO2 184.3 (181.9, 186.6) 170.9 (167.7, 174.2) 179.1 (175.7, 182.5) 
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C. eICU ARDS Patients 5153 (100%) 2981 (57.8%) 2326 (45.1%) 
D. Means and 95% CI 

Age 63.4 (62.9, 63.8] 63.4 (62.8, 63.9) 62.9 (62.4, 63.6) 

PEEP 6.6 (6.6, 6.7) 7.1 (7.0, 7.2) 7.3 (7.1, 7.4) 
FiO2 0.63 (0.63, 0.64) 0.53 (0.52, 0.54) 0.52 (0.51, 0.53) 
PaO2 104.1 (102.9, 105.2) 89.1 (88.1, 90.1) 86.4 (85.3, 87.4) 

PaCO2 43.5 (43.2, 43.9) 41.3 (40.9, 41.7) 41.8 (41.4, 42.2) 
PaO2/FiO2 160.2 (158.3, 162.1) 175.2 (172.9, 177.5) 174.5(171.8, 177.2) 

Table 2. MV Duration in ARDS across MIMIC-III and eICU. 

ICU Day (n) Database MV Duration  
Median Days (IQR Days) 

Day 1 (2466) 
MIMIC-III 

6.5 (4.4–9.8) 
Day 2 (1445) 6.8 (4.7–10.5) 
Day 3 (1278) 6.9 (4.7–10.6) 
Day 1 (5153) 

eICU 
5.0 (3.0–9.0) 

Day 2 (2981) 6.0 (4.0–10.0) 
Day 3 (2326) 6.0 (4.0–10.0) 

Table 3 shows the performance of the three supervised ML methods for the predic-
tive scenarios in the development database. Table 4 shows the results of external valida-
tion of the best prediction model obtained from MIMIC-III to obtain the MV duration pre-
diction in the eICU database. 

Table 3. Performances of LightGBM, RF, and XGBoost models to predict MV duration over time in 
MIMIC-III. 

Scenario I: Predicting MV Duration in ARDS Using Data in the 1st ICU Day  
Algorithm RMSE, mean ± SD 

XGBoost 6.81 ± 1.18 
RF 6.79 ± 1.22 

LightGBM 6.41 ± 1.55 
* Scenario II: Predicting MV duration in ARDS using data in the 2nd ICU day 

Algorithm RMSE, mean ± SD 
XGBoost 6.53 ± 0.96 

RF 6.55 ± 1.16 
* LightGBM 6.10 ± 0.72 

Scenario III: Predicting MV duration in ARDS using data in the 1st & 2nd ICU days  
Algorithm RMSE, mean ± SD 

XGBoost 6.57 ± 1.08 
RF 6.60 ± 1.01 

LightGBM 6.35 ± 0.69 
Scenario IV: Predicting MV duration in ARDS using the data in the 3rd ICU day  

Algorithm RMSE, mean ± SD 
XGBoost 6.14 ± 0.85 

RF 6.19 ± 0.66 
LightGBM 5.92 ± 0.47 

* Identifies the optimal scenario and ML model. 
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Table 4. External validation of the best prediction model (LightGBM) obtained from MIMIC-III to 
obtain the MV duration prediction in the eICU database. 

Predictive Scenario RMSE, Mean ± SD 
Scenario I 6.08 ± 0.72 

* Scenario II 5.87 ± 0.67 
Scenario III 5.93 ± 0.44 
Scenario IV 5.71 ± 0.55 

* Identifies the optimal scenario and ML model. 

For the development database, the best early ML model for predicting MV duration 
was obtained by scenario II with RMSE = 6.10 days, using LightGBM algorithm. Figure 1a 
represents the Bland–Altman plot for LightGBM prediction and truth values in scenario II. 

For the validation database, the best early ML predictive model for MV duration was 
also observed for scenario II with RMSE = 5.87 days. This finding reinforces the idea that 
the best early approach for predicting MV duration is to consider the condition of the 
patient in the second ICU day after ARDS onset, rather than the first ICU day, or both. 
Figure 1b represents the Bland–Altman plot for prediction and truth values in scenario II 
using the external validation of LightGBM. The Bland–Altman plots illustrate agreement 
between the LightGBM models using the development and validation databases. 

 
(a) 

 
(b) 

Figure 1. Bland–Altman plot for the truth vs. the predicted values of MV duration using LightGBM 
(the best validated model) in Scenario II (the best early scenario). (a) Development database; (b) 
validation database. The X- and Y-axes stand for the mean and the difference of the two measure-
ments, respectively. Please note that the values shown in the Bland–Altman plot are normalized in 
the interval (0, 1) (i.e., values are scaled to have corresponding values between 0 and 1). 
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4. Discussion 
Comparing the difference of RMSE means in the best early scenario (scenario II) with 

the prediction based on the data of patients in their third ICU day (scenario IV), yields 
minor RMSE differences (development database: 0.18 day (6.10–5.92) for LightGBM, and 
validation database: 0.16 day (5.87–5.71)). According to these low differences for both the 
development and validation datasets, our major finding was that the prediction results of 
LightGBM models based on the data of the second ICU day (scenario II) are very close to 
those corresponding results of LightGBM models based on the data of the third ICU day 
(scenario IV). Consequently, the LightGBM model can accurately predict MV duration 
without considering/waiting for the data of the third ICU day. This means that MV dura-
tion can be predicted earlier, and this could lead to better allocation of MV resources, re-
ducing high acute costs of MV in ARDS, and improving patient care. 

MV duration beyond 48 h in patients with ARDS provides information about risk 
factors in those patients [28] and has a direct correlation with ICU costs [4,5]. An early 
predictive model for MV duration can optimize ICU-level resource utilization [5,33]. Pre-
vious attempts to predict MV duration using conventional ICU scores or traditional sta-
tistical regression based techniques have proven to be difficult and failed to deal with the 
diversity of big data in the modern ICU databases [22]. ML is reliable, and it is a non-
invasive modality to generate models for predicting MV duration. Most previous works 
considered a discriminatory prediction model to determine if a patient will remain intu-
bated after a fixed number of days (e.g., 7 days) [22]. By contrast, our approach is numer-
ical, and it predicts the number of MV days earlier by using commonly accessible clinical 
variables during the first two ICU days. Furthermore, to strengthen the evidence of our 
results, we used a multicenter database (eICU) for external validation, in which the best 
model obtained from a single-center database (MIMIC-III) was used to obtain the MV du-
ration prediction in the eICU database. Our findings could be used to facilitate optimal 
triage, more timely management, and ICU resource utilization [34]. They may also affect 
some important clinical decisions, including timing of tracheostomy and, potentially, 
transfers to long-term ventilator weaning units or referral to other centers [13]. 

Herein, the main objective of using ML was to show that the application of ML is a 
promising approach to predict MV duration early. The ML contribution in this large study 
is to demonstrate the applicability of this approach, while not trying to choose the most 
proper ML model. Furthermore, we believe that the results of an efficient ML technique 
can yield accurate results for predicting MV duration. In terms of clinical relevance, our 
ML findings showed that using clinical data from the first ICU day is less predictive than 
data from the second ICU day. Previous studies showed that the accuracy of intensivists 
to predict MV duration is limited [13]. However, comparison to other published ML pre-
diction of MV duration is difficult, as we aimed at predicting MV duration for MV >48 h 
and prior studies predicted for different outcomes under different time frames, in differ-
ent populations, and using different ML metrics. A recent ML study showed that RMSE 
for predicting MV duration in ARDS patients for MV >48 h, was 6.23 days [9]. However, 
this study in [9] had several weaknesses: (1) it ignored the temporal dependency of the 
longitudinal predictor and treated each observed data point independently, and (2) it was 
only based on the single-center MIMIC-III database without external validation. Hence, 
those findings have serious limitations for the generalizability in the context of assessing 
the prediction of ARDS outcome. 

From the cost perspective, the mean incremental cost of MV in ICU patients in the 
US was $1522 per day [4]. For instance, if we compare our findings with the result of the 
best ML method used in [9], which had a RMSE of 6.23 days, we see that LightGBM ap-
proach (the best approach) improved the current state of the art. This improvement can 
be quantified in terms 0.13 day (6.23–6.10) and about US $198 per patient according to [4]. 
Developing early predictive models using ML could assist to implement policies for the 
reduction of high acute care costs in ARDS [3–5]. Previous clinical studies showed acute 
costs incurred by mechanically ventilated ICU patients, but there is a significant difference 
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in costs between ventilated ARDS patients and those without ARDS [35]. More specifi-
cally, ARDS diagnosis increases total ICU and hospital costs for mechanically ventilated 
ICU patients, suggesting higher total costs due to more days on a ventilator, although 
there is no clear severity-dependent relationship between ARDS severity and incurred 
costs [35]. The benchmarking of ML algorithms is possible through publicly available da-
tabases such as MIMIC-III [19,27] or eICU [19,36]. 

We acknowledge that our study has several strengths. First, we have analyzed a large 
population of over 7000 ARDS patients from two ICU databases within the first three ICU 
days after ARDS onset. Second, we have implemented and externally validated the best 
ML model (LightGBM) that can predict MV duration early and accurately using com-
monly accessible clinical variables. Third, early prediction of MV duration can inform 
population-level ICU resource allocation. Despite its strengths, we also acknowledge 
some limitations. First, our study is based on a retrospective analysis of data and should 
be confirmed through further prospective studies. Second, one could argue that the out-
come of MV duration is somewhat subjective and could be a function of local practice or 
intrinsic bias inherent in such critical care decisions. However, our ability to predict a 
clinically relevant and difficult-to-predict outcome (MV duration) early supports the 
value of the proposed supervised ML models. 

5. Conclusions 
Predicting MV duration after ARDS onset over time is complex and cannot be ade-

quately performed by critical care physicians. Our findings showed that the ML-based 
early prediction of MV duration is more accurate when predictive models are based on 
the clinical features of ARDS patients in the second ICU day after ARDS onset. 
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