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Abstract: The possibility of prophylaxis of hypertensive disorders of pregnancy (HDPs) such as
preeclampsia (PE) and pregnancy-induced hypertension is of interest due to the unpredictable course
of these diseases and the risks they carry for both mother and fetus. It has been proven that their
development is associated with the presence of the placenta, and the processes that initiate it begin at
the time of the abnormal invasion of the trophoblast in early pregnancy. The ideal HDP prophylaxis
should alleviate the influence of risk factors and, at the same time, promote physiological trophoblast
invasion and maintain the physiologic endothelium function without any harm to both mother and
fetus. So far, aspirin is the only effective and recommended pharmacological agent for the prevention
of HDPs in high-risk groups. Metformin is a hypoglycemic drug with a proven protective effect
on the cardiovascular system. Respecting the anti-inflammatory properties of metformin and its
favorable impact on the endothelium, it seems to be an interesting option for HDP prophylaxis. The
results of previous studies on such use of metformin are ambiguous, although they indicate that in a
certain group of pregnant women, it might be effective in preventing hypertensive complications.
The aim of this study is to present the possibility of metformin in the prevention of hypertensive
disorders of pregnancy with respect to its impact on the pathogenic elements of development
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1. Introduction

The frequency of hypertensive diseases is estimated at 8–10% of pregnancies: chronic
hypertension is observed in 0.9–1.5% of pregnant women and pregnancy-induced hyper-
tension in 2–8% [1,2]. Preeclampsia is diagnosed in 1% of pregnant women and 1.5% of
primiparas [3]. According to WHO (World Health Organisation) reports, it is responsible
for about 76,000 maternal deaths per year, which accounts for 16% of all maternal deaths,
primarily in developing countries. In developed countries, it is the most common cause of
iatrogenic premature births [4,5].

Preeclampsia is a complex of clinical symptoms that occur after the 20th week of
pregnancy. According to the classification of the American College of Obstetricians and
Gynecologists (ACOG), preeclampsia (PE) is defined by new-onset hypertension after
the 20th week of gestation, with systolic blood pressure ≥140 mmHg or diastolic blood
pressure ≥90 mmHg, measured on two occasions at least four hours apart, and proteinuria
of ≥0.3 g per 24 h or ≥1+ proteinuria, detected by urine dipstick. In the absence of
proteinuria, preeclampsia is defined by new-onset hypertension with new onset of any of
the following: thrombocytopenia (platelet count <100,000/µL), renal insufficiency (serum
creatinine concentration >1.1 mg/dL or a doubling of serum creatinine concentration in
the absence of other renal diseases), impaired liver function (raised concentrations of liver
transaminases to twice normal concentrations), pulmonary edema, or cerebral or visual
problems [2].
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Another form of hypertension that occurs in pregnancy is gestational hypertension
(GH) or pregnancy-induced hypertension (PIH), with systolic blood pressure ≥140 mmHg
or diastolic blood pressure ≥90 mmHg, that is diagnosed after the 20th week in a previ-
ously healthy woman, with no signs of proteinuria or other symptoms characteristic of
preeclampsia [2].

Pregnancy-induced hypertension can result in an adverse pregnancy outcome as
well as precede PE development; hence, the management of PIH is similar to that of
preeclampsia. At present, the only effective, causal form of PE treatment is delivery. The
prevention of the development of hypertension in pregnancy, mainly PE, is extremely
important due to its unpredictable course and the risk of unfavorable outcomes for both
mother and fetus or newborn. The ideal PE prevention should alleviate the influence of risk
factors and, at the same time, promote physiological trophoblast invasion and maintain the
physiologic endothelium function without any harm to both mother and fetus. Effective
and safe prophylactic methods have remained of great interest for many years. So far,
aspirin is the only drug with recognized efficacy in PE prevention, recommended by many
institutions around the world for use in patients in high-risk groups [2,6–8].

The results of the latest studies on preeclampsia pathogenesis and its better under-
standing justify research on the possibility of using other drugs for prevention. There
are reports of the use of sulfasalazine, folate, nitric oxide donors (such as L-Arginine),
antithrombin III, and antioxidants such as melatonin [9].

Metformin, a pharmacological hypoglycemic agent, has been known for decades [10,11].
At present, metformin is called aspirin of the 21st century due to its other than only
hypoglycemic properties, such as anticancer, antiaging, protective effect on the endothelium
and prevention of cardiovascular events, beneficial effects on body weight, and lipid
profile [12].

Preeclampsia is a syndrome involving the vasculature of different organs; it can be
found as a form of cardiovascular disease affecting, predominantly, the trophoblast/placenta,
where abnormal invasion and function is a starting point to initiate PE development. It has
been proven that of all hypoglycemic drugs, only metformin has a beneficial effect on the
circulatory system, as underlined by the American Association of Clinical Endocrinologists
(AACE). This institution recommends its use as an agent of first choice in patients with
type 2 diabetes mellitus (DMt2) [10].

The purpose of this study is to present the possibility of metformin in the prevention
of PE and PIH with respect to its impact on the pathogenic elements of development.

2. Pathophysiology of Preeclampsia

The pathogenesis and pathophysiology of PE are still poorly or incompletely under-
stood. The main pathological feature of early-onset PE is the incomplete transformation of
the spiral arteries, resulting in the hypoperfusion of the placenta and reduced transfer to the
fetus. In this type of PE, a significantly higher risk of maternal and fetal complications, such
as fetal growth restriction (FGR), is observed [13]. It has been proposed that preeclampsia
be divided into two main categories: early-onset (<34 weeks of gestation) and late-onset
(>34 weeks of gestation). These two subtypes seem to have different pathophysiological
and etiological pathways [14].

In late-onset preeclampsia, the spiral arteries are slightly changed in diameter; the
cause arises from the interaction between a probably normal placenta and maternal factors
which are connected with endothelial dysfunction. Maternal late-onset preeclampsia is
associated with a lower rate of fetal complications [15].

According to the hypothesis of insufficient trophoblastic invasion with associated
uteroplacental hypoperfusion, a two-stage model of PE was proposed: incomplete spiral
artery remodeling in the uterus that contributes to placental ischemia (Stage 1) and the
release of antiangiogenic factors from the ischemic placenta into maternal circulation that
results in endothelial damage (Stage 2) [13]. During implantation, the placental trophoblast
invades the uterus and induces the remodeling of the spiral arteries while obliterating the
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tunica media of the myometrial spiral arteries. This enables the arteries to accommodate
increased blood flow regardless of the maternal vasomotor changes [16]. Thus, the major
impact of the remodeling of the spiral arteries is to increase the perfusion of the intervillous
space [15]. If this process fails, the placenta is likely to be deprived of oxygen, leading to a
state of relative ischemia and an enhancement in oxidative stress [16].

The key issue remains the cause of abnormal trophoblast implantation. Many re-
searchers have suggested that it is an impaired response of the maternal immune system
or an abnormal tolerance to the development of the allogenic fetus [17,18]. Several studies
have been conducted on immunological changes in pregnancies complicated by preeclamp-
sia. They have indicated the excessive activation of neutrophils and monocytes, which
synthesize large amounts of proinflammatory cytokines such as IL-1β, IL-6, and IL-8 [19,20].
In addition, CD4+ and CD8+ T-cells, together with NK (natural killer) and dendritic cells
(DCs), show a different response in PE women compared to healthy pregnant women. In
physiological pregnancy, a dominance of anti-inflammatory response and immunosup-
pression is observed [21]. Decidual NK cells (dNKcs), which are 70% of the inflammatory
cells present in the decidua, play an important role in proper trophoblast implantation
and the remodeling of spiral arteries [22]. The potential role of dNKcs was proposed by
studies revealing that if dNKcs are knocked out in genetically modified laboratory animals,
physiological spiral artery remodeling is not observed [23].

Impaired remodeling of spiral arteries, reduced placental blood flow, and oxidative
and endoplasmic reticulum stress may have both systemic and local effects. The placental
alterations associated with poor remodeling of the uteroplacental spiral arteries lead to
the release of several placental factors into maternal circulation that contributes to the
development of increased inflammatory response, oxidative stress, apoptosis, the release
of syncytiotrophoblast microparticles, and endothelial dysfunction [24].

A healthy endothelium possesses autocrine, paracrine, and endocrine properties and
produces a variety of vasoactive mediators. Nitric oxide (NO), prostacyclin I2 (PGI2),
endothelium-derived hyperpolarizing factor (EDHF), bradykinin, histamine, serotonin,
and substance P are the main vasodilators synthesized within endothelial cells. Endothelin-
1 (ET-1), angiotensin II (ANG-II), thromboxane A2, prostacyclin H2, and reactive oxygen
species (ROS) represent vasoconstrictors. The functional stability of endothelium is as-
sured by the balance of secreted vasoconstrictors and vasodilators; the asymmetry in their
synthesis is responsible for many pathophysiological changes, including preeclampsia.
The impaired function of the endothelium is determined by at least one of the changes,
such as a decrease in NO synthesis and bioavailability, higher adhesion molecule and in-
flammatory gene expression, intensified ROS synthesis, impaired endothelium-dependent
vasorelaxation, decreased fibrinolysis, and enhanced endothelial permeability [25].

Disturbed endothelial function is considered one of the most characteristic features of
PE that leads to generalized vasoconstriction and restricted organ perfusion. Pre-existing
risk factors such as obesity, diabetes, and poor nutrition adversely affect endothelial
function and, finally, exacerbate maternal response to signals from the hypoxic placenta [26].
The results of the studies presented by Zhao et al. have suggested a more significant
deterioration of endothelial function in the course of PE compared to PIH, which may
partly explain the more severe clinical course of preeclampsia [27].

It has been believed that angiogenic and antiangiogenic factors produced by the
placenta are influenced by hypoxia and oxidative stress and play a crucial role in the
pathophysiological features of preeclampsia [28]. Vascular endothelial growth factor
(VEGF) and placental growth factor (PlGF) play a key role in placental angiogenesis in
physiological and pathological pregnancy. VEGF exerts its effects via the binding and
activation of two cell surface receptor tyrosine kinases, VEGFR-1/Flt-1 and VEGFR-2/KDR
(vascular endothelial growth factor receptor), that are presented on endothelial cells [29].
VEGF has been described as a potent stimulator of endothelial cell proliferation and
synthesis of plasminogen activators. Both of these mechanisms are markers of angiogenic
activity [30]. VEGF is essential for the integrity of endothelial cells [31]. A link between
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VEGF and oxidative stress in the placenta has been postulated. Koroglu et al. have
suggested that changes in VEGF levels may increase 5′ adenosine monophosphate-activated
protein kinase (AMPK) activity in patients with severe preeclampsia due to placental
hypoperfusion [32].

AMPK is a heterotrimeric serine–threonine protein kinase that is expressed in almost
every cell type and tissue within the body [33]. AMPK plays a role in several processes, such
as oxygen regulation, cellular energy homeostasis, and metabolism as well as placental
angiogenesis [34]. It is known that AMPK is present in the human placenta; its levels
increase under hypoxic conditions, as seen in preeclampsia, and maintain the appropriate
blood flow in maternal uterine arteries [35]. In the study presented by Koroglu et al., it
was concluded that higher levels of AMPK revealed in severe PE may be a compensatory
mechanism to balance angiogenic and antiangiogenic molecules that induce endothelial
dysfunction [32]. PlGF is an angiogenic protein belonging to a vascular endothelial growth
factor family and has 53% homology with VEGF. PIGF influences endothelial cell adhesion
and chemotaxis and appears to increase the angiogenic effect of VEGF [36,37]. Like VEGF,
it binds to the sFlt-1 receptor, resulting in non-branching angiogenesis [38].

The main antiangiogenic factors that play a role in the pathogenesis of preeclampsia
are VEGF receptors (VEGFR1 and VEGFR2) and soluble endoglin (sEng). VEGFR1 is also
known as fms-like tyrosine kinase-1 (sFlt-1) [39]. sFlt-1 secretion is regulated through
the mitochondria. Inhibiting the mitochondrial electron transport chain reduces sFlt-1
secretion from primary villous cytotrophoblasts cells. It has been proven that mitochondrial
electron transport chain activity in preterm preeclamptic patients is increased compared
to patients with uncomplicated pregnancies [40]. sEng is known to be an extracellular
domain of full-length membrane endoglin, and it decreases its proangiogenic and vasodila-
tors impact [41]. Elevated concentrations of sEng have been described in the serum of
preeclamptic patients [42].

Preeclampsia is associated with placental ischemia/hypoxia and an increase in the
secretion of sFlT-1 and sEng into maternal circulation [43]. This causes widespread en-
dothelial dysfunction that manifests clinically as hypertension and multisystem organ
injury [44]. It has been suggested that an imbalance between angiogenic and antiangio-
genic factors influences the pathophysiological changes observed in PE, and it appears
before clinical symptoms are noticed [45]. It has been described that the circulating level of
PlGF is lower in patients who will be preeclamptic before the increase in s-Flt [46]. In the
study published by Maynard et al., it was revealed that at the time of delivery, sFlt-1 was
upregulated in the circulation of preeclamptic patients; decreased VEGF and PIGF levels
were also observed. When sFlt-1 was administered to rodents via an adenovirus, they de-
veloped marked hypertension and albuminuria and histologic changes characteristic of PE
(i.e., glomerular enlargement, endotheliosis, and fibrin deposition within the glomeruli).
sFlt-1 is supposed to be the main mediator in the development of PE [47]. Govender et al.
noticed that serum sFlt-1 levels were significantly higher in early-onset PE and higher
in late-onset PE compared to normotensive patients and chronic hypertensive patients,
while VEGF was not detectable in all groups [48]. Venkatesha et al. found that both sEng
and sFlt-1 could block the actions of VEGF [42]. By this mechanism, sEng may decrease
the activation of endothelial nitric oxide synthase (eNOS) and the synthesis of the potent
vasodilator nitric oxide, which is crucial for appropriate trophoblast development and
invasion [49]. NO bioavailability is positively correlated with VEGF and PIGF, which
enhance endothelial NO synthesis [50,51]. Thus, the impaired balance of angiogenic and
antiangiogenic factors observed in PE influences NO synthesis. sFlt-1 decreases the avail-
ability of free PlGF and VEGF and, finally, leads to the decline in NO synthesis, which is
also disturbed by oxidative stress and ROS involved in PE pathogenesis [52,53].

sEng is believed to be one of the potent antiangiogenic factors, the levels of which
are raised in preeclampsia [54]. It has been observed that the administration of sEng to
pregnant rodents markedly increased blood pressure at the 17th to 18th day of pregnancy
but led only to mild-to-modest proteinuria while sFlt-1 infusion resulted in high levels of
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proteinuria, hypertension, and features of HELLP syndrome [42]. It has been suggested that
the increased secretion of sFlt-1 and sEng into maternal circulation could be responsible
for widespread endothelial dysfunction that manifests clinically as hypertension and
multiorgan injury [44].

It has been observed that hypoxia-inducible factor 1α (HIF1α), the central mediator
of hypoxic response, plays an important role in placental development and function. It
is upregulated with ischemia/hypoxia. HIF-1α has been demonstrated to induce the
production of sFlt-1 in placental explants [55]. A growing body of evidence supports
HIF-1α being the molecular link between placental hypoxia and the downstream mediators
of preeclampsia. Therefore, drugs that can block HIF1α activity may decrease sFlt-1
secretion [56]. It has also been postulated that some pharmacologic agents that are safe
in pregnancy, by reducing placental sFlt-1 and sENG synthesis may improve endothelial
dysfunction and, finally, may be effective in preventing and treating preeclampsia [40].

Endoplasmic reticulum stress (ERS), which may be the result of factors such as abnor-
mal glucose metabolism, viral infection, or oxidative stress, is believed to be involved in
the pathogenesis of preeclampsia. It promotes the release of proinflammatory cytokines,
antiangiogenic factors, and trophoblastic apoptotic debris, and all of them have been found
to diminish endothelial function [57–59]. Fu et al. observed that ERS-induced apoptosis
was important in the development of severe PE, especially in its early onset [60].

Placentation involves extracellular matrix degradation with matrix metalloproteinases
(MMPs), the expression/activity of which is augmented in normal pregnancy. The invasive
potential of extravillous trophoblast cells relates to MMP-2 and MMP-9 expression [61]. The
decreased vascular MMP-2 and MMP-9 expression enhance the vasoconstriction observed
in preeclampsia. In animal models, antiangiogenic factors such as sFlt-1 have been observed
to diminish MMP expression/activity within placental tissue and vascular walls, while
angiogenic factors such as VEGF have been found to transpose this process and to improve
placentation [62].

Vascular integrity is an essential feature of the physiological endothelium. Endothelial
glycocalyx, one of the matrix structures, prevents increase in endothelial permeability.
Endothelial dysfunction, characteristic of PE, can lead to increased vascular permeability,
as can endothelial glycocalix disorder [63]. Vascular permeability was more than five times
higher in preeclamptic patients than in healthy pregnant women [64]. It has been suggested
that an imbalance between angiogenic and antiangiogenic factors may be responsible for
increased vascular permeability [47].

Endothelial progenitor cells (EPCs) are endothelial cell precursors that can enhance
endothelial repair, influence the remodeling of vessels, and improve angiogenesis [65].
King et al. observed that mothers of small-for-gestational-age infants had a reduced
number of EPCs, with limited migration function. It may support the hypothesis of
the adverse effects of EPC disturbances on placentation, which may contribute to an
increased risk of maternal cardiovascular complications [66]. Actually, in preeclamptic
patients, significantly lower EPCs have been noticed compared to healthy patients [67,
68]. The decrease in EPCs number and their functional impairment in patients with PE
might be associated with endothelial dysfunction. It has been postulated that it could be
the result of systematic inflammation and the influence of increased sFlt-1 levels [68,69].
Matsubara et al. concluded that although certain factors such as TNF-alpha or angiotensin
II stimulate the proliferation of EPCs, their incomplete release into the circulation prevents
the renewal of endothelium cells in preeclampsia [70]. The transfer of EPCs from healthy
pregnant rats to PE rats significantly improved placental perfusion [71].

Sirtuin 1 (SIRT1) overexpression is believed to significantly improve cell survival,
reduce apoptosis, and also reduce the release of proinflammatory cytokines [72]. Only a
few studies on SIRT1 in HDPs pathogenesis are available. Reduced SIRT1 expression has
been demonstrated in PE patients compared to PIH patients and healthy pregnant women,
which may suggest a different pathogenetic background of PIH and PE [73]. Its decreased
levels have been noticed in third-trimester placentas from patients with PE [74]. Yin et al.
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revealed a reduction in the concentration of this protein in human umbilical endothelial
cells incubated with serum from PE patients. The authors concluded that SIRT1 may have
a protective effect on the placenta in PE [75].

The real significance of angiogenic and antiangiogenic factors, however, may depend
on their ability to predict maternal and fetal/neonatal complications. In patients with the
clinical diagnosis of preeclampsia, it has been demonstrated that increased sFlt/PlGF ratios
are correlated with worse maternal and fetal outcomes compared to women with lower
ratios. In patients with suspected early-onset preeclampsia, the circulating sFlt1/PlGF
ratio can predict adverse outcomes that will occur within two weeks [76]. In 2016, the
multicenter study that analyzed high-risk pregnant women in their second and third
trimesters using angiogenic markers was published. It shows that an sFlt-1/PlGF ratio of
38 or lower, assessed at 24–37 weeks of gestation, can reliably predict the absence of PE
and adverse fetal outcomes within 1 week, with negative predictive values of more than
99% [77].

Abnormal trophoblast implantation underlying the development of PE is responsible
for the subsequent restriction of blood flow in uteroplacental circulation. An increase
in resistance within this circulation can be diagnosed with uterine artery Doppler flow
velocimetry between 11 + 0–13 + 6th week using the pulsation index (PI) in both uterine
arteries. Restricted placental perfusion is reflected in the increase in mean PI values and
the subsequent development of preeclampsia [78]. The Fetal Medicine Foundation has
proposed an early preeclampsia prediction algorithm using maternal data, PI values in
uterine arteries, and concentrations of PIGF and PAPP-A (pregnancy-associated plasma
protein A). The risk, estimated at more than 1:100, indicates the need for prevention with
aspirin. Screening based on maternal factors, including mean arterial pressure (MAP),
PI values, and PAPP-A and PlGF concentrations, allows to identify 95% of cases of early-
onset [79,80].

In the clinical prediction of PE development, risk factors are commonly used, in-
cluding, but not limited to, the presence of chronic conditions (diabetes mellitus t.1 and
t.2, obesity, chronic hypertension, systemic lupus, antiphospholipid syndrome, chronic
kidney diseases, PE in the past), as well as multiple pregnancy, advanced maternal age,
or first pregnancy. The presence of risk factors, according to recommendations of various
gynecological and obstetric societies, is an indication for the prevention of preeclampsia.
Currently, the only recommended drug is aspirin at a dose of 75–150 mg per day, which
should be offered at the latest by the 16th week of pregnancy [2,6–8].

3. Metformin
3.1. Pharmacokinetics and Mechanism of Action

Metformin is believed to be a safe medicine in pregnancy and is used primarily to treat
women with gestational diabetes mellitus (GDM) [81]. Metformin, a dimethyl-biguanide
hydrochloride, is an oral hypoglycemic agent of a molecular weight of 129 daltons, ab-
sorbed within the duodenum and jejunum and excreted unchanged with urine and bile [82].
The hypoglycemic effect of metformin is the result of several mechanisms, such as reduced
gluconeogenesis in the liver, with limited hepatic glucose synthesis; decreased glucose
absorption in the gastrointestinal tract; and intensification of its uptake in skeletal mus-
cles [83]. Its maximum dose is estimated to be 2.5–3 g daily (35–42 mg/kg) [84]. It has
been found that metformin acts within mitochondria, where it inhibits complex I of the
mitochondrial electron transport chain (ETC), which leads to a reduction in nicotinamide
adenine dinucleotide (NADH) oxidation and adenosine triphosphate (ATP) synthesis. It
results in the activation of the 5′-adenosine monophosphate (AMP) kinase (AMPK), an
increase in AMP concentrations, and the inhibition of the cAMP/PKA pathway (protein
kinase A). Metformin activates the AMPK pathway, which results in a decrease in hepatic
glucose synthesis and an increase in glucose consumption in muscles [85,86]. Additionally,
metformin inhibits the transmembrane protein vATPase on the surface of the lysosome
and raises the AMP/ATP ratio. It also stimulates AXIN-LKB1-vATPase and enhances
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AMPK protein attachment to the lysosome surface [85]. The increased AMP/ATP ratio is
responsible for the activation of AMPK, which results in suppressed glucose synthesis in
the liver, enhanced insulin sensitivity and glucose uptake by muscle, and the activation
of fatty acid oxidation [87]. This process demands threonine 172 phosphorylation with
liver kinase B1 (LKB1) [88]. The AMPK pathway is triggered by metformin in a dose-
and time-dependent manner. However, it has also been postulated that metformin can
stimulate AMPK separately from AMP/ATP ratio variations [89].

The results of animal studies have indicated that metformin may also decrease liver
glucose synthesis concentrations without AMPK pathway involvement [90]. According
to the observations presented by Madiraju et al., gluconeogenesis can be restrained by
metformin through mitochondrial glycerophosphate dehydrogenase suppression [91].
AMPK activation influences cellular metabolism and cell growth and proliferation by
blocking mTORC (mammalian target of rapamycin), which is a cancer-supporting path-
way [92]. Metformin may develop an antiproliferative effect by inhibiting mTORC1 through
AMPK [93–95].

The underlying mechanism by which metformin reduces the incidence of cardiovas-
cular events and all-cause mortality has been actively investigated. It has been found that
the induced AMPK pathway may act not only as a hypoglycemic and antiproliferative
agent but also favorably influences the cardiovascular system. It may reduce inflammatory
cell proliferation and their adhesion to the endothelium and lipid accumulation, and it
is involved in the activation of genes responsible for cellular antioxidant defense and
enzymes committed in the synthesis of nitric oxide [96]. As a result, this translates into
favorable effects on clinical signs and symptoms, such as hypertension, obesity and over-
weight, atherogenic dyslipidemia, procoagulant and thrombosis conditions, and carotid
intima-media thickness, all of which are improved [97,98]. Metformin has been found to
protect against cardiovascular complications, mainly by improving the function of the
endothelium and by its anti-inflammatory properties, which have a positive impact on
blood pressure, coagulation processes, and overweight/obesity [99,100].

Studies on animal models have proven that metformin can restore normal endothelium
function [101].

a. Inflammation and oxidative stress

There are many available reports on in vitro and animal models confirming the anti-
inflammatory properties of metformin. It has been suggested that metformin, by AMPK
pathway activation, can restrain nuclear factor kappa B (NF-κB), which results in the
limitation of proinflammatory gene expression [102,103]. NF-κB inhibition by metformin
is also the effect of the blockade of the phosphoinositide 3-kinase (PI3K)-Akt pathway in
human vascular wall cells [104].

It has been observed that NF-κB suppression in macrophages, monocytes, and lym-
phocytes may finally result in a decrease in proinflammatory cytokines levels such as IL-1β,
IL-6, and tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1),
and IL-8, IL-2, and interferon as well as NO and prostaglandin E2 (PGE2) release [105].
Gongol et al. found that metformin may inhibit the TNF-α–induced gene expression
regulating E-selectin, vascular cell adhesion molecule 1 (VCAM1), intracellular adhesion
molecule 1 (ICAM1), and MCP1 release. All of them contribute to monocyte adhesion to
activated endothelial cells, suggesting that metformin could be a useful agent in preventing
monocyte adhesion to endothelial cells [106]. Thus, the influence on the NF-κB pathway
may represent an interesting target for anti-inflammatory therapies. In addition, metformin
has been shown to reduce the proinflammatory response by affecting AMPK-phosphatase
and the tensin homolog (PTEN) [107].

Metformin also diminishes the synthesis of advanced glycation end-products (AGEs),
the levels of which increase due to hyperglycemia. AGEs have been found to exert proin-
flammatory properties and are believed to be one of the reasons for the development of
vascular complications in diabetes mellitus [108,109]. AGEs have been revealed to induce
oxidative stress as well as activate proinflammatory processes in the endothelium [110].
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Mamptu et al. observed that metformin inhibits the monocyte adhesion to the endothelium
caused by AGEs [111]. However, the exact mechanism of metformin action to reduce
inflammation processes—directly or indirectly through glycemic normalization—has not
been definitively established [112].

It has been found that metformin, through the inhibition of nicotinamide adenine
dinucleotide phosphate (NADPH), diminishes ROS production in endothelial cells [113].
The results of the studies conducted by Bakhashab et al. indicate that metformin intensifies
the expression of VEGFs responsible for the enhancement of angiogenesis in hypoxia and
hyperglycemia conditions [114].

b. NO synthesis

The bioavailability of NO, a potent vasodilator, is one of the key factors in maintaining
physiological endothelium properties and function. Metformin has been found to enhance
the eNOS-NO pathway through the activation of AMPK in a dose-dependent manner.
By this mechanism observed in endothelial cells in vitro, metformin may increase NO-
mediated vasodilatation [115].

c. Endothelial senescence and apoptosis

It has been claimed that hyperglycemia could be responsible for the senescence and
apoptosis of endothelial cells that eventually lead to the loss of their function. Metformin,
by significantly enhancing the expression of SIRT1, has been observed to reduce these
processes and enable the endothelium to maintain its properties [116]. SIRT1 has been
shown to increase eNOS deacetylation and augment the bioavailability of NO, leading to a
reduction of apoptosis and angiogenesis in the endothelium [117].

d. Vascular integrity

Hyperglycemia is one of the factors increasing vascular permeability that finally result
in endothelial leakage and the extravasation of monocytes, which is associate with impaired
endothelial function. The endothelial glycocalyx, one of the matrix structures, prevents the
increase in endothelial permeability. The results from animal model studies have shown
that endothelial permeability is inhibited by metformin via AMPK activation, and the
glycocalyx barrier is reinforced [118].

The main mechanisms of metformin action are shown in Figure 1.

3.2. Impact on Preeclampsia Pathophysiology

Elevated insulin levels are believed to be exceptionally toxic to trophoblast cells in the
first trimester of pregnancy and may be responsible for damage to their DNA, apoptosis,
and limiting their survival. Hence, metformin use may prevent these events. These
findings also suggest the need to consider screening for insulin resistance before conception
to prevent hyperinsulinemia early in pregnancy [119].

It has been suggested that the development of preeclampsia could be related to proin-
flammatory conditions that lead to the release of free radicals within the placenta and
the consecutive oxidative/nitrosative stress [120]. The results of the study conducted by
Han et al. revealed that high glucose concentrations had a significant impact on the rise in
trophoblast synthesis of proinflammatory cytokines such as IL-1β, IL-6, and IL-8 as well
as the synthesis of antiangiogenic factors sFlt-1 and sEnd. They also reduce trophoblast
migration. This may indicate the existence of a mechanism linking hyperglycemia to the
development of PE and the role of metformin as a potential preventive agent. However,
they also observed that metformin limited the glucose-induced inflammatory response
moderately without any impact on the antiangiogenic or antimigratory response [121]. This
observation has been confirmed by Chiswick et al., who found that women treated with
metformin during pregnancy had lower proinflammatory interleukin-6 levels [122]. The
metformin impact on inflammation and oxidative stress was examined in numerous animal
and in vitro studies. Hu et al. observed that in a rat model of PE induced by lipopolysac-
charides (LPS), metformin decreased the LPS-dependent secretion of proinflammatory
cytokines such as TNF-α and IL-6 and limited oxidative/nitrative stress by enhancing the
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activity of superoxide dismutase (SOD). The placental NF-κB signaling pathway, activated
by LPS, was suppressed. This resulted in a normalization of blood pressure, reduced
proteinuria, improvement in fetal growth, and decreased stillbirth frequency. The authors
concluded that metformin is beneficial to the PE-like rat model by protecting placentas
from injury; thus, it could be an attractive agent for PE prevention and/or treatment [123].
It has been reported that the decrease in IL-27, TNF-α, and IL-6 expression in vivo (in both
preeclamptic rat models and trophoblast cells) was the result of H19 inhibition by met-
formin in a dose-dependent manner [124]. On the other hand, Correia-Branco et al. showed
the adverse influence of metformin on an extravillous trophoblastic cell line, with reducing
cell proliferation rates, culture growth, viability, and capacity of migration. Thus, they
were of the opinion that the processes involved in placentation could be highly impaired
by metformin, with mTORC and PI3K involvement [125].
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Metformin acts as an endothelial protective agent via the AMPK activation pathway
not only in diabetic patients but also in healthy individuals in a glucose-independent
manner [126]. The endothelium dysfunction reported in PE is correlated with an increase
in the expression of ICAM1 and VICAM1, which is enhanced by proinflammatory cytokine
TNFα [127,128]. Brownfoot et al. revealed that metformin diminished the VCAM1 levels
induced by TNF-α in HUVECs (human umbilical vein endothelial cells) [40,129]. An
abnormal invasion of the trophoblast leads to ischemia and hypoxia of the placenta and
an increase in the concentrations of circulating vasoactive factors. Antiangiogenic factors
such as soluble fms-like tyrosine kinase-1 and soluble endoglin cause imbalances in pro-
and antiangiogenic factors [130]. The possibility of restoring the balance by suppressing
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antiangiogenic agents seems attractive as a method of effective prophylaxis of preeclamp-
sia. The results of the study of Brownfoot et al., conducted on endothelial cells, villous
cytotrophoblast cells, and preterm preeclamptic placental villous explants, suggest that
metformin in a dose-dependent manner decreases the synthesis of sFlt-1 and sENG. It also
reversed the endothelial dysfunction observed in preeclampsia. The authors were of the
opinion that the metformin effect was likely to be regulated at the mitochondrial level,
probably by inhibiting the mitochondrial electron transport chain. In the same study, it
has also been observed that the defective angiogenesis caused by sFlt-1 was improved
with metformin. The authors of this research concluded that since metformin limited
endothelium dysfunction, reinforced vasodilatation, and promoted angiogenesis, it might
be useful for the prophylaxis or treatment of preeclampsia [40]. This group of researchers
also studied the effect of metformin and esmoprazol belonging to proton pump inhibitors
and metformin and sulfasalazine combined on sFlt-1 mRNA expression and sFlt-1 secre-
tion as well as sENG secretion. They have found metformin and esmoprazol to be more
effective in decreasing sFlt-1 synthesis, with no additive impact on sENG levels compared
to metformin alone [129,131]. The concomitant use of metformin with sulfasalazine re-
sulted in diminished sFlt-1 and sENG release and enhanced VEGF alpha expression in
cytotrophoblasts [131].

According to the results of the abovementioned studies, their authors concluded
that the combined use of metformin with esmoprazol or sulfasalazine seemed to be more
effective in PE prophylaxis and treatment than metformin alone [129,131].

The increase in VEGF release induced by metformin has been revealed in numerous
reports. VEGF represents the family of angiogenic factors participating in the development
of placental vasculature and appropriate trophoblast invasion and implantation [132]. It
has been found that their levels are decreased in preeclampsia [133]. An animal model
study showed that metformin enhances VEGF synthesis and, consequently, improves
angiogenesis in the placenta [134].

The results of numerous studies have indicated that endothelial function may also be
improved as a result of the action of other mechanisms that are modulated by metformin.
NO is the leading vasodilator involved in cytotrophoblast invasion, implantation, and
providing the development of low-resistance placental blood flow. Since impaired NO
bioavailability and signaling have been reported in preeclampsia, a drug that can restore
the balance in the NO pathway may be attractive for PE prophylaxis [49]. Metformin has
been found to raise NO synthesis through the activation of AMPK, which leads to the
activation of eNOS [115].

The results of studies conducted in diabetic patients have indicated that metformin
stimulates a marked increase in the number of EPCs and strengthens angiogenic potential
by activating the AMPK/eNOS pathway [115,135]. Asadian et al. presented the opposite
opinion: they have shown no metformin impact on the number and activity of EPCs [136].
There are also study results that have indicated the adverse effects of metformin on both
the number and bioactivity of EPCs. It has been noticed that metformin suppresses the
angiogenic capacity of EPCs and their migration [137,138]. The ambiguous conclusions
of the research presented above may be the result of different doses of metformin and the
small size of the study groups. Hence, it seems that drugs that have a beneficial effect on
EPCs might be useful in the prevention or treatment of preeclampsia.

Endoplasmic reticulum stress is believed to be involved in the pathogenesis of
preeclampsia by promoting the release of proinflammatory cytokines, antiangiogenic
factors, and trophoblastic apoptotic debris [57–59]. The results of the study of Suzuki et al.,
conducted in trophoblast-like cells, indicated that metformin, by limiting ERS, restored
normal levels of PIGF, which might justify its use in the prevention of PE [139].

Placentation, which is impaired in preeclampsia, requires extracellular matrix degra-
dation with the involvement of metalloproteinases [61]. Wang et al., conducting a study
on the effect of metformin on PE-like animal models, have found that it improved vas-
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cularization and contributed to an increase in the concentration of MMP-2 and VEGF in
preeclamptic placental tissue [134].

Additionally, metformin, by inducing SIRT1 expression, is believed to significantly
increase cell viability, decrease cell apoptosis, and reduce the release of proinflammatory
cytokines, which allow the maintenance of physiological endothelium function [72]. There
are few reports on SIRT1 in preeclampsia, and data on the metformin effect on SIRT1 in
preeclampsia are, so far, unavailable.

Figure 2 shows the main theoretical basis for the use of metformin in PE prophylaxis.
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4. Metformin in Preventing Hypertensive Disorders of Pregnancy

Due to the effect of metformin, far beyond the impact on carbohydrate metabolism, it
becomes an attractive drug for the prevention of hypertensive disorders of pregnancy.

The studies published so far have focused mainly on its effects on pregnancy outcomes
and the fetus and child and were conducted primarily in women with gestational diabetes
(GDM), polycystic ovary syndrome (PCOS), and obesity. The main objective of these
studies was not to assess the effect of metformin on the development of hypertensive
complications in pregnancy.

This chapter presents the results of randomized controlled trials (RCTs) and meta-
analyses that have been published over the past 10 years. Electronic databases Pubmed
and MEDLINE were searched using keywords such as metformin and pregnancy. Only
articles available in English were taken into account. Of the 110 published RCTs, only
10 provided information on the effect of metformin on preeclampsia and/or pregnancy-
induced hypertension incidences, and 11 out of 74 meta-analyses did.

The results of the selected randomized controlled trials that have been published
within the last 10 years and provide information on metformin influence on the frequency
of preeclampsia are presented in Table 1. Some analyses have also taken into account the
incidence of pregnancy-induced hypertension or gestational hypertension; these terms
were used interchangeably for gestational hypertension. In none of the following work
metformin impact on the incidence of hypertensive complications of pregnancy was the
primary outcome.

Table 1. Selected randomized placebo-controlled trials on metformin influence on PE and PIH incidence.

Studied Group Size of Groups Metformin Dose GA at Entry to
the Study PIH and PE Authors

GDM high risk
SG: metformin—24

CG:no
treatment—25

500–1000 mg 14th week

PE
SG: 0% (0)

CG: 8.7% (2)
p = 0.049

Brink et al., 2018
[140]

GDM
SG: metformin—43

CG:insulin
alone—57

500–2500 mg 20th–36th week

PIH
SG: 18.6% (8)
CG: 24% (18)

NS
PE

SG: 0% (0)
CG: 8% (6)

p = 0.05

Ainuddin et al.,
2014 [141]

GDM SG: metformin 110
CG insulin 107 500–2000 mg 22nd–34th week

PIH
SG: 1.8% (2)
CG: 3.7% (4)

p = 0.42, RR 0.5
95% CI 0.1–2.7

PE
SG: 4.6% (5)

CG: 9.4% (10)
p = 0.19, RR 0.5
95% CI 0.2–1.4

Tertti et al., 2013
[142]

GDM SG metformin: 86
CG insulin: 80 1000–2500 mg 20th–34th week

PIH
SG: 5% (4)

CG 13.8% (11)
p = 0.058, RR 0.4
95% CI 0.1–1.1

PE
SG: 6.3% (5)
CG: 8.8% (7)

p = 0.548, RR 0.7
95% CI 0.2–2.22

Niromanesh
et al., 2012 [143]
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Table 1. Cont.

Studied Group Size of Groups Metformin Dose GA at Entry to
the Study PIH and PE Authors

DMt.2
SG:

metformin—233
CG: insulin—240

2000 mg 6th–22th week

PIH
SG: 5% (13)
CG 6% (15)

p = 0.82, RR 0.92
95% CI 0.46–1.8.

PE
SG: 15% (37)
CG 12% (30)

p = 0.29, RR 1.27
95% CI 0.82–1.92

Chronic HT
ST: 8% (20)
CG: 9% (22)

p = 0.68, RR 0.89
95% CI 0.51–1.56

Feig et al., 2020
[144]

DMt.2

SG: metformin
alone—16

CG: insulin alone
100

500–2500 mg about 10th week

PIH
SG: 6.2% (1)
CG: 36% (36)

p = 0.020
PE

SG: 25% (4)
CG: 17% (17)

p = 0.084

Ainuddin et al.,
2015 [145]

Obesity
SG:

metformin—171
CG: placebo—186

1000 mg <20th week

PE
SG: 3.5% (6)
CG: 4.8% (9)

p = 0.01, RR 0.17
95% CI 0.10–1.41

Nascimento
et al., 2020 [146]

Obesity (35
kg/m2)

SG:
metformin—202

CG: placebo—198
1000–3000 mg 12th–18th week

PIH
SG: 6.4% (13)
CG: 6.7% (13)

p = 0.93, RR 0.96
95% CI 0.43–2.13

PE
SG: 3% (6)

CG: 11.3% (13)
p = 0.001, RR 0.24
95% CI 0.10–0.61

Syngelaki et al.,
2016 [147]

Obesity (BMI >
30 kg/m2)

SG:
metformin—221

CG: placebo—222
500–2500 mg 12th–16th week

PIH
SG: 10% (21)
CG 6% (14)

p = 0.22, RR 1.56
95% CI 0.77–3.15.

PE
SG: 3% (7)
CG 1% (3)

p = 0.21, RR 2.39
95% 0.61–9.36

Chiswick et al.,
2015 [122]

PCOS
SG:

metformin—238
CG: placebo—240

1000–2000 mg in the 1st trimester

PE
SG: 3% (8)

CG: 7% (17)
p = 0.10, RR 0.46
95% CI 0.17–1.15

Løvvik et al.,
2019 [148]

GDM—gestation diabetes mellitus. DMt2—diabetes mellitus t.2. BMI—body mass index. PCOS—polycystic ovary syndrome. SG—study
group. CG—control group. PIH—pregnancy-induced hypertension. PE—preeclampsia. HT—hypertension. p—statistical significance.
RR—relative risk. CI—confidence interval.
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The results of the above studies are inconclusive, and attention should be paid to the
significant differences in their protocols. They were carried out on obese pregnant women
(BMI > 30 or > 35 kg/m2) or in patients with GDM, DMt2, or polycystic ovary syndrome
(PCOS). The most common comparison was the effect of metformin on the pregnancy
course with the effect of insulin. Only studies in obese pregnant women or women with
PCOS compared the impact of metformin to placebo or no treatment [122,146–148]. The
dose of metformin used was also not uniform: treatment usually started with a dose of
500 mg, which was increased at different intervals to the maximum dose of 3000 mg [147],
although in most studies, the maximum dose was 2500 mg [122,143,145].

Metformin administration was started at different gestational ages, from the 6th
week up to the 36th week, and continued to childbirth; this may be a key issue when
it comes to preeclampsia prevention [141–143]. Aspirin, which is recommended for PE
prophylaxis, should be introduced up to a maximum of the 12–16th week (depending on
the recommendations), that is, before the end of the trophoblast invasion [6–8].

In obese pregnant women, a significant reduction in PE frequency was observed in
two studies [146,147] without such effect as in the research carried out by
Chiswick et al. [122]. There was no reduction in the incidence of PIH in obese preg-
nant women under the influence of metformin, although, in all studies, its administration
was started before the 20th week [122,146,147].

In women with GDM, metformin administration was not unequivocally effective in the
prevention of PE. Brink et al., offering metformin at the dose of 500–1000 mg from the 14th
week, reported a significant decrease in PE incidence compared to insulin treatment [140].
Ainuddin et al. also showed a significant reduction in PE frequency, but the results of these
studies should be treated with extreme caution as metformin administration was started
between 20 and 34 weeks [141]. The other authors have not demonstrated its beneficial
effect on the prevention of PE or PIH [143,144].

For pregnant women with DMt2, however, one study demonstrated the more impor-
tant role of metformin in preventing PIH compared to PE [145], while Feig et al. did not
observe similar effects [144]. Differences in the results of both studies may be the effect of
different gestational ages at which the metformin treatment was offered: approximately
10 weeks vs. 6–22 weeks [144,145].

In women with PCOS, metformin was not effective in preventing either PE or PIH,
although it was offered since the first trimester [148].

Table 2 presents the results of the meta-analyses that have been published in the last
10 years and provide information on metformin influence on the frequency of PE or PIH or
both. It should be noted that only in the meta-analysis of Nascimiento et al., preeclampsia
or gestational hypertensive complications were the primary outcomes [149].

Table 2. Selected meta-analyses on metformin influence on PE and PIH risk.

Studied Group Comparison Number of
Participants Metformin Impact on PIH/PE Authors

GDM metformin vs. insulin 1260

PIH
RR 0.56

95% CI 0.37–0.85
PE

RR 0.83
95% CI 0.60–1.14

PE
RR 0.74

95% CI 0.09–6.28

Kalafat et al., 2018 [150]

Obesity metformin vs.
placebo

840

GDM Metformin vs. insulin 2165
↓PIH

RR 0.56
95% CI 0.37–0.85

Butalia et al., 2017 [151]

GDM metformin vs. insulin 1556
↓HDPs
RR 0.82

95% CI 0.67–1.0
Feng et al., 2017 [152]
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Table 2. Cont.

Studied Group Comparison Number of
Participants Metformin Impact on PIH/PE Authors

GDM metformin vs. insulin 1110

↓PIH
RR 0.53

95% CI 0.31–0.90
PE

RR 0.81
95% CI 0.55–1.17,

Li et al., 2015 [153]

1634

GDM metformin vs. insulin
1110

↓PIH
RR 0.55

95% CI 0.31–0.91
PE

RR 0.84
95% CI 0.57–1.23

Poolsup et al., 2014
[154]

1299

GDM metformin vs. insulin 1712
PE

RR = 0.82
95% CI 0.56–1.2

Zhu et al., 2014 [155]

GDM metformin vs. insulin 1110
↓PIH

RR 0.52
95%CI 0.30–0.90

Gui et al., 2013 [156]

Obesity
metformin vs.
no-treatment

840

614

308

PIH (obesity)
RR 1.24

95% CI 0.76–2.02
↓PE (obesity)

RR 0.51
95% CI 0.26–0.98
↓PIH (PCOS)

RR 0.37
95% CI 0.25–0.57

PE (PCOS)
RR 1.96

95% CI 0.81–4.77
↓PIH (GDM)

RR 0.53
95% CI 0.31–0.90

PE (GDM)
RR 0.70

95% CI 0.45–1.10

Nascimento et al., 2018
[149]

PCOS

GDM metformin vs. insulin

1120

1120

Obesity
metformin vs.

no-treatment or
placebo

1034

PIH
RR 1.02

95% CI 0.54–1.94
PE

RR 0.74
95% CI 0.09–6.28

Dodd et al., 2018 [157]

PCOS
metformin vs.

no-treatment or
placebo

929
PE

RR 0.92
95% CI 0.28–3.00

Feng et al., 2015 [158]

PCOS
metformin vs.

no-treatment or
placebo

878
↓PE

RR 0.53
95% CI 0.30–0.95

Zheng et al., 2013 [159]

GDM—gestation diabetes mellitus. PCOS—polycystic ovary syndrome. PIH—pregnancy-induced hypertension. PE—preeclampsia.
HT—hypertension. RR—relative risk. CI—confidence interval.
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Additionally, the results of the presented meta-analyses do not allow us to draw clear
conclusions on the effectiveness of metformin in the prevention of hypertensive complica-
tions of pregnancy. As in the case of randomized studies and the meta-analyses presented
above, the significant differences between the groups assessed should be highlighted. The
studied groups were heterogeneous: some analyses included both pregnant women with
obesity and women with GDM or PCOS [149] or obesity and GDM [150]; others evaluated
groups only with obesity [159] or GDM [151–156] or PCOS [158,159]. The presented meta-
analyses did not assess studies on metformin influence on pregnancies complicated by
diabetes mellitus t.2.

The most common comparison was metformin effect on the pregnancy course and
outcomes with the effect of insulin (GDM patients) [151–156]. Only meta-analyses on obese
pregnant women or patients with PCOS have compared the effects of metformin with
placebo or no treatment [157–159].

The results in the obesity group have been inconclusive. Dodd et al. did not recorde
the efficacy of metformin in reducing PIH [157], while Nascimiento et al. showed rarer
PE occurrence [150]. In the group of women with GDM, there was a significant effect of
metformin on the reduction of the risk of PIH compared to insulin [149,151,153,154,156],
while no such effect was noted on the reduction of PE risk [149,153,155].

The conclusions on the effectiveness of metformin compared to placebo or no treat-
ment in women with PCOS on the incidence of HDPs were even more ambiguous. Feng
et al. did not observe the effect of its use on PE frequency [158], Nascimiento et al. re-
vealed a significant reduction in PIH frequency but not PE [149], while the results of the
meta-analysis of Zheng et al. indicated a lower risk of developing PE when metformin was
administered [159].

In addition, the research of Stridsklev et al., conducted in the group of women with
PCOS, showed that metformin compared to placebo did not change the PI value and, thus,
did not affect blood flow through uterine arteries at 19± 1 weeks of pregnancy. The PI value
correlated positively with PE and hypertension in pregnancy and gestational diabetes [160].
However, some authors have questioned the usefulness of the PI assessment in predicting
preeclampsia. The PREDO study, evaluating the efficacy of aspirin or placebo in women
with abnormal PI in the prevention of PE, did not show a significant difference [161].

Based on the above data, it can be concluded that the most promising results of
metformin use in the context of hypertension prophylaxis in pregnancy were demonstrated
in the group of women with GDM. Since GDM, in the vast majority of cases, is diagnosed
after 20 weeks, that is, after trophoblast implantation is complete, consideration should be
given to the more significant impact of metformin on the other elements responsible for
the development of hypertensive disorders of pregnancy.

The results of a study by Martis et al., who compared the effect of insulin on the course
and outcomes of pregnancy in women with GDM with oral hypoglycemic drugs, including
metformin, seem to be intriguing. They revealed that neither insulin nor oral medicines
affected the risk of PE development, but insulin significantly increased the incidence of
hypertensive disease of pregnancy [162].

5. Conclusions

At the moment, only one agent—aspirin—is recommended for the prevention and
development of preeclampsia. Studies are ongoing on the efficacy of other active medical
substances and drugs that, due to their mechanism of action and properties, could be
offered for the prevention and/or treatment of HDPs. One such drug is metformin, which
has much wider than just hypoglycemic properties, long used to treat diabetes. Based on the
results of studies explaining its mechanism of action and the reasons and pathophysiology
of the development of preeclampsia, it might be postulated that an anti-inflammatory
effect of metformin and its beneficial influence on the endothelium constitutes its potential
use in the prevention and/or treatment of PE and PIH. In addition, it is a safe drug, long
used for the treatment of gestational diabetes. Unfortunately, the results of randomized
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controlled trials and meta-analyses are ambiguous; they assessed the effect of metformin
on the incidence of PE and PIH while treating metabolic diseases (GDM, PCOS, DMt.2,
or obesity) that are recognized risk factors for HDP development. It is possible that these
pregnant women are the group that would benefit the most from the prophylactic use
of metformin.

In the light of available data, however, it seems that, at present, more questions on
such metformin applications arise. The most important are as follows: (1) whether more
detailed algorithms of PE prediction (angiogenic and antiangiogenic factors, PI value in
uterine arteries) before metformin is included should be considered; (2) when and what
dose of metformin should be applied; (3) what influence of the concomitant metformin and
aspirin administration would have on the incidence of preeclampsia; (4) whether pregnant
women with other chronic conditions such as chronic hypertension and autoimmunological
diseases will benefit from the prophylactic use of metformin.

These questions may set new directions for research on the use of an old drug with
new properties in the prevention of hypertensive complications of pregnancy.
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