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Abstract: Background: Patients undergoing hemodialysis are prone to cardiac arrests. Methods:
This study aimed to develop a risk score to predict in-hospital cardiac arrest (IHCA) in emergency
department (ED) patients undergoing emergency hemodialysis. Patients were included if they
received urgent hemodialysis within 24 h after ED arrival. The primary outcome was IHCA within
three days. Predictors included three domains: comorbidity, triage information (vital signs), and
initial biochemical results. The final model was generated from data collected between 2015 and 2018
and validated using data from 2019. Results: A total of 257 patients, including 52 with IHCA, were
analyzed. Statistical analysis selected significant variables with higher sensitivity cutoff, and scores
were assigned based on relative beta coefficient ratio: K > 5.5 mmol/L (score 1), pH < 7.35 (score 1),
oxygen saturation < 85% (score 1), and mean arterial pressure < 80 mmHg (score 2). The final scoring
system had an area under the curve of 0.78 (p < 0.001) in the primary group and 0.75 (p = 0.023) in the
validation group. The high-risk group (defined as sum scores ≥ 3) had an IHCA risk of 47.2% and
41.7%, while the low-risk group (sum scores < 3) had 18.3% and 7%, in the primary and validation
databases, respectively. Conclusions: This predictive score model for IHCA in emergent hemodialysis
patients could help healthcare providers to take necessary precautions and allocate resources.

Keywords: in-hospital cardiac arrest; hemodialysis; predictive scoring model; emergent hemodialy-
sis; emergency department

1. Introduction

Hemodialysis patients are more vulnerable to cardiac diseases, arrhythmia, and sud-
den cardiac death [1,2]. The incidence of cardiac arrest was noted at 4.5–7/100,000 dialysis
session [3,4]. and the prognosis is generally poor, [5]. with a 6-month survival rate as
low as 11% [6]. Compared to patients undergoing regular hemodialysis, those who had
intermittent urgent or emergent hemodialysis had a higher one-year mortality, a higher
admission rate, and higher medical expenses [7]. Emergent hemodialysis is not rare in the
emergency department (ED). Patients who underwent emergency hemodialysis in the ED
had an increased risk of cardiac arrest [8].

Several risk factors for sudden cardiac arrest in regular hemodialysis patients have
been proposed, including older age (≥55 years), [9], diabetes mellitus (DM) [3,4], coronary
artery diseases (CADs), heart failure [2,4,10], poor nutrition or hypoalbuminemia, and acute
inflammation [11–13]. The National Early Warning Score (NEWS) and the Modified Early
Warning Score (MEWS) utilized vital signs, including respiratory rate, oxygen saturation,
body temperature, blood pressure, heart rate, and level of consciousness, to predict clinical
deterioration [14,15]. However, the NEWS and MEWS were designed for hospitalized
patients and their predictive values for in-hospital cardiac arrest (IHCA) were barely
acceptable [14,16]. Laboratory data have also shown predictive values for intra-dialysis
cardiac arrest or out-of-hospital cardiac arrest in dialysis patients [4,17].
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Emergent hemodialysis could be provided for patients who are critically ill or even
undergoing resuscitation efforts. Statistical models to predict adverse outcomes, such as
mortality and complications, may assist clinicians in taking necessary precautions. The
aim of this study was to develop a risk score for predicting IHCA in patients undergoing
emergency hemodialysis in the ED.

2. Methods
2.1. Data Source and Study Participants

We retrospectively reviewed patients using a hospital electronic database from a
tertiary medical center in Taiwan between 1 January 2015 and 31 December 2019. Patients
were included if they (1) received hemodialysis within 24 h of arrival at the ED and (2)
were admitted to intensive care units or expired. Patients with known pregnancy, patients
who were younger than 18 years, and traumatic patients were excluded from this study.

2.2. Primary Outcome Measure

The primary outcome was IHCA. The target group was emergent hemodialysis pa-
tients who experienced cardiac arrest within three days of hospital arrival, while the control
group included those who did not.

2.3. Predictor Variables

The predictive variables were divided into three domains: patient characteristics,
triage information (vital signs), and laboratory data. The data that were used in this study
were obtained in the ED and were available before the emergency hemodialysis.

The first domain was composed of patient base characteristics, which included age,
sex, and comorbidities, such as hypertension, DM, CAD, cerebral vascular accident (CVA),
chronic kidney disease (CKD), and known malignancies.

The second domain was the initial triage data from the ED, which included blood
pressure, body temperature, oximeter saturation in room air, sugar-level from finger prick,
and Glasgow coma scale.

The third domain was the initial biochemistry data obtained from the ED, which
included white blood cell count, hemoglobin, platelet, blood urea nitrogen, creatinine,
estimated glomerular filtration rate, prothrombin time, activated partial thromboplastin
time, sodium, potassium, magnesium, calcium, albumin, and arterial gas parameters,
including pH value, base deficit (Beb), CO2, and O2. Missing data were treated as blank
and were not included in the statistical analysis and regression models.

2.4. Prediction Model

The prediction model for IHCA was constructed using the three domains of patient
information between 1 January 2015 and 31 December 2018. Significant variables were
selected from each domain dependent on a significantly altered hazard ratio. We established
the final model based on a backward stepwise selection of significant variables. To construct
a scoring system with numerical values, the variable with the lowest beta coefficient was
used to approximate the nearest integer. The beta coefficient of the other variables was
divided by the lowest beta coefficient to obtain a relative ratio, and then rounded to an
integer as well. This comprised the final model. The area under the curve (AUC) and
hazard ratios were analyzed for the final scoring system.

2.5. Validation Model

The validation of the final model was performed using patient information between 1
January 2019 and 31 December 2019.
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2.6. Statistical Analyses

We evaluated the differences in frequency distribution (percentage) of the categori-
cal variables between IHCA using the chi-square test and the differences in continuous
variables (presented as mean ± standard deviation [SD]) using the two-sample t-test.

To identify the independent risk factors for IHCA and assess their effects during
the three domains separately, we used univariate Cox proportional hazard regressions
followed by multivariate regressions to obtain the associated hazard ratios (HRs) and
their 95% confidence intervals (CIs). In the multivariate analyses, we first constructed full
models that included all the potential risk factors identified in the univariate analyses and
then constructed the final models by applying the backward stepwise approach (exclusion
set as p > 0.15). When the predicting scoring system with multivariate cox regression
was built up in the final models, we might lose some participants who had missing data.
Kaplan–Meier and log-rank test statistics were employed to evaluate the differences in the
cumulative survival probability of IHCA between different risk factors.

Receiver-operating characteristic (ROC) curves were used to evaluate the association
of IHCA by comparing the AUC and to establish the optimal cutoff for each risk factor
with p-values, sensitivities, and specificities. ROC with AUC was also adopted to validate
the predictive model with a multivariable combination.

Significant variables from each domain were selected using the algorithm. A scoring
algorithm was developed by rounding the β coefficients from the multivariable regression
final model, and the risk score was validated within the validation sample in 2019. The
variable with the lowest coefficient was regarded as one. The β coefficient of the other
variables was divided by the lowest coefficient to obtain the ratio and then rounded to an
integer to obtain the score [18].

Forest plots were drawn using Microsoft Excel 2010 to calculate the effect size and 95%
confidence interval, and the black circles represent the scores of the prediction model [19].

All statistical analyses were performed using SPSS software (Version 17.0; SPSS Inc.,
Chicago, IL, USA). All statistical tests were performed using a two-sided significance level
of 0.05.

2.7. Ethical Consideration

The study protocol was reviewed and approved by the Institutional Review Board of
the National Cheng Kung University Hospital, Taiwan (A-ER-109-067). The patient consent
was waived for this study.

3. Results

A total of 190 patients, with 44 IHCA events, between 2015 and 2018 were analyzed.
A scoring system was established using the primary database. This was then validated in a
2019 database with 67 patients, of whom 8 experienced IHCA. None of the patients in the
primary and validation databases met the criteria of exclusion (Figure 1).

In the primary database, the indications for emergency hemodialysis included acute
pulmonary edema (53.7%), severe acidemia (46.3%), hyperkalemia (43.7%), uremic symp-
toms (25.8%), and others (4.7%). Some patients may have more than one indication to
initiate emergency hemodialysis. The median time from ED arrival to HD onset was 7 h
(range 1–24 h, interquartile range 4–14 h).

To establish the scoring system of a predictive model, we investigated variables in
three domains. In the first domain, wherein patient base characteristics and comorbidities
were analyzed, age and sex did not show any statistical differences between the non-IHCA
and IHCA groups. Hypertension and heart failure had p values < 0.1 and were included in
the multivariable model analysis. Hypertension had a higher incidence in the non-IHCA
group than in the IHCA group (70.5% vs. 54.5%, p = 0.048) and stood out from the backward
selection in the final model (Table 1).

In the second domain, wherein triage data on arrival at the ED were analyzed, blood
pressure, oximeter saturation, and verbal score of the Glasgow coma scale had p values < 0.1
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and were analyzed. Systolic blood pressure, diastolic pressure, and mean arterial pressure
(MAP) were all significantly lower in the IHCA group (120 mmHg vs. 144 mmHg, 66 mmHg
vs. 79 mmHg, and 84 mmHg vs. 101 mmHg, respectively) with statistical significance.
Oximeter saturation was lower in the cardiac arrest group (85.8% vs. 90.4%, p = 0.03).
Verbal score was lower in IHCA group (3.6 vs. 4.1, p = 0.06). Mean arterial pressure
and saturation were obtained from enough statistical significance and backward selection
in the final model (Table 2). We used a cutoff value with the greatest AUC of receiver
ROC to determine the optimal cutoff for the continuous variable. Mean arterial pressure
<80 mmHg (AUC = 0.656, p = 0.002), as well as oxygen saturations < 85% (AUC = 0.604,
p = 0.048), had the greatest AUC for predicting cardiac arrest, as shown in Table S1 and
Figure 2a.

In the third domain, wherein the presenting biochemical data after arriving at the ED
were analyzed, white blood cell count, hemoglobin, platelet, arterial gas pH value, base
deficit, and sodium, potassium, and albumin all had p values below 0.1 and were analyzed.
Patients in the IHCA group had higher white blood cell count (14,080/µL vs. 11,920/µL,
p = 0.03), higher hemoglobin (11.0 g/dL vs. 9.8 g/dL, p = 0.02), lower platelet (185,740
vs. 213,870, p = 0.06), higher sodium (139.0 mmol/L vs. 135.7 mmol/L, p = 0.005), higher
potassium (5.87 mmol/L vs. 4.83 mmol/L, p = 0.001), lower albumin (3.0 g/dL vs. 3.8
g/dL, p = 0.04). Patients in the IHCA group also had more severe acidosis (pH value 7.23
vs. 7.32, p = 0.001) and base deficit (−10.6 vs. −6.4, p = 0.002) (Table 3). A pH value < 7.35
(AUC = 0.644, p = 0.004) and K > 5.5 mmol/L (AUC = 0.661, p = 0.001) had the most
significant and greatest AUC during analysis and stood out in the selection, as shown in
Table S1 and Figure 2a.
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Table 1. The characteristics of the study subjects and underlying comorbidity domain for the incidence of in-hospital cardiac arrest (IHCA) with COX model.

IHCA within 3 Days No
(n = 146)

Yes
(n = 44) p Value Incidence Coefficient

β

Univariate
HR (95% CI)

Full Model
HR (95% CI)

Final Model
HR (95% CI)

Sex −0.066
Female 58 (39.7%) 18 (40.9%) 0.888 23.7% 1.0

Male 88 (60.3%) 26 (59.1%) 22.8% 0.937
(0.513–1.708)

Age (mean ± SD; year) 65.82 ± 13.68 67.14 ± 15.54 0.587 0.007 1.007
(0.985–1.029)

Hypertension No 43 (29.5%) 20 (45.5%) 0.048 * 31.7% 1.0 1.0 1.0

Yes 103 (70.5%) 24 (54.5%) 18.9% −0.639 0.528
(0.291–0.955) *

0.563
(0.310–1.022)

0.528
(0.291–0.955) *

DM
No 59 (40.4%) 16 (36.4%) 0.630 21.3% 1.0

Yes 87 (59.6%) 28 (63.6%) 24.3% 0.114 1.121
(0.606–2.071)

CAD
No 91 (62.3%) 28 (63.6%) 0.875 23.5% 1.0

Yes 55 (37.7%) 16 (36.4%) 22.5% −0.084 0.919
(0.497–1.699)

CVA
No 119 (81.5%) 37 (84.1%) 0.695 23.7% 1.0

Yes 27 (18.5%) 7 (15.9%) 20.6% −0.199 0.820
(0.365–1.838)

CKD
Stage 1 or 2 26 (17.8%) 9 (20.5%) 0.791 25.7% 1.0

Stage 3 or 4 10 (6.8%) 4 (9.1%) 28.6% 0.044 1.045
(0.322–3.392)

Stage 5 110 (75.3%) 31 (70.5%) 22.0% −0.274 0.760
(0.362–1.597)

Malignancy No 126 (86.3%) 40 (90.9%) 0.420 24.1% 1.0

Yes 20 (13.7%) 4 (9.1%) 16.7% −0.341 0.711
(0.254–1.987)

Heart failure
No 99 (67.8%) 36 (81.8%) 0.072 26.7% 1.0 1.0

Yes 47 (32.2%) 8 (18.2%) 14.5% −0.709 0.492
(0.229–1.059)

0.530
(0.245–1.147)

CKD stage 1 or 2 refers to GFR ≥ 60 mL/min/1.73 m2. CKD stage 3 or 4 refers to GFR 15–59 mL/min/1.73 m2. CKD stage 5 refers to GFR< 15 mL/min/1.73 m2. Statistical analysis is presented as * p < 0.05.
Abbreviations were given as HR: hazard ratio; CI: confidence interval; SD: standard deviation; DM: diabetes mellitus; CAD: coronary artery disease; CVA: cerebral vascular accident; CKD: chronic kidney disease.
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Table 2. The characteristics of the triage domain for the in-hospital cardiac arrest (IHCA) risk with COX model.

IHCA within 3 Days No
(n = 146)

Yes
(n = 44) p Value Coefficient β Univariate

HR (95% CI)
Full Model

HR (95% CI)
Final Model
HR (95% CI)

Body temperature (◦C) 36.56 ± 1.10 36.77 ± 1.37 0.364 0.110 1.117
(0.860–1.450)

Pulse rate (beat/min) 91.85 ± 26.04 85.30 ± 31.77 0.172 −0.007 0.993
(0.982–1.004)

Respiratory rate (cycle/min) 24.26 ± 7.65 24.00 ± 11.20 0.861 −0.005 0.995
(0.958–1.033)

Systolic blood pressure (mmHg) 144.44 ± 43.82 120.33 ± 42.86 0.002 ** −0.011 0.989
(0.983–0.996) **

0.993
(0.980–1.007)

0.991
(0.984–0.999) *

Diastolic blood pressure (mmHg) 79.52 ± 28.02 66.90 ± 26.95 0.011 * −0.015 0.985
(0.974–0.996) **

0.999
(0.977–1.021)

Mean arterial pressure (mmHg) 101.16 ± 31.86 84.71 ± 30.96 0.004 ** −0.014 0.986
(0.977–0.995) **

Oxygen saturation (%) 90.47 ± 12.28 85.83 ± 12.57 0.039 * −0.017 0.983
(0.967–1.000) *

0.993
(0.973–1.012)

Finger sugar (mg/dL) 184.27 ± 132.57 173.35 ± 83.50 0.735 −0.001 0.999
(0.995–1.003)

Glasgow Coma Scale (GCS) 12.74 ± 3.85 11.91 ± 4.01 0.216 −0.049 0.952
(0.889–1.021)

Eye opening (E) 3.58 ± 0.95 3.43 ± 1.04 0.370 −0.173 0.841
(0.639–1.107)

Verbal response (V) 4.12 ± 1.55 3.60 ± 1.72 0.067 −0.147 0.863
(0.730–1.022)

0.927
(0.754–1.139)

Motor response (M) 5.24 ± 1.54 4.95 ± 1.77 0.300 −0.095 0.909
(0.769–1.074)

Quantitative data are presented as the mean ± standard deviation (SD). Hazard ratio (HR) was calculated as the number (95% confidence interval, CI). Statistical analysis is presented as * p < 0.05 and ** p < 0.01.
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Figure 2. Association between predicting incidence of in-hospital cardiac arrest (IHCA) with different significant variables
in each domain and combined model by using receiver-operating characteristic (ROC) curves. (a). Demonstration of the
ROC curve to predict IHCA in the primary group collected between 2015 and 2018. The final scoring system (red line) had
an area under the curve of 0.78. (b). Demonstration the ROC curve to predict IHCA in validation group collected in 2019.
The same final scoring system (red line) had an area under the curve of 0.75.
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Table 3. The characteristics of the initial biochemistry results domain for the in-hospital cardiac arrest (IHCA) risk with COX model.

IHCA within 3 Days No
(n = 146)

Yes
(n = 44) p Value Coefficient β Univariate

HR (95% CI)
Full Model

HR (95% CI)
Final Model
HR (95% CI)

WBC (103/µL) 11.92 ± 5.65 14.08 ± 6.33 0.033 * 0.055 1.056 (1.009–1.105) * 1.044 (0.983–1.108) 1.064 (1.009–1.122) *
Hb (g/dL) 9.80 ± 2.50 11.04 ± 3.36 0.028 * 0.157 1.170 (1.050–1.304) ** 1.064 (0.958–1.183)
Plt (109/L) 213.87 ± 90.48 185.74 ± 80.06 0.068 −0.003 0.997 (0.993–1.000) 0.995 (0.992–0.999) * 0.995 (0.991–0.999) **
PT-INR 1.19 ± 0.63 1.36 ± 0.84 0.190 0.165 1.179 (0.874–1.592)
aPTT (sec) 39.36 ± 27.21 42.58 ± 33.56 0.563 0.004 1.004 (0.994–1.013)
BUN (mg/dL) 101.75 ± 47.60 117.72 ± 77.70 0.416 0.005 1.005 (0.996–1.013)
Cr (mg/dL) 8.33 ± 4.61 8.26 ± 5.47 0.947 −0.010 0.990 (0.916–1.069)
eGFR (ml/min/1.73 m2) 9.01 ± 9.49 10.47 ± 15.23 0.520 0.018 1.019 (0.988–1.050)
Lactate (mmol/L) 4.70 ± 5.21 5.93 ± 4.03 0.244 0.038 1.038 (0.980–1.100)
Arterial gas

pH 7.32 ± 0.16 7.23 ± 0.17 0.001 ** −2.527 0.080 (0.016–0.388) ** 0.346(0.049–2.432)
Base deficit (mmol/L) −6.46 ± 7.54 −10.67 ± 7.21 0.002 ** −0.057 0.945 (0.912–0.979) **
PCO2 (mmHg) 37.73 ± 17.51 39.45 ± 20.00 0.587 0.003 1.003 (0.988–1.019)
PO2 (mmHg) 115.69 ± 95.49 93.00 ± 93.91 0.171 −0.003 0.997 (0.993–1.001)

Na (mmol/L) 135.77 ± 6.54 139.09 ± 7.78 0.005 ** 0.076 1.079 (1.035–1.126) *** 1.061 (1.014–1.110) ** 1.069 (1.024–1.115) **
K (mmol/L) 4.83 ± 1.34 5.87 ± 1.83 0.001 ** 0.280 1.323 (1.127–1.552) ** 1.235 (1.037–1.470) * 1.296 (1.110–1.526) **
Ca (mg/dL) 8.78 ± 1.34 8.51 ± 1.96 0.521 −0.076 0.926 (0.706–1.215)
Alb (g/dL) 3.85 ± 0.82 3.02 ± 1.09 0.044 * −0.672 0.511 (0.246–1.059)
Mg (mg/dL) 2.66 ± 0.82 2.82 ± 1.12 0.651 0.173 1.189 (0.637–2.217)
TnT (ng/L) 0.40 ± 1.08 0.57 ± 1.59 0.482 0.093 1.097 (0.876–1.374)
ALT (U/L) 51.49 ± 201.90 52.88 ± 102.98 0.966 0.000 1.000 (0.999–1.002)

Quantitative data are presented as the mean ±standard deviation (SD). Hazard ratio (HR) was calculated as the number (95% confidence interval, CI). Abbreviations were given as WBC: white blood cell; Hb:
hemoglobin; Plt: platelet; PT-INR: prothrombin time-international normalized ratio; aPTT, activated partial thromboplastin time; BUN, blood urea nitrogen; Cr, creatinine; eGFR, estimated glomerular filtration
rate; Na, sodium; K, potassium; Ca, calcium; Alb, albumin; Mg, magnesium; TnT, troponin T; ALT, alanine aminotransferase. Statistical analysis is presented as * p < 0.05, ** p < 0.01, and *** p < 0.001.
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Significant variables that had increased hazard ratios in the three domains were ana-
lyzed to establish the final model and scoring system. Mean arterial pressure < 80 mmHg,
saturation < 85%, pH < 7.35, and K > 5.5 mmol/L stood out in the final selection. Each pa-
rameter showed significant survival curve differentiations based on Kaplan-Meier analysis
(Figure 3). Saturation < 85% had the lowest beta coefficient (0.515). The coefficients of the
other variables were divided by 0.515, with relative ratios and were rounded to integers to
obtain the hazard score. pH < 7.35, saturation < 85%, and K > 5.5 mmol/L had scores of
one, respectively. Mena arterial pressure < 80 mmHg had a score of two (Table 4).

This scoring system, which consisted of four factors (i.e., pH, oxygen saturation, K,
and mean arterial pressure), had a maximum total score of 5 and a minimum score of 0. The
complete data of the 4 factors were available in 151 patients (including 113 non-IHCA and
38 IHCA) of the primary database and 55 patients (including 47 non-IHCA and 8 IHCA) in
the validation database. This scoring system had an AUC of 0.78 (p < 0.001) in the primary
database, as shown in Figure 2a and an AUC of 0.75 (p = 0.023) in the validation database,
as shown in Figure 2b. The relative risk of cardiac arrest increased from 2.7% to 66.7% when
the sum score was increased from 0 to 5 (Table 5). A cutoff score of ≥ 3 was defined as
the high-risk group with consistent statistical significance over the primary and validation
analyses. The risk of IHCA was 47.2% in the high-risk group versus 18.3% in the low-risk
group in the primary analysis and was 41.7% vs. 7% in the validation database (Table 5).

The patient characteristics, including age, gender, and comorbidities, did not have
significant differences between the primary and validation databases. The sensitivity
analysis of major factors was performed between the primary and validation cohorts
(Table S2) and between the missing-data and complete-data groups (Table S3).
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curve differentiation of potassium > 5.5 mmol/L with Log Rank (Mantel-Cox) < 0.001. (c) Survival curve differentiation of 
mean arterial pressure < 80 mmHg with Log Rank (Mantel-Cox) < 0.001. (d) Survival curve differentiation of pulse oxime-
try saturation < 85% with Log Rank (Mantel-Cox) = 0.01. 
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Figure 3. Survival analysis of the Kaplan-Meier curve and Log Rank test within the survival of IHCA from significant
variables in each domain. (a) Survival curve differentiation of pH < 7.35 with Log Rank (Mantel-Cox) = 0.002. (b) Survival
curve differentiation of potassium > 5.5 mmol/L with Log Rank (Mantel-Cox) < 0.001. (c) Survival curve differentiation of
mean arterial pressure < 80 mmHg with Log Rank (Mantel-Cox) < 0.001. (d) Survival curve differentiation of pulse oximetry
saturation < 85% with Log Rank (Mantel-Cox) = 0.01.
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Table 4. Establishment of the scoring system after rounding and dividing β coefficients from the final model from significant
variables in each domain.

IHCA within
3 Days No Yes p Value Incidence Univariate

HR (95% CI)
Final Model
HR (95% CI) Coefficient β Score

pH < 7.35 No 72 (53.7%) 11 (25%) 0.001 ** 13.3% 1.0 1.0 0.686 1
Yes 62 (46.3%) 33 (75%) 34.7% 2.768

(1.399–5.478) **
1.985

(0.968–4.073)

K >
5.5 mmol/L

No 111
(77.6%) 20 (45.5%) <0.001 *** 15.3% 1.0 1.0 0.521 1

Yes 32 (22.4%) 24 (54.5%) 42.9%
2.943

(1.626–5.328)
***

1.683
(0.860–3.293)

MAP < 80
mmHg

No 113
(81.3%) 21 (50.0%) <0.001 *** 15.7% 1.0 1.0 0.872 2

Yes 26 (18.7%) 21 (50.0%) 44.7%
3.475

(1.896–6.369)
***

2.392
(1.240–4.617) **

Oxygen
saturation

< 85%

No 97 (75.8%) 22 (55.0%) 0.012 18.5% 1.0 1.0 0.515 1
Yes 31 (24.2%) 18 (45.0%) 36.7% 2.182

(1.170–4.070) *
1.674

(0.866–3.238)

Categorical variables are presented as numbers (percentages). Hazard ratio (HR) was presented as number (95% confidence interval [CI]).
The cutoff value was determined to have the greatest area under the curve for predicting IHCA. The score was established based on the
relative β coefficient ratio. Abbreviations were given as K: potassium; MAP: mean arterial pressure. Statistical analysis is presented as *
p < 0.05, ** p < 0.01, and *** p < 0.001.

Table 5. The prediction score system and validation for the incidence of in-hospital cardiac arrest (IHCA).

IHCA within 3 Days No Yes p Value Incidence

Original model <0.001
Score = 0 36 (31.9%) 1 (2.6%) 2.7%
Score = 1 35 (31.0%) 5 (13.2%) 12.5%
Score = 2 23 (20.4%) 15 (39.5%) 39.5%
Score = 3 13 (11.5%) 9 (23.7%) 40.9%
Score = 4 4 (3.5%) 4 (10.5%) 50.0%
Score = 5 2 (1.8%) 4 (10.5%) 66.7%

Low-risk: Score < 3 94 (83.2%) 21 (55.3%) <0.001 18.3%
High-risk: Score ≥ 3 19 (16.8%) 17 (44.7%) 47.2%

Validation model 0.042
Score = 0 8 (17.0%) 0 (0.0%) 0.0%
Score = 1 20 (42.6%) 2 (25.0%) 9.1%
Score = 2 12 (25.5%) 1 (12.5%) 7.7%
Score = 3 4 (8.5%) 4 (50.0%) 50.0%
Score = 4 2 (4.3%) 1 (12.5%) 33.3%
Score = 5 1 (2.1%) 0 (0.0%) 0.0%

Low-risk: Score < 3 40 (85.1%) 3 (37.5%) 0.003 7.0%
High-risk: Score ≥ 3 7 (14.9%) 5 (62.5%) 41.7%

Categorical variables were presented as numbers (percentages). The scoring system was constructed from the original patient population
between 2015 and 2018 and validated in the 2019 population. A cutoff value of 3 was determined to have the greatest differentiation. A
score of 3 or above was regarded as a high-risk group, whereas a score below 3 was regarded as a low-risk group.

4. Discussion

This study determined a practical score for predicting IHCA in patients undergoing
emergent hemodialysis. The identified variables with cutoff values included: K > 5.5 mmol/L
(score 1), pH < 7.35 (score 1), oxygen saturation on room air < 85% (score 1), and
MAP < 80 mmHg (score 2). Necessary precautions should be taken for patients with
a sum score of 3 or above, since these patients had a higher risk of developing IHCA.

Mean arterial pressure < 80 mmHg was determined to render patients at significant
risk for cardiac arrest in the analysis. This had a better AUC value than MAP < 65 mmHg
for predicting IHCA. Previous studies have also discussed optimal blood pressure targets to
decrease patient mortality. Increasing MAP from 65 mmHg to a normal level was associated
with improved microcirculation in hypertensive septic shock patients [20]. Mean arterial
pressure < 82 mmHg was also observed to have increased mortality in patients starting
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continuous renal replacement therapy [21]. The optimal MAP can be further determined in
the future for emergent hemodialysis patients.

Hyperkalemia increases the risk of IHCA in emergent hemodialysis patients. Hyper-
kalemia is a potentially life-threatening condition that impairs heart function and muscle
contractility. Potassium levels, even at only moderate increases above normal, are asso-
ciated with increased risk of death on critical care initiation [22]. Physiologic adaptation,
heart function, medication, and comorbidity might predispose certain patients presenting
with hyperkalemia to a lower or higher threshold for toxicity [23]. The process and etiology
of hyperkalemia cannot be overlooked.

Acidosis with a pH value < 7.35 predicted IHCA in the analysis. Acidosis can result
from muscles wasting, bone disease, hypoalbuminemia, inflammation, or progression of
kidney disease [24]. This study demonstrated that only minimal acidosis may increase
IHCA risk in critically ill patients. The use of sodium bicarbonate is no longer war-
ranted in routine resuscitation practice. It increases blood pH, base deficit, serum HCO3−,
decreased anion gap, and K, yet did not show consistency in reducing mortality [25].
Measures to correct acidosis, including emergent hemodialysis and other processes, may
be further justified.

Traditional risk factors for underlying diseases, such as coronary artery disease, heart
failure, or diabetes mellitus, were not associated with increased cardiac arrest in previous
studies [2,4,10]. This study observed the same trend as there was no statistical difference
noted for diabetes mellitus, coronary artery disease, cardiovascular accident, or heart
failure. There was also no prominent correlation between the stage of chronic kidney
disease and the rate of IHCA.

Some variables in the biochemistry category were statistically significant, but they
were not included in the final model. The white blood cell count was elevated in the cardiac
arrest group compared to that in the control group. A cutoff using the traditional definition
of white count over 10,000 or below 4000 and other nearby values did not show superior
AUC for prediction of IHCA. Although it did not come out in the final model, the elevated
white cell count in the cardiac arrest group may indicate a more severe inflammatory or
infectious state in these patients, leading to unpleasant outcomes.

Low albumin levels were significantly correlated with a higher rate of cardiac arrest in
this study. Previous studies also demonstrated that poor nutrition and lower albumin levels
were correlated with a higher rate of cardiac arrest and mortality [12]. Its decrease can be
regarded as an acute-phase oxidative stress or inflammatory marker for infection [13]. A
previous study did not show a significant benefit of using albumin for the resuscitation in
sepsis condition [26]. Although in this study it was only barely significant due to the small
sample size, the use of albumin in resuscitation of emergent hemodialysis patients may be
further investigated.

The strength of this study was the timely and early risk stratification of emergent
hemodialysis patients immediately after the patient entered the emergency department.
Previous studies utilized early warning systems such as NEWS and MEWS with a red flag
system and reaction teams to reduce IHCA. These studies required repeated measurement
of vital signs, and dynamic change often occurred late to time peri-arrest [15]. Half of
the patients were still in the low MEWS group 8 h prior to cardiac arrest, suggesting that
monitoring the MEWS alone is not enough to predict cardiac arrest [27].

Prediction of cardiac arrest was only acceptable in NEWS and MEWS, with AUC
for cardiac arrest reported to be 0.72, 0.69, respectively [14,16]. Studies have shown that
increasing the biochemical parameters would increase the AUC for prediction events [28].

This study took advantage of the emergency triage system and incorporated biochem-
ical parameters, all of which were easily available in the ED. Risk allocation and resource
management can start immediately after the patient arrives at the hospital.

There have been no comparable studies on risk stratification in emergent hemodialysis
patients. Hospitals in the United States provided emergency hemodialysis to patients and
immigrants outside insurance coverage and had higher adverse events and mortality than
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regular hemodialysis [7]. The risk score for emergent cases was developed and validated
in this study. The presentation of the scoring system followed the transparent reporting of
a multivariable prediction model for individual prognosis or diagnosis method, along with
internal validation, strengthened its application [29].

A risk-stratification strategy can be applied in the emergency department using our
scoring system. When the data of the four factors were obtained, an early alarming
system can be subsequently activated for high-risk patients. Patients with an initial high
score would trigger alarm. A collaborative team that consists of emergency physicians,
nephrologists, and intensive care specialists should provide more intensive care, including
advanced monitoring, prompt specialist consultation, earlier intensive unit admission,
earlier dialysis, shifting the dialysis mode to continuous hemodialysis, decreasing the
volume of filtration, or adjustment of dialysates. An early alarming system would facilitate
team coordination and patient care. These modifications provide future investigation
interests, which could utilize this scoring system as an early alarming trigger.

Limitations

Our study had several limitations. First, although this was a retrospective cohort study,
the enrolled patients were from a single tertiary medical center with a small sample size.
Further research and multi-center participants are needed to examine the prediction model
in the future. The heterogenicity of enrollees may render a subgroup analysis. Second,
there was a prevalence-incidence bias belonging to a type of selection bias, the Neyman
bias, because we recruited patients that required emergency hemodialysis and experienced
IHCA. Finally, this study was conducted in an Asian population with a relatively high
prevalence of ESRD. The generalizability of our study results should be validated in
other populations.

5. Conclusions

We found two triage variables (oxygen saturation < 85%, and MAP < 80 mmHg), and
two biochemical variables (K > 5.5 mmol/L, and pH < 7.35) significantly contributing to
the prediction score model for 72-h IHCA risk in an emergent hemodialysis patient cohort
(AUC = 0.78, p < 0.001). The relative risk of cardiac arrest was 66.7% when the model score
was 5, but 47.2% in the primary and 41.7% in the validation database when the model score
was ≥3. This was the first study to demonstrate a clinically useful prediction score for
IHCA in an emergency hemodialysis setting. Further studies are required to validate this
scoring system and to utilize it as daily ED practice. Investigation on resuscitation and
hemodialysis settings and details are required to further identify critical points to prevent
this detrimental outcome.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm10153241/s1, Table S1: The receiver-operating characteristic (ROC) curves for the incidence
of IHCA between significant variables in each domain and predicting and validation models by
comparing the area under curve (AUC) following by p-value, sensitivity, and specificity; Table S2:
Sensitivity analysis of major factors between the primary (2015–2018) and validation (2019) cohorts;
Table S3: Sensitivity analysis of major factors between the missing-data and complete-data groups.

Author Contributions: S.-H.C. and C.-H.L. conceived the study and developed the study protocols.
C.-H.L. provided technical and administrative support. S.-H.C. contributed to acquisition of data.
S.-H.C. and Y.-Y.C. performed statistical analysis. S.-H.C., Y.-Y.C., and C.-H.L. interpreted the study
results. S.-H.C., Y.-Y.C., and C.-H.L. drafted the manuscript. All authors contributed substantially
to its revision. S.-H.C. and Y.-Y.C. contributed equally as first authors. C.-H.L. is the corresponding
author and takes responsibility for the paper as a whole. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was funded by the National Cheng Kung University Hospital, Tainan, Taiwan
(NCKUH-11003012).

https://www.mdpi.com/article/10.3390/jcm10153241/s1
https://www.mdpi.com/article/10.3390/jcm10153241/s1


J. Clin. Med. 2021, 10, 3241 13 of 14

Institutional Review Board Statement: The study protocol was reviewed and approved by the
Institutional Review Board of the National Cheng Kung University Hospital, Taiwan (A-ER-109-067).

Informed Consent Statement: This study was a retrospective cohort study thus patient consent
was waived.

Data Availability Statement: Data can be made available on request from established research
groups with an appropriate data-sharing agreement. Please contact the corresponding author for
data sharing.

Conflicts of Interest: The authors report no conflict of interest.

References
1. Charytan, D.M.; Foley, R.; McCullough, P.A.; Rogers, J.D.; Zimetbaum, P.; Herzog, C.A.; Tumlin, J.A. Arrhythmia and Sudden

Death in Hemodialysis Patients: Protocol and Baseline Characteristics of the Monitoring in Dialysis Study. Clin. J. Am. Soc.
Nephrol. 2016, 11, 721–734. [CrossRef]

2. Makar, M.S.; Pun, P.H. Sudden Cardiac Death among Hemodialysis Patients. Am. J. Kidney Dis. 2017, 69, 684–695. [CrossRef]
3. Karnik, J.A.; Young, B.S.; Lew, N.L.; Herget, M.; Dubinsky, C.; Lazarus, J.M.; Chertow, G.M. Cardiac arrest and sudden death in

dialysis units. Kidney Int. 2001, 60, 350–357. [CrossRef]
4. Pun, P.H.; Lehrich, R.W.; Honeycutt, E.F.; Herzog, C.A.; Middleton, J.P. Modifiable risk factors associated with sudden cardiac

arrest within hemodialysis clinics. Kidney Int. 2011, 79, 218–227. [CrossRef] [PubMed]
5. Starks, M.A.; Wu, J.; Peterson, E.D.; Stafford, J.A.; Matsouaka, R.A.; Boulware, E.; Svetkey, L.P.; Chan, P.S.; Pun, P.H. American

Heart Association’s Get with the Guidelines-Resuscitation Investigators. In-Hospital Cardiac Arrest Resuscitation Practices and
Outcomes in Maintenance Dialysis Patients. Clin. J. Am. Soc. Nephrol. 2020, 15, 219–227. [CrossRef]

6. Pun, P.H.; Lehrich, R.W.; Smith, S.R.; Middleton, J.P. Predictors of Survival after Cardiac Arrest in Outpatient Hemodialysis
Clinics. Clin. J. Am. Soc. Nephrol. 2007, 2, 491–500. [CrossRef] [PubMed]

7. Nguyen, O.K.; Vazquez, M.A.; Charles, L.; Berger, J.R.; Quiñones, H.; Fuquay, R.; Sanders, J.M.; Kapinos, K.A.; Halm, E.A.;
Makam, A.N. Association of Scheduled vs. Emergency-Only Dialysis with Health Outcomes and Costs in Undocumented
Immigrants With End-stage Renal Disease. JAMA Intern. Med. 2019, 179, 175–183. [CrossRef] [PubMed]

8. Raghavan, R. When Access to Chronic Dialysis is limited: One Center’s Approach to Emergent Hemodialysis. Semin. Dial. 2012,
25, 267–271. [CrossRef] [PubMed]

9. Lin, Y.-C.; Hsu, H.-K.; Lai, T.-S.; Chiang, W.-C.; Lin, S.-L.; Chen, Y.-M.; Chen, C.-C.; Chu, T.-S. Emergency department utilization
and resuscitation rate among patients receiving maintenance hemodialysis. J. Formos. Med. Assoc. 2019, 118, 1652–1660. [CrossRef]
[PubMed]

10. Di Lullo, L.; Rivera, R.; Barbera, V.; Bellasi, A.; Cozzolino, M.; Russo, D.; De Pascalis, A.; Banerjee, D.; Floccari, F.; Ronco, C.
Sudden cardiac death and chronic kidney disease: From pathophysiology to treatment strategies. Int. J. Cardiol. 2016, 217, 16–27.
[CrossRef] [PubMed]

11. Foley, R.N.; Parfrey, P.S.; Harnett, J.D.; Kent, G.M.; Murray, D.C.; Barre, P.E. Hypoalbuminemia, cardiac morbidity, and mortality
in end-stage renal disease. J. Am. Soc. Nephrol. 1996, 7, 728–736. [CrossRef] [PubMed]

12. Fung, F.; Sherrard, D.J.; Gillen, D.L.; Wong, C.; Kestenbaum, B.; Seliger, S.; Ball, A.; Stehman-Breen, C. Increased risk for
cardiovascular mortality among malnourished end-stage renal disease patients. Am. J. Kidney Dis. 2002, 40, 307–314. [CrossRef]

13. Alves, F.C.; Sun, J.; Qureshi, A.R.; Dai, L.; Snaedal, S.; Barany, P.; Heimbürger, O.; Lindholm, B.; Stenvinkel, P. The higher mortality
associated with low serum albumin is dependent on systemic inflammation in end-stage kidney disease. PLoS ONE 2018, 13,
e0190410. [CrossRef]

14. Smith, G.B.; Prytherch, D.; Meredith, P.; Schmidt, P.E.; Featherstone, P.I. The ability of the National Early Warning Score (NEWS)
to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation 2013,
84, 465–470. [CrossRef]

15. Wang, A.-Y.; Fang, C.-C.; Chen, S.-C.; Tsai, S.-H.; Kao, W.-F. Periarrest Modified Early Warning Score (MEWS) predicts the
outcome of in-hospital cardiac arrest. J. Formos. Med. Assoc. 2016, 115, 76–82. [CrossRef] [PubMed]

16. Green, M.; Lander, H.; Snyder, A.; Hudson, P.; Churpek, M.; Edelson, D. Comparison of the Between the Flags calling criteria
to the MEWS, NEWS and the electronic Cardiac Arrest Risk Triage (eCART) score for the identification of deteriorating ward
patients. Resuscitation 2018, 123, 86–91. [CrossRef] [PubMed]

17. Lin, C.-H.; Tu, Y.-F.; Chiang, W.-C.; Wu, S.-Y.; Chang, Y.-H.; Chi, C.-H. Electrolyte abnormalities and laboratory findings in
patients with out-of-hospital cardiac arrest who have kidney disease. Am. J. Emerg. Med. 2013, 31, 487–493. [CrossRef]

18. Wu, C.; Hannan, E.L.; Walford, G.; Ambrose, J.A.; Holmes, D.R.; King, S.B.; Clark, L.T.; Katz, S.; Sharma, S.K.; Jones, R.H. A Risk
Score to Predict In-Hospital Mortality for Percutaneous Coronary Interventions. J. Am. Coll. Cardiol. 2006, 47, 654–660. [CrossRef]
[PubMed]

19. Tsai, C.-H.; Tsai, J.-L.; Wang, J.-Y. Feasibility of using Microsoft Excel to draw forest plots. Taiwan J. Public Health 2019, 38, 102–110.
[CrossRef]

http://doi.org/10.2215/CJN.09350915
http://doi.org/10.1053/j.ajkd.2016.12.006
http://doi.org/10.1046/j.1523-1755.2001.00806.x
http://doi.org/10.1038/ki.2010.315
http://www.ncbi.nlm.nih.gov/pubmed/20811332
http://doi.org/10.2215/CJN.05070419
http://doi.org/10.2215/CJN.02360706
http://www.ncbi.nlm.nih.gov/pubmed/17699456
http://doi.org/10.1001/jamainternmed.2018.5866
http://www.ncbi.nlm.nih.gov/pubmed/30575859
http://doi.org/10.1111/j.1525-139X.2012.01066.x
http://www.ncbi.nlm.nih.gov/pubmed/22494194
http://doi.org/10.1016/j.jfma.2019.01.007
http://www.ncbi.nlm.nih.gov/pubmed/30711255
http://doi.org/10.1016/j.ijcard.2016.04.170
http://www.ncbi.nlm.nih.gov/pubmed/27174593
http://doi.org/10.1681/ASN.V75728
http://www.ncbi.nlm.nih.gov/pubmed/8738808
http://doi.org/10.1053/ajkd.2002.34509
http://doi.org/10.1371/journal.pone.0190410
http://doi.org/10.1016/j.resuscitation.2012.12.016
http://doi.org/10.1016/j.jfma.2015.10.016
http://www.ncbi.nlm.nih.gov/pubmed/26723861
http://doi.org/10.1016/j.resuscitation.2017.10.028
http://www.ncbi.nlm.nih.gov/pubmed/29169912
http://doi.org/10.1016/j.ajem.2012.09.021
http://doi.org/10.1016/j.jacc.2005.09.071
http://www.ncbi.nlm.nih.gov/pubmed/16458151
http://doi.org/10.6288/TJPH.201902_38(1).107108


J. Clin. Med. 2021, 10, 3241 14 of 14

20. Xu, J.-Y.; Ma, S.-Q.; Pan, C.; He, H.-L.; Cai, S.-X.; Hu, S.-L.; Liu, A.-R.; Liu, L.; Huang, Y.-Z.; Guo, F.-M.; et al. A high mean arterial
pressure target is associated with improved microcirculation in septic shock patients with previous hypertension: A prospective
open label study. Crit. Care 2015, 19, 130. [CrossRef]

21. Kim, Y.; Yun, D.; Kwon, S.; Jin, K.; Han, S.; Kim, D.K.; Oh, K.-H.; Joo, K.W.; Kim, Y.S.; Kim, S.; et al. Target value of mean arterial
pressure in patients undergoing continuous renal replacement therapy due to acute kidney injury. BMC Nephrol. 2021, 22, 20.
[CrossRef] [PubMed]

22. McMahon, G.; Mendu, M.L.; Gibbons, F.K.; Christopher, K.B. Association between hyperkalemia at critical care initiation and
mortality. Intensiv. Care Med. 2012, 38, 1834–1842. [CrossRef]

23. Montford, J.R.; Linas, S. How Dangerous Is Hyperkalemia? J. Am. Soc. Nephrol. 2017, 28, 3155–3165. [CrossRef]
24. Kraut, J.A.; Madias, N.E. Metabolic Acidosis of CKD: An Update. Am. J. Kidney Dis. 2016, 67, 307–317. [CrossRef]
25. Fujii, T.; Udy, A.; Licari, E.; Romero, L.; Bellomo, R. Sodium bicarbonate therapy for critically ill patients with metabolic acidosis:

A scoping and a systematic review. J. Crit. Care 2019, 51, 184–191. [CrossRef]
26. Jiang, L.; Jiang, S.; Zhang, M.; Zheng, Z.; Ma, Y. Albumin versus Other Fluids for Fluid Resuscitation in Patients with Sepsis: A

Meta-Analysis. PLoS ONE 2014, 9, e114666. [CrossRef]
27. Kim, W.Y.; Shin, Y.J.; Lee, J.M.; Huh, J.W.; Koh, Y.; Lim, C.-M.; Hong, S.B. Modified Early Warning Score Changes Prior to Cardiac

Arrest in General Wards. PLoS ONE 2015, 10, e0130523. [CrossRef] [PubMed]
28. Perera, Y.S.; Ranasinghe, P.; Adikari, A.M.; Welivita, W.D.; Perera, W.M.; Wijesundara, W.M.; Karunanayake, S.A.; Constantine,

G.R. The value of the Modified Early Warning Score and biochemical parameters as predictors of patient outcome in acute
medical admissions a prospective study. Acute. Med. 2011, 10, 126–132. [CrossRef] [PubMed]

29. Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent reporting of a multivariable prediction model for individual
prognosis or diagnosis (TRIPOD): The TRIPOD Statement. BMC Med. 2015, 13, 1. [CrossRef]

http://doi.org/10.1186/s13054-015-0866-0
http://doi.org/10.1186/s12882-020-02227-4
http://www.ncbi.nlm.nih.gov/pubmed/33422032
http://doi.org/10.1007/s00134-012-2636-7
http://doi.org/10.1681/ASN.2016121344
http://doi.org/10.1053/j.ajkd.2015.08.028
http://doi.org/10.1016/j.jcrc.2019.02.027
http://doi.org/10.1371/journal.pone.0114666
http://doi.org/10.1371/journal.pone.0130523
http://www.ncbi.nlm.nih.gov/pubmed/26098429
http://doi.org/10.52964/AMJA.0491
http://www.ncbi.nlm.nih.gov/pubmed/21904705
http://doi.org/10.1186/s12916-014-0241-z

	Introduction 
	Methods 
	Data Source and Study Participants 
	Primary Outcome Measure 
	Predictor Variables 
	Prediction Model 
	Validation Model 
	Statistical Analyses 
	Ethical Consideration 

	Results 
	Discussion 
	Conclusions 
	References

