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Abstract: Sildenafil citrate (SC), a PDE5 inhibitor, a drug for erectile dysfunction (ED) and pulmonary
hypertension (PAH), was found to exert a positive effect on pregnancy outcomes when administered
intravaginally before conception. In our previous studies, sildenafil increased endometrial thickness
and significantly decreased peripheral blood NK cell activity after the intravaginal administration in
women with recurrent pregnancy loss (RPL). No data are available to confirm the effect of sildenafil
on maternal T cell populations involved in shaping fetal-maternal tolerance and NK cell activity.
Thus, the present study aimed to establish if SC influences NKT cells or the axis of Th17/Treg cells
and Th1/Th2 cytokine production. Materials and methods: Twenty-one healthy fertile women
and twenty-two nonpregnant women with idiopathic RPL were studied. The ELISA method was
used to evaluate the production of cytokines, including IL-2, IL-12p40, IL-4, IL-10, IL-6, IL-17, IL-21,
TGF-β, TNF-α, and IFN-γ in PBMC culture supernatants before and after supplementation with
the physiological concentration of SC. The percentages of NKT (CD56+CD3+CD44+CD161+), Treg
(CD4+CD25+FOXP3+) and Th17 (CD4+CD25+IL-17A+) cells were determined with flow cytome-
try method. Results: Unexpectedly, we found that the PBMCs of patients with RPL produced a
significantly lower level of inflammatory cytokines (TNF-α and IL-6) and a higher level of anti-
inflammatory cytokines (TGF-β and IL-10). SC significantly decreased IL-6, IL-12 and increased
TGF-β cytokine concentration in fertile women. In the case of RPL patients’ PBMCs, SC improved
the production of TNF-α and IL-10. Conclusions: Lower concentration of proinflammatory cytokines
in idiopathic RPL women compared to fertile women might suggest the exhaustion of the immune
system. The emphasized production of IL-10 by SC partially explains the previously observed
downregulation of NK cell activity in RPL patients. The immunomodulatory effect of the drug might
be utilized in anti-inflammatory therapies and help achieve positive pregnancy outcomes in women
with reproductive failure due to a Th1/Th2 imbalance.

Keywords: cytokines; recurrent pregnancy loss; sildenafil citrate; Treg cells; Th1/Th2 cells; Th17 cells

1. Introduction

A positive pregnancy outcome is strictly dependent on maternal immune system toler-
ance. Several immune mechanisms involving both innate and adaptive immune responses
are engaged at the fetal-maternal interface [1]. Conventionally, recurrent pregnancy loss
(RPL) was defined as three consecutive losses earlier than 20 weeks of gestation. However,
testing women after two losses could spare them another pregnancy failure. Therefore,
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the definition was modified by lowering the number of spontaneous losses to two [2].
Unexplained RPL is a growing health problem worldwide. It is estimated that RPL affects
more than 1% of the general population of pregnant women, and only half of RPL cases
could be explained after medical investigation [2,3]. Each miscarriage increases the risk of
the next miscarriage to 15% [2].

Recently, it has been shown that 95% of lost embryos have a normal karyotype and
that the alloimmune rejection-type activity of maternal humoral/cellular immunity or high
NK activity accounts for a great proportion of RPLs [4]. The maternal immune system
prepares the uterus for the embryo, which from the immunological point of view, is a
kind of haploidentical allograft. Immune cells found at the implantation site include the
subpopulations of decidual Natural Killer cells (dNK), T cells (Th1, Th2, Th17 and Treg),
Natural Killer T cells (NKT), ‘educated’ macrophages and dendritic cells [1]. Decidual NK
cells (dNK cells), an NK2 type cell producing IL-4, Il-5 and IL-13 cytokines, constitute 70%
of immunocompetent cells in the endometrium [5]. They normally control angiogenesis
and the implantation process (the depth of trophoblast invasion). The dysregulation of
dNK cell activity may lead to the termination of pregnancy, preeclampsia or gestational
trophoblastic disease [5–7]. The specialized regulatory T cell (Treg) population (mostly
paternal antigen-specific Treg cells) by releasing a large amount of TGF-β, IL-10 and IL-35 an
inhibitory cytokine, is pivotal for dNK cell inactivation and maintaining immune tolerance
to paternal antigens [5,8]. The overexpression of pro-inflammatory cytokines like IL-1β
and IL-6 blocks the development of Treg cells and induces the differentiation of Th17 cells
in feto-maternal interphase [4,9–11]. IL-17 was found in the cyto- and syncytiotrophoblast
whose overexpression may lead to the activation of immune response, including NK cell
cytotoxicity towards the trophoblast [12]. Normally, IL-17, along with IFN-γ and TNF-α
cytokines, play a major role in angiogenesis in the uterus [4,9–11], but the chronic exposure
to Th1 type cytokines leads to the enhancement of dNK cell cytotoxicity activation [13].

Our previous research showed that sildenafil citrate (SC) suppositories improved
endometrial thickness and uterine blood flow. The drug was able to modulate maternal
immunity by decreasing NK cell activity. This effect on NK cells was shown in in vivo
and in vitro studies [14]. Sildenafil, through an indirect increase in nitric oxide (NO)
production, might influence the methylation pathway in the immune cells [15]. SC increases
cellular cGMP levels through competition for the phosphodiesterase binding site with
cGMP, thus inhibiting the degradation of cGMP to GMP [15]. A high level of cGMP
results in increased NO production, and consequently causes the relaxation of vascular
smooth muscles, increases vasodilation and modulates immune response [15,16]. Therefore,
sildenafil citrate is currently applied for the treatment of such intragestational complications
as intrauterine growth restriction (IUGR) [6,17–19], low birth weight [5], preeclampsia
or idiopathic recurrent pregnancy loss (RPL) [5,7,19–22]. Some experiments conducted
on animal models, where SC was orally administered, suggested that SC might decrease
IL-1, and TNF-α in the placenta of pregnant mice [23,24]. Some authors reported a gender-
specific action of sildenafil on immune cells, where SC diminished IL-2 and IL-6 production
in the serum of female mice [25]. Contradictory results obtained from female and male
mice and in vitro cultures indicated the gender- and tissue-specific action of sildenafil [25].
Additionally, Pifarré et al. showed that SC might upregulate Treg cell percentage and Grb1
protein expression in cultured splenocytes [26].

Taking the above into account, the modulation of NK cell activity in RPL women after
SC treatment might be achieved through cytokine production modulation. Therefore, our
recent study focused on sildenafil-mediated effects on the subpopulations of Treg/Th17
and Th1/Th2/Th17 cytokine production, studied in the cultures of the PBMC of healthy
fertile women and women with idiopathic RPL.

2. Material and Methods

The study was approved by the Bioethics Committee of the Medical University of
Warsaw (No. KB/192/2015). All measurements, interventions and blood collections were
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performed after informed consent had been obtained from each woman participating in
the study using the bioethics committee-approved protocol. Each of the participants was
informed about the purpose of this study.

2.1. Control Group

The subjects enrolled in this study were volunteer participants. They were recruited
from the Department of Gynecology and Gynecologic Oncology, Military Institute of
Health Sciences, Warsaw, Poland. The control group consisted of 21 fertile women with-
out disorders in the obstetric-gynecological and internal medicine history. None of the
subjects included in the control group reported any problems regarding conception; all
subjects declared a normal course of pregnancy and delivery. Besides, none of the control
subjects was treated for any internal disorders. Women on oral hormonal contraception or
other forms of hormonal treatment and women with hormonal intrauterine devices were
excluded from the study. Transvaginal ultrasound scans were performed in all patients
between days 3 and 5 of the menstrual cycle to reveal the normal morphology of the uterus,
endometrium and appendages.

The blood collected from the women between 16–25 days of the menstrual cycle was
vested in heparin tubes.

2.2. Study Group

The subjects enrolled in this study were volunteer participants. They were recruited
from the Mediva Medical Center in Warsaw between February 2016 and May 2017.
One hundred and fifty patients with RPL were evaluated. However, 22 patients (aged
36.70 ± 4.48) with unexplained RPL were finally included in the study group. Recurrent
pregnancy loss was defined according to the American Society for Reproductive Medicine
(ASRM) guideline as two or more consecutive spontaneous miscarriages before the 20th
week of gestation [23,24]. Complete medical, surgical and social histories were obtained
in all cases. All the women with a history of RPL were investigated in terms of any iden-
tifiable causes of abortion. The patients included in the study presented no anatomic,
genetic, microbiological, immunological or hormonal causes of abortions. Transvaginal
ultrasound, hysterosalpingography or hysteroscopy did not reveal any abnormalities in the
patients’ uteri. Peripheral blood chromosome assessment confirmed normal karyotypes.
All laboratory tests including hormonal assessment revealed no abnormalities. Besides,
none of the subjects was treated for any internal disorders or had surgical interventions.
In our study, we included 11 women who met the PCOS criteria (the Rotterdam ones)
and 18 women with an MTHFR mutation who presented no abnormalities in laboratory
tests. All the women were treated according to guidelines and previous publications.
Despite the optimized treatment, they experienced another obstetric failure [23]. Table 1
showed the characteristics of the study and control group. According to our study protocol,
blood samples were collected from the study group RPL patients six months after the last
miscarriage, so the immunological status of the patients had been normalized before the
research. The blood was collected from the patients between days 16–25 of the menstrual
cycle, as in our previous study [14].

Table 1. Characteristics of study and control group.

RPL Patients, n = 22 Control Group, n = 21

Age (years) 36.70 ± 4.48 37.40 ± 1.90
Number of miscarriages 3.66 ± 1.57 0

PCOS 11 0
MTHFR variant (C677T or A1298C) 18 0

Mean level of homocysteine 12.48 ± 1.63 µmol/L -



J. Clin. Med. 2021, 10, 3115 4 of 16

2.3. Cell Preparation

Fasting peripheral blood samples of fertile and RPL women were vested into heparin
tubes in the morning. The isolation of peripheral blood mononuclear cells (PBMCs) and cell
culture procedures were carried out as described in our previous study, which revealed that
sildenafil dramatically decreased NK activity [14]. Concisely, PBMCs were isolated from
the peripheral blood of 22 women with RPL and 21 fertile women by histopaque gradient
centrifugation (Histopaque density 1.077 g/mL, MERK, KGaA, Darmstadt, Germany), as
previously described [14]. Next, the cells were washed twice in PBS without Ca++ and
Mg++ ions, (PBS, Corning, NY, USA) and resuspended in complete culture medium (RPMI
medium, Corning, NY, USA) supplemented with 10% heat-inactivated fetal calf serum
(FCS, MERK, KGaA, Darmstadt, Germany), 2 mM L-glutamine (MERK, KGaA, Darmstadt,
Germany), 100 µg/mL Penicillin-Streptomycin (Gibco, Thermo Fisher Scientific, Waltham,
MA, USA); 0.1 mM/mL HEPES potassium salt (MERK, KGaA, Darmstadt, Germany).

Sildenafil Concentration in Cultures

The concentration of sildenafil citrate after the oral administration of 200 mg in humans
reaches 250 ng/mL after 0.5–2.5 h [27] in the serum, but 96% of the drug is protein-bound,
so the free active concentration of sildenafil in the serum is only 4% of the total level [28].
The intravaginal administration of suppositories with sildenafil citrate results in a 40-fold
increase in C max of the drug in the uterus compared to oral administration [29]. Therefore,
the concentration of the drug used in the study was 400 ng/mL (0.6 µM) in the cell culture.

2.4. Cell Cultures
Cytokine Determination

Cells were cultured in 24-well plates at the concentration of 1 × 106/mL (NUNC
24-well plates, Thermo Fisher, Scientific) in two versions: PBMC in medium and PBMC
in medium supplemented with 400 ng/mL sildenafil citrate (MERK, KGaA, Darmstadt,
Germany). After 48 h of incubation at 37 ◦C in a humidified atmosphere containing 5% CO2,
the cells were centrifuged at 1800 rpm for 10 min. The cells were collected for Treg/Th17
determination and the supernatants were stored at −80 ◦C for the ELISA tests. According
to the instruction included in Human Th17/Treg phenotyping KIT (BD Pharmingen, San
Diego, CA, USA we also performed cultures with cells stimulated with phorbol-ester
(PMA) (MERK, KGaA, Darmstadt, Germany)) and ionomycin (MERK, KGaA, Darmstadt,
Germany), but PMA dramatically decreased FOXP3 expressing cells, so we disregarded
those results in further analyses.

The concentrations of selected cytokines (IL-2, IL-12p40, TNF-α, INF-γ IL-17A, IL-21,
IL-10, IL-4, IL-6, TGF-β) in culture supernatants were measured with the double-antibody
sandwich enzyme-linked immunosorbent assay (ELISA), according to the manufacturer’s
instructions to determine the level of cytokines. The concentrations of cytokines were
calculated from the standard curve of linear regression according to the manufacturer’s
instruction (ELISA-kits, Sun Red, Biotechnology Company Co. Ltd., Shanghai, China). The
levels of sensitivity of ELISA-kits were: IL-2—0.753 pg/mL, IL-12 (p40)—0.225 ng/mL,
TNF-α—2.827 ng/mL, IFN-γ—1.706 pg/mL, IL-17—2.013 pg/mL, IL-21—4.723 pg/mL,
IL-4—4.116 pg/mL, IL-10—1.142 pg/mL, IL-6—2.112 pg/mL, TGF-β—4 pg/mL, with the
Intra-Assay CV < 10% and Inter-Assay: CV < 12%.

2.5. Flow Cytometry Analysis
2.5.1. NKT Cells Immunophenotyping

To determine proinflammatory CD3+CD56+CD44+ CD161+ NKT cells, 1 × 106 of
cultured PBMCs with and without SC, were washed in PBS with 1% NaN3 and stained
with anti-human antibody cocktails: CD3-PerCP (SK7 clone), CD56-Pe-Cy7 (B159 clone),
CD44-APC (G44-26 clone), CD161-PE (DX12 clone) and CD3-PerCP, CD56-Pe-Cy7, IgG2b-
APC (isotype control for CD44), IgG1-PE (isotype control for CD161) (all Antibodies, from
Becton Dickinson, Franklin Lakes, NJ, USA), for 20 min in the dark. The same time single-
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color compensation control was performed, where 1 × 106 PBMCs per sample were stained
with single a.m. antibodies. After incubation, the cells were washed twice in 0.01% NaN3
PBS (Corning, NY, USA) for 5 min at 2000 rpm, to discard the excess of unbound antibodies,
and then they were suspended in 500 µL of FACS Flow Buffer (BD Pharmingen, San
Diego, CA, USA [30,31]. A total of 1000 cells of unstained cells and compensation controls
were acquired with FACS Canto II (Becton Dickinson, Franklin Lakes, NJ, USA), and
compensation was calculated with 6.1.3 Diva software (Becton Dickinson, Franklin Lakes,
NJ, USA). Then, at least 20,000 cell readouts of CD3+ CD56+ cells of each studied sample
were acquired with a flow cytometer BD FACS Canto II and analyzed with 6.1.3 Diva
software. The threshold for positive staining was determined using unstained cells for CD3-
and CD56-positive cells and isotype controls were used for bordering CD3CD56CD161– or
CD3CD56CD44–positive cells. Subsequently, the percentage of CD161 and CD44–positive
cells was determined among CD3CD56 cells (Figure S1 in Supplementary Materials).
Instrument performance was verified daily using the Cytometer Setup & Tracking (CS&T)
system (Becton Dickinson, Franklin Lakes, NJ, USA), applying CS&T application settings
to ensure comparable flow cytometry results over time.

2.5.2. CD4+CD25+IL-17+, CD4+CD25+FOXP3+, and CD4+CD25+FOXP3+IL-17+ Cell
Determination

The above-mentioned cells obtained from cultures were used for the evaluation of
regulatory T lymphocytes (FOXP3-expressing CD4CD25 cells) and lymphocytes T produc-
ing IL-17 cells with a flow cytometry method according to the manufacturer’s instructions
(Human Th17/Treg phenotyping KIT, BD Pharmingen, San Diego, CA, USA). Briefly, the
cells were washed in Stain Buffer (1% FBS in PBS) and 0.5 × 106 of cells were labeled with
anti-human CD4-PerCP and anti-human CD25 FITC antibody (clone 2A3, BD Pharmingen,
San Diego, CA, USA). After extracellular staining, the cells were fixed in Human FOXP3
Buffer A (BD Pharmingen, San Diego, CA, USA) for 20 min at room temperature (RT) in
the dark, then washed and permeabilized with Human FOXP3 buffer C (BD, Pharmingen,
USA). The cocktail of antibodies: CD4-PerCP/IL-17-PE/FOXP3-Alexa Fluor® 647 was
added to stain Th17 and Treg cells and the cells were incubated for 40 min in the dark at RT.
After incubation, the cells were washed in Stain Buffer (BD, Pharmingen, San Diego, CA,
USA) and suspended in 500 µL of FACS Flow (Becton Dickinson, Franklin Lakes, NJ, USA).
At least 40,000 events of CD4+ CD25+ cells were acquired with a flow cytometer FACS
Canto II, equipped with a 488-nm laser, a 633-nm laser and a 405-nm laser). The percentage
of FOXP3, FOXP3/IL-17A, and IL-17A-positive cells was determined among CD4+ CD25+.
Unstained cells were used as FMO control for CD4-positive cells and for CD25-positive
cells. Then, among the gated CD4CD25-positive cells we determined CD4CD25IL-17,
CD4CD25FOXP3, or CD4CD25IL-17FOXP3-positive cells (Figure S2 in Supplementary
Materials). The results were calculated with BD FACS Diva 6.1.3. software.

2.6. Statistical Analysis

All statistical analyses were performed with Graph Pad Prism 8.00. A chi-square test
was used for nominal variables. An odds ratio and 95% confidence interval were calculated
for risk estimation.

The normal distribution of data was determined with the Shapiro-Wilk test. In order
to determine the statistical significance between the control and study group samples, the
unpaired t-test was used in case of the normal distribution of data, and the Mann-Whitney
U test was used in case of non-normal distribution. The analyses of data inside the groups
(samples after culturing with SC) were performed with the Wilcoxon signed-rank test in
case of non-normal distribution, and the paired t-test for the normal distribution of samples.
The p values below 0.05 (p < 0.05) were considered statistically significant. The trend was
recognized as p~0.07. The data were shown as the median and interquartile range (IQR) in
the figures.
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The Pearson’s test was used to calculate the “r” factor and the significance of the
correlation between the concentration of cytokines between the groups and the results
were corrected for non-normal distribution of data with the Spearman’s rank test.

3. Results

No significant difference was observed between women from the control group and
the study group regarding the age. The patients were tested for an MTHFR mutation, PCOS
or IR. However, their status had been normalized with diet or folic acid supplementation
before the research. Thus, we did not notice any correlation between MTHFR mutation,
homocysteine level, IR or PCOS occurrence and the level of cytokines.

3.1. Secretion of Cytokines

Surprisingly, the basic levels of TNF-α, IL-6 pro-inflammatory cytokines were signif-
icantly lower and the concentration of TGF-β was higher in RPL patients compared to
healthy women (Figure 1a,b and Figure 3c, and Table S1 in Supplementary Materials).
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Figure 1. Changes in the concentration of pro-inflammatory cytokines in the culture supernatants of
the PBMC cells of fertile and RPL women supplemented with 400 ng/mL sildenafil citrate, (a) TNF –
α concentration in culture supernatants, (b) IL-6 concentration in culture supernatants, (c) IL-12p40
concentration in culture supernatants, (d) IL-21 concentration in culture supernatants, (CG—control
group, green symbols, n = 20; RPL—study group, red dots; n = 21; SC—sildenafil citrate; data shown
as individual values, the median and IQR). The tests used to establish significant differences are
given below graphs.
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Considering the effect of SC on the production of selected cytokines by the PBMC of
the fertile woman, SC significantly decreased the concentrations of IL-6 and IL-12, and im-
proved TGF-β production. (Figures 1b,c and 2c and Table S1 in Supplementary Materials).
As regards the cultures of RPL patients, SC significantly enhanced the concentration of
TNF-α and IL-10 cytokines (Figures 1a and 2b and Table S1 in Supplementary Materials).
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Figure 2. The comparison of anti-inflammatory cytokine concentrations in fertile and RPL women PBMC cultures, and the
influence of SC on cytokine concentrations, (a) IL-4 concentration in culture supernatants, (b) IL-10 concentration in culture
supernatants, (c) TGF – β concentration in culture supernatants, (CG—control group, green symbols, n = 20; RPL—study
group, red dots; n = 21; SC—sildenafil citrate; data shown as individual values, the median and IQR). The statistical tests
used to establish significant differences are given in the below graphs.
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The Pearson’s test was used to calculate the significance of the correlation between
the concentration of cytokines between studied groups (Figure 3), and the results were
corrected for non-normal distribution of data with the Spearman’s rank test (Figure S3). In
fertile women, the production of the following cytokines was positively correlated: TNF-α
vs. IL-6 (p = 0.0033), IL-21 vs. IL-6 (p = 0.0021), TNF-α vs. IL-21 (p = 0.0003), (Figure 3,
Figures S3a,c,e and S4 in Supplementary Materials). The correlations were sustained for
TNF-α vs. IL-6 (p = 0.028), TNF-α vs. IL-21 (p = 0.0003), and improved in the case of IL-21
vs.IL-6. (p = 0.00021) after SC addition in the control group (Figure 2 and Figure S3b,d
in Supplementary Materials). In case of RPL patients, only the IL-6 vs. IL-21 connection
reached statistical significance (p = 0.0001). (Figure 2 and Figure S3g in Supplementary
Materials). We did not observe any differences of IFN-γ, IL-2, IL-17 or IL-4 concentrations
between and inside the studied groups (Table S1 in Supplementary Materials).
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Figure 3. Pearson’s “r” factor correlations between inflammatory cytokines. Blue colors stand for a
positive correlation r > 0, red colors r < 0. The graphs showing the correlation between particular
cytokines: IL6 vs. TNF, IL-21 vs. TNF, IL-6 vs. IL-21 in CG and idiopathic RPL are shown in
supplementary data, (CG—control group, n = 20; RPL—study group, n = 21; SC—sildenafil citrate).

In the case of anti-inflammatory cytokines we notice a positive correlation only for
IL-4 before and after treatment of SC in both studied groups and in RPL group for IL-10
after supplementation with SC (Figure 4).
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CG SC 

RPL PBMC  RPL PBMC + 400 
ng/mL SC 

p Value 
RPL vs. RPL SC 

p Value CG 
vs. RPL 

CD4+CD25+ 2.2 (1.6–2.9) 2.0 (1.4–2.8) ns 2.4 (1.8–3.2) 2.3 (1.7–3.4) ns ns 
CD4+CD25+FOXP3+ 23.1 ± 14.8 21.7 ± 14.5 ns 31 ± 21.3 29.3 ± 20 ns 0.157 
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Figure 4. Pearson’s “r” factor correlations between anti-inflammatory cytokines. Blue colors stand
for a positive correlation r > 0, red colors r < 0. (CG—control group, n = 20; RPL—study group, n = 21;
SC—sildenafil citrate).

3.2. The Effect of Sildenafil on Th17, Th17/Treg, Treg, and NKT Cells in PBMC Cultures

There was no statistical difference in the expression of FOXP3 in CD4+CD25+ cells
of RPL patients compared to healthy women (Table 2). No significant correlation was
observed between the concentration of cytokines and the expression of Treg or Treg/Th17
cells in the PBMC cultures of both studied groups.

Table 2. The percentage of CD4+CD25+FOXP3+ −Treg, CD4+CD25+IL-17+-activated Th17 and CD4+CD25+FOXP3+IL-
17+(Th17/Treg) positive cells determined among CD4+CD25+ of the cultured PBMC of fertile women and RPL patients
with and without SC for 48 h, results presented as the mean and SD in case of the normal distribution of data, and median
and IQR1-IQR3 in case of the non-normal distribution of data, (CG—control group, n = 20; RPL—study group, n = 20;
SC—sildenafil citrate).

Percentage of Positive Cells
(%), Median,

IQR1–IQR3 or Mean ±SD

Fertile Women
PBMC (CG)

Fertile Women
-PBMC (CG) +
400 ng/mL SC

p Value
CG vs. CG SC RPL PBMC RPL PBMC +

400 ng/mL SC

p Value
RPL vs. RPL

SC

p Value CG vs.
RPL

CD4+CD25+ 2.2 (1.6–2.9) 2.0 (1.4–2.8) ns 2.4 (1.8–3.2) 2.3 (1.7–3.4) ns ns
CD4+CD25+FOXP3+ 23.1 ± 14.8 21.7 ± 14.5 ns 31 ± 21.3 29.3 ± 20 ns 0.157

CD4+CD25+IL-17+ 3.3 (1.25–7.0) 3.2 (1.3–9.5) ns 3.85
(1.95–8.9) 3.6 (2.3–8.7) ns ns

CD4+CD25+FOXP3+IL-17+ 0.6 (0.3–0.9) 0.7 (0.4–1.2) ns 0.7 (0.4–2.0) 1.3 (0.6–3.7) 0.018 ns

Sildenafil had no significant effect on the percentage of CD4+CD25+FOXP3+ or
CD4+CD25+FOXP3+IL-17+ cells in both studied groups (Table 2).

NKT cells was similar in both studied groups. The percentage of CD3+CD56+CD44+CD161+

cells remained almost unaffected by SC (Table 3).
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Table 3. Differences in the percentage of CD3+CD56+CD44+CD161+ cells among CD3+CD56+ cells in the PBMC cultures of
healthy women and RPL patients, presented as the mean and SD, in case of the normal distribution of data mean and ± SD,
or in case of the non-normal distribution of data, median and IQR1-IQR3 (CG—control group, n = 20; RPL—study group,
n = 22; SC—sildenafil citrate).

Percentage of Positive Cells
(%), Median,

IQR1–IQR3 or Mean ± SD

Fertile Women
PBMC (CG)

Fertile
Women

-PBMC (CG) +
400 ng/mL SC

p Value
CG vs. CG SC RPL PBMC RPL PBMC +

400 ng/mL SC

p Value
RPL vs.
RPL SC

p Value CG
vs. RPL

CD3+CD56+ 8.4 (4.8–16.0) 6.9 (3.8–16.5) ns 6.1 (3.3–10.5) 6.0 (3.6–13.2) ns ns
CD3+CD56+CD44+CD161+ 20.4 ± 8.9 20.2 ± 8.0 ns 24.1 (16.8–34.2) 26.7 (17.7–32.8) ns 0.073

4. Discussion

Most of our RPL patients had an MTHFR mutation and insulin resistance (IS), or
PCOS. However, we did not observe any correlation between MTHFR mutation C677T
and homocysteine level, PCOS or IR and PCOS, as reported previously [32]. Patients with
MTHFR mutations did not present increased homocysteine levels, which was previously
ascribed to increased pro-inflammatory cytokine concentration [33,34]. Moreover, the basic
concentrations of TNF-α, IL-6 (Th1 type cytokines) were significantly lower in the RPL
group of patients compared to fertile women. Furthermore, the concentration of TGF-β
was increased in the study group. It has been believed until now that the exacerbation
of Th1 response causes and precedes miscarriage [35,36]. Previous reports suggested
a “Th2 bias” of the immune response in a successful pregnancy, but some yielded null
findings, while others observed the protective effect of certain Th1 cytokines in human
studies [37]. Nonetheless, we tested supernatants after 48 h of culturing PBMC, and
not the patients’ sera at the time of miscarriage. Findings by Zanganeh et al. [38], Whit-
comb et al. [37] and Yamada et al. [35] confirmed that an increased Th1 response was not
found before conception, but only during the process of miscarriage [35,37,38]. Whitcomb
tested the serum of women 10 days before miscarriage, and found low levels of several
pro-inflammatory cytokines, IL-1β, IL-4, IL-6, IFN-γ and TNF- α, which confirms our
findings [35,37]. Bates et al. [36] showed that the supernatants of the PBMC cultures of RPL
patients stimulated with phytohemagglutinin (PHA) had a lower concentration of TNF-α
and IFN-γ, and a higher concentration of IL-10 compared to the PBMC of pregnant women
undergoing elective termination of pregnancy in the first trimester, concerning IL-10, it
is in line with our outcomes. Yamada et al. [35] obtained similar results in the serum of
women at 6–7 weeks of pregnancy with normal and abnormal karyotypes [35,36]. The
authors suggested that a widely observed cytokine shift towards the Th1 phenotype might
be the result and not the cause of miscarriage. Additionally, Aljamejl et al. observed a low
concentration of IL-6 in the serum of RPL women, which confirms our results [39].

We noted a correlation of IL-6 and IL-21 cytokines after SC addition in RPL PBMC
cultures only, as opposed to the control group where the correlations between the concen-
tration of IL-6, TNF-α, IL-21 and IFN-γ vs. IL-17 cytokines were significant before and after
treatment with SC. IL-6 and TNF-α are both controlled by MAPK kinases and IL-6 may
positively influence IL-21 production, which may explain our observations. Additionally,
IFN-γ was found to reciprocally influence the IL-17 release [40].

According to Salam et al., TNF-α regulates the trophoblastic metalloproteinases MMP-
2, MMP3 and MMP-9, which enable trophoblast invasion. A higher TNF–α level was
associated with a higher pregnancy rate, and it was established that the determination of
TNF-α concentration might be a useful tool to predict embryo implantation [41]. Similarly,
our RPL patients had a lower level of TNF-α than fertile women, which might be related to
the incorrect implantation process [41].

Additionally, similarly to Ozan et al. [42], we founded a higher concentration of TGF-
β in the case of RPL patients. Ogasawara et al. highlighted those women with severe
recurrent miscarriages had an extremely elevated level of plasma TGF-β compared to the
control value [43]. Moreover, Zhu et al. reported that the PBMC cells of RPL patients
cultured with medium only had the highest spontaneous production of TGF-β among all
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studied groups of females [44]. Our results strengthened those findings and the suggestion
that the elevated concentration of TGF-β might be a risk factor for recurrent pregnancy
loss. The enhancement of TGF-β production might inhibit trophoblast invasion and result
in a subsequent miscarriage [35,37,45].

TGF-β (in concert with other factors) promotes the development of peripheral Treg
(pTreg), Th17 and Th9 cells. TGF-β signaling is dispensable for the induction of Foxp3
expression in Treg cells [46]. We did not find a correlation between TGF—β concentra-
tion with the expression of FOXP3 in Treg cells or Th17 cells percentage in our research.
Furthermore, in the opposition to the previous findings [47], the difference in the ex-
pression of CD4+CD25+FOXP3+ or CD4+CD25+IL-17+ cells, in fertile and RPL women
was insignificant.

The subsequent tested regulatory population was NKT cells. NKT cells rapidly secrete
massive amounts of cytokines, including IL-1, IL-4, IL-5, IL-10, IL-12, IL-13, GM-CSF, IFN-γ
and TNF-α, which consequently switch Th1, Th2, Th17 or Treg responses. Therefore, the
excessive activation of NKT cells might extinguish pregnancy. However, the difference in
the percentage of CD3+CD56+CD44+CD161+ (NKT) cells after 48 h of culturing of PBMC
fell short of significance, although with a trend to increase in RPL patients [44,48,49].

Since our study involved the analyses of the PBMC production of cytokines isolated
from the peripheral blood of women at least six months after their last miscarriage, it
is impossible to comment on the local production of cytokines, percentage of Treg or
NKT cells, e.g., in the endometrium, or during the process of miscarriage. The timing
of the research was considered when the immunity of the patient was normalized after
the last pregnancy failure. It may explain why our results are in opposition to the theory
of potential immunological mechanisms of RPL: graft rejection-like alloimmunity, innate
immune system hyperactivation (e.g., the hyperactivity of CD56 cells) and organ-specific
auto-immunity dependent on autoantibodies [1,2,8].

The Influence of Sildenafil Citrate on PBMC Cells

Our previous study demonstrated that RPL patients treated with sildenafil supposi-
tories presented decreased peripheral blood NK activity tested in the luteal phase of the
menstrual cycle [14]. While SC is used in the therapy of RPL, the data on its influence on
maternal immune tolerance are scant [48,50–53]. Therefore, we assessed the influence of the
drug on the production of cytokines and the percentage of regulatory T cells, which may
influence NK cell activity. We found that sildenafil managed to improve TGF-β production
in the PBMC of fertile women. TGF-β has a strong anti-inflammatory effect and together
with IL-10 or IL-15, primarily regulates and shapes the uterine NK cells [32].

Additionally, SC profoundly decreased the concentration of the main pro-inflammatory
cytokines: IL-6 and IL-12 in the PBMC cultures of healthy women. Karakhanova et al. per-
formed in-depth analyses of the immunomodulatory function of SC on mice and obtained
similar data concerning IL-6 [25]. Results obtained by Luigi et al. showed that sildenafil
was able to decrease IL-6 concentration in human fetal cardiomyocyte (Hfcm) cell cultures
after TNF-α and IFN-γ stimulation [54].

IL-12 is the most important cytokine in Th1 cell formation and proliferation, which
drives NK cell activation with the enhanced secretion of cytotoxic cytokines and the ability
to kill tumor cells directly [32]. Thus, a decrease in IL-12 and the elevation of TGF-β as well
as IL-10 may improve the effect of SC on NK cell activity and other inflammatory cells.

Nunes et al. reported strong anti-inflammatory properties of sildenafil in the de-
myelination animal model [55] through the reduced secretion of IL-2, TNF-α, INF-γ and
IL-1β and the improvement of IL-10 production [56]. We obtained similar results consid-
ering IL-10 cytokine only. IL-10 is a crucial cytokine for trophoblast survival [1] and a
key contributor to the balance of pro- versus anti-inflammatory signals that orchestrate
proper pregnancy outcomes [57]. Therefore, SC might exert positive effects on pregnancy
outcomes through the improvement of IL-10 production in the case of RPL women.
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Contrary to the findings of El-Far et al., [48,55,58] our research showed that sildenafil
increased the production of TNF-α in the PBMC of RPL patients and had no influence on
NKT cell percentage in RPL patients [48].

Recent results confirmed our previously published observations, where SC upregu-
lated the concentration of TNF-α in the serum collected from RPL patients after therapy
with SC intravaginal suppositories [59]. Kaleta et al. achieved analogous results in the
PBMC cultures of healthy men [60]. However, it was reported that increased NO level after
sildenafil treatment might result in NF-κB activation and TNF-α release from the immune
cells [14]. Notably, IL-10 and TNF-α share the extracellular signal-regulated kinases (ERK
proteins) in the activation pathway [61], which may explain the phenomenon of a simulta-
neous increase in IL-10 and TNF-α production observed in our research. A high level of
TNF-α during pregnancy is considered detrimental. However, the inflammatory process
caused by TNF-α is crucial for trophoblast invasion, and the development of spiral arteries
over the first stages of pregnancy. Thus, the effect of SC on TNF-α concentration in vitro
found in the present study might be positive in vivo during pregnancy by supporting
trophoblast implantation and angiogenesis in cases of patients with an exhausted immune
response [62–65].

5. Conclusions

Remarkably, we observed a lower concentration of pro-inflammatory cytokines in
RPL patients PBMC compared to fertile women PBMC cultures, which might suggest
the exhaustion of the immune system in RPL women. Our study is the first to report the
influence of sildenafil citrate, a PDE5 inhibitor, on a wide spectrum of human cytokine
production in vitro, and confirm that SC exerts anti-inflammatory and immunomodulatory
effects on human lymphocytes.

We found that SC enhanced the production of TNF-α and IL-10 by the PBMC of RPL
patients. Therefore, sildenafil might modulate the endometrial environment and enhance
the decidualization, implantation process and angiogenesis. The elevated concentration of
IL-10 in the RPL group and the impaired production of IL-12 and IL-6 in healthy female
PBMCs cultured with sildenafil might partially explain diminished peripheral NK cells
activity demonstrated in our previous research, and might be utilized in the treatment of
RPL women with an imbalanced Th1 response.
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APA antiphospholipid antibodies
APS antiphospholipid antibody syndrome
cGMP cyclic guanosine monophosphate
CTLA–4 cytotoxic T cell antigen 4
GMP guanosine monophosphate
IL interleukin
IR insulin resistance
MTHFR methylenetetrahydrofolate reductase
NKT Natural Killer T cell
NO nitric oxide
NOS nitric oxide synthase
PBS phosphate-buffered saline
PCOS polycystic ovary syndrome
PDE-Is phosphodiesterase inhibitors
PDE phosphodiesterase
RPL recurrent pregnancy loss
SC sildenafil citrate
TGF-β transforming growth factor β
TNF-α tumor necrosis factor α
Treg T regulatory cell
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