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Abstract: MicroRNAs are endogenous non-coding RNAs that are involved in numerous biological
processes through regulation of gene expression. The aim of our study was to determine the ability
of several miRNAs to predict mortality and response to antiplatelet treatment among T2DM patients.
Two hundred fifty-two patients with diabetes were enrolled in the study. Among the patients
included, 26 (10.3%) patients died within a median observation time of 5.9 years. The patients
were receiving either acetylsalicylic acid (ASA) 75 mg (65%), ASA 150 mg (15%) or clopidogrel
(19%). Plasma miR-126, miR-223, miR-125a-3p and Let-7e expressions were assessed by quantitative
real time PCR and compared between the patients who survived and those who died. Adjusted
Cox-regression analysis was used for prediction of mortality. Differential miRNA expression due
to different antiplatelet treatment was analyzed. After including all miRNAs into one multivariate
Cox regression model, only miR-126 was predictive of future occurrence of long-term all-cause death
(HR = 5.82, 95% CI: 1.3–24.9; p = 0.024). Furthermore, miR-126, Let-7e and miR-223 expressions in the
clopidogrel group were significantly higher than in the ASA group (p = 0.014; p = 0.013; p = 0.028,
respectively). To conclude, miR-126 expression is a strong and independent predictor of long-term
all-cause mortality among patients with T2DM. Moreover, miR-223, miR-126 and Let-7e present
significant interactions with antiplatelet treatment regimens and clinical outcomes.

Keywords: microRNA; cardiovascular disease; diabetes; mortality; antiplatelet therapy; platelet
reactivity; Let-7e; miR-126; miR-223; miR-125a-3p

1. Introduction

Type 2 diabetes mellitus (T2DM) constitutes the most prevalent chronic metabolic
disorder, and its prevalence is progressively increasing. Notably, mortality rates in T2DM
patients are known to be up to four-times as high in contrast to subjects without T2DM and
predominantly associated with an increased hazard of cardiovascular disease (CVD) [1].

In the context of T2DM, platelets emerge as triggers of vascular injury induced by
metabolic disturbances. The hypercoagulable state, which is often observed in T2DM, stems
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from disrupted platelet activation, aggregation, alterations in the coagulation processes, as
well as endothelial dysfunction due to dysregulation of several signaling pathways [2]. In
line with our previous reports, several genetic polymorphisms may contribute to differ-
ential platelet reactivity and outcomes in T2DM patients on antiplatelet treatment [3–5].
As we observe, platelets play a central role in the intertwined pathology linking T2DM,
progression of atherosclerosis and occurrence of cardiovascular (CV) complications [6–9].
Since platelets are involved in atherogenesis and its complications, the blockade of one or
numerous pathways regulating platelet activation and aggregation processes is essential in
diminishing atherothrombotic risk in T2DM subjects.

While various mechanisms mediating CVD in diabetes have been determined, the
need for identification of biomarkers is as important as ever. Over the last few years,
platelets have been found to be a major source of miRNAs, which are highly conserved
endogenous, non-coding RNAs that regulate gene expression at a post-transcriptional
level through targeting messenger RNAs (mRNAs) [10,11]. Although miRNAs are found
mostly intracellularly, a substantial amount is present in the extracellular space, such as
the blood [12]. The extracellular miRNAs, which function as chemical messengers and
mediators of cell-cell communication, offer exciting opportunities to become biomark-
ers [13]. Studies showed that platelets release specific miRNAs that can be predictive
factors of morbidity and mortality across various diseases, such as coronary artery disease
(CAD) and heart failure (HF) and provide information on platelet function itself [14,15].
Recently, miRNAs have been suggested as a potential tool to predict and monitor disease
progression and therapeutic effectiveness. Several studies showed that miRNA expression
can be regulated by antiplatelet treatment often utilized in higher risk populations [16–19].
Hence, miRNA signature profiles could be used to help modify antiplatelet treatment for
the best prognostic outcomes in this cohort.

We aimed to determine the prognostic performance of selected circulating miRNAs
for all-cause mortality and their potential usefulness as biomarkers in T2DM patients on
antiplatelet treatment. Several studies showed the role of miR-126 and miR-223 in the
context of antiplatelet treatment in many different cohorts [16,19–23]. Changes in plasma
miRNAs in response to antiplatelet therapy were investigated in a small cohort of healthy
volunteers [16,19–23]. Yu et al. analyzed the correlation between plasma miR-126 and
miR-223, among others, and the risk of major adverse cardiovascular events in patients
on dual antiplatelet therapy (DAPT) after percutaneous coronary intervention [16,19–23].
The association between miRNAs and platelet reactivity was also studied in patients with
acute coronary syndrome (ACS) on various antiplatelet therapies [16,19–23]. In a similar
study Carino et al. assessed miR-126 and miR-223, among other miRNAs, in patients
with ACS before and after the therapeutic switch from DAPT to ticagrelor [16,19–23].
More recently the association of platelet-related miRNAs was studied in ACS patients on
DAPT and pathophysiological processes in the TDM population [16,19–23]. Among others,
Let-7e and miR-125a-3p are molecules that have been formerly linked to inflammation,
platelet reactivity, and mechanisms leading to diabetes; however, the impact of antiplatelet
therapy on Let-7e and miR-125a-3p and their prognostic potential has not been studied so
far [24–26]. Therefore, our aim was to analyze the impact of antiplatelet treatment on
Let-7e and miR-125a-3p expressions and confirm the previous observations for miR-126
and miR-223 expressions, as well as investigate their usefulness as predictive biomarkers
specifically in the T2DM cohort.

2. Materials and Methods
2.1. Study Design

The ethics committee of the Medical University of Warsaw approved both the study
protocol and the informed consent form. The study was conducted in accordance with the
current version of the Declaration of Helsinki at the time when the study was designed,
and informed written consent was obtained. Consecutive patients with T2DM presented at
the outpatient clinic of the Central Teaching Hospital of the Medical University of Warsaw
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and recruited into the multi-center, prospective, randomized and open-label AVOCADO
(Aspirin vs./Or Clopidogrel in Aspirin resistant Diabetes inflammation Outcomes) study
were included in the present analysis. The full characterization of the study population,
including the inclusion and exclusion criteria, was published previously [5]. Shortly, the AV-
OCADO study included patients aged between 30 and 80 years, with T2DM, irrespective of
the type of antidiabetic treatment (with the exception of patients treated only with diet), bur-
dened with at least two additional cardiovascular (CV) risk factors and receiving 75 mg of
acetylsalicylic acid (ASA) daily. All inclusion criteria for the study included: age from 30 to
80 years of age, type 2 diabetes diagnosed at least 6 months before recruitment to the study
requiring treatment with oral hypoglycemic drugs and/or insulin, history of cardiovascular
events (i.e., myocardial infarction or ischemic stroke) or high risk of cardiovascular events
defined as presence of at least 2 of the cardiovascular risk factors listed below: overweight
or obesity diagnosed on the basis of the BMI (Body Mass Index) ≥ 25 kg/m2 (overweight),
≥ 30 kg/m2 (obesity), history of hypertension (SBP > 130 mmHg, DBP > 80 mmHg or
pharmacological treatment), history of dyslipidemia (total cholesterol > 175 mg/dL, HDL-
cholesterol: men < 40 mg/dL, women < 50 mg/dL, LDL-cholesterol > 100 mg/dL, or
> 70 mg/dL (with concomitant disease ischemic heart disease), triglycerides > 150 mg/dL
or pharmacological treatment); documented coronary artery disease (diagnosis previously
made on the basis of objective clinical studies), documented cerebral vascular disease
(diagnosis previously based on objective clinical studies), documented peripheral vas-
cular disease (diagnosis previously made on the basis of objective clinical studies or a
clinical event requiring hospitalization), positive family history of cardiovascular diseases
and sudden cardiac death at an early age (female relatives of the 1st degree <55 years
of age) 1st degree male relatives <65 years of age), history of smoking [5]. The exclusion
criteria included: bleeding diathesis; history of gastrointestinal bleeding; platelet count
< 150,000 per mm3; hemoglobin concentration < 10 g/dL; hematocrit < 30%; end-stage
chronic renal disease requiring dialysis; anticoagulants (i.e., low-molecular—weight hep-
arin, warfarin or acenocoumarol) or an alternative antiplatelet therapy other than ASA (i.e.,
ticlopidine, clopidogrel, prasugrel or dipyridamole); self-reported use of non-prescription
non-steroidal anti-inflammatory drugs or drugs containing ASA within 10 days of enroll-
ment; a recent history (within 12 months) of MI, unstable angina, coronary angioplasty
or coronary artery bypass grafting; and a major surgical procedure within the previous
8 weeks [5]. The aim of the AVOCADO trial was to assess the effect of an eight-week course
of clopidogrel or an increased ASA dose (150 mg) in patients with T2DM and high platelet
reactivity on lower ASA dose (75 mg) as previously described [5]. Patients who did not
exhibit high platelet reactivity on ASA 75 mg daily continued therapy, and patients with
high platelet reactivity were randomized to ASA 150 mg or clopidogrel 75 mg in 1:2 ratio.
Briefly, 197 patients were taking 75 mg ASA, 41 patients were taking 150 mg ASA, and
58 patients were taking clopidogrel. For the current analysis, we used only available blood
samples taken 8 weeks after randomization according to the initial study design. Briefly,
blood samples were taken in the morning 2–3 h after ingestion of antiplatelet drugs, as
previously described in more detail [3,5,27–29]. Blood was kept at room temperature for
30 min before centrifugation at 1500 g for 15 min at 18–25 ◦C. Plasma was pipetted into
500 µL aliquots on ice and transferred to a −80 ◦C freezer for storage. For the purpose of
this study, existing samples from patients already randomized to antiplatelet therapy based
on study protocol were used, i.e., up to 6 weeks on therapy based on platelet reactivity
measured at baseline, as previously described [5,28].

2.2. Study Endpoints

The primary endpoint was defined as all-cause death during the follow-up. The
secondary endpoint was a composite of death, myocardial infarction (MI), unstable angina,
and stroke or transient ischemic attack (TIA) at follow-up [30]. The composite endpoint
was defined in accordance with the current universal criteria [31,32].
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2.3. RNA Preparation and Detection and Quantification of miRNAs by Quantitative PCR

Plasma RNA was extracted by miVANA PARIS Kit. Total RNA was obtained as
outlined above and diluted 1:10. Diluted RNA (5 µL) was reverse transcribed using
the TaqMan miRNA Reverse Transcription kit (ABI) according to the instructions of the
manufacturer. Subsequently, 3 µL of the product was used for detecting miRNA expression
by quantitative polymerase chain reaction using TaqMan miRNA Assay kits (ABI) for the
corresponding miRs on a The CFX384 Touch Real-Time PCR Detection System (BioRad
Inc., Hercules, CA, USA). cel-miR-39 was added as a spike-in control. Reactions were run
in triplicate, and the mean value was used for all analyses, to control variability associated
with methodological reasons [33,34].

2.4. Statistical Analysis

Risk factors, clinical data and categorical variables are presented as percentages of
patients and were compared using χ2 or Fisher’s exact tests, as appropriate. Continuous
data are expressed as median and interquartile range and compared using Mann–Whitney
U test for two independent samples. The distribution of data was checked with the
Kolmogorov–Smirnov test. The Kaplan–Meier method was utilized for construction of
survival curves. The log-rank test was applied to evaluate differences between groups.
Proportional Cox-regression analysis was used to adjust for confounding factors. The
following variables (age, gender, history of previous stroke, history of smoking, eGFR < 30)
were entered into the Cox model on the basis of known clinical relevance or significant
association observed at univariate analysis. We performed Cox regression analyses for
each single miRNA and the clinical variables and also a final model in which all four
miRNA were included in addition to the clinical variables. Effect estimates were presented
as adj. hazard ratios (HR) and 95% CI. All tests were two-sided, and p-value < 0.05 was
considered statistically significant. Calculations were performed using SPSS version 22.0
(IBM Corporation, Chicago, IL, USA). Based on 19% long-term mortality in the high-level
miR-126 group as compared to 4% in the low-level miR-126 group, we calculated that with
at least 125 patients per miR-126 group (1:1 sampling ratio, overall n = 250), our analysis
had 96% power to detect differences in the risk of mortality between the miR-126 groups
with a two-sided alpha value of <0.05.

3. Results
3.1. Patient Demographics

Patient demographics, T2DM data, concomitant diseases, medication and laboratory
results are summarized in Table 1 and Supplemental Table S1. Out of 303 patients included,
blood samples for analyses presented in this study were unavailable for 51 individuals.
In fact, 48 patients did not present within the given time window for blood sampling,
and in 3 remaining patients, the available blood volume was insufficient for miRNAs mea-
surements. Among the 252 patients included, 26 (10.3%) patients died within a median
observation time of 71 months (5.9 years). CV risk factors, such as hypertension (92%),
dyslipidemia (85%) history of smoking (57%) and CAD (55%) were common in the ma-
jority of patients. Patient characteristics according to selected miRNAs are included in
Supplemental Table S1.
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Table 1. Demographic and clinical characteristics of the study patients.

Patient Demographics Overall
252 (100%) Patients Who Died * (N = 26) Patients Who Survived *

(N = 226) p

Age (years) mean ± SD 67.1 ± 8.5 70.52 ± 1.80 66.61 ± 0.60 0.019

Sex (female) n (%) 117 (46%) 111 (49%) 6 (23%) 0.012

Body mass index (BMI) 31.5 ± 12.7 30.21 ± 0.80 31.81 ± 0.99 0.587

Hypertension 228 (92%) 24 (92%) 204 (92%) 1

Dyslipidemia 213 (85%) 20 (77%) 193 (86%) 0.209

HF 91 (37%) 12 (46%) 79 (35%) 0.282

Current smoking 25 (10%) 2 (8%) 23 (11%) 0.745

CAD 136 (55%) 16 (62%) 120 (54%) 0.468

Prior MI 75 (30%) 12 (46%) 63 (28%) 0.058

History of smoking 143 (57%) 20 (77%) 123 (55%) 0.032

Prior ischemic stroke 22 (9%) 5 (19%) 17 (8%) 0.048

Prior TIA 7 (3%) 1 (4%) 6 (3%) 0.708

Laboratory data (mean ± SD)

White blood cell count (x109/L) 6.9 ± 1.9 6.46 ± 0.40 6.95 ± 0.13 0.222

Platelets (x109/L) 222.6 ± 61.9 204.08 ± 9.62 225.42 ± 4.47 0.113

Hemoglobin (g/dL) 13.7 ± 1.46 13.72 ± 2.67 13.76 ± 0.99 0.969

High-sensitivity C-reactive Protein (mg/dL) 2 [0.3–25.8] 1.9 [1.05–4.0] 2.05 [1.05–4.1] 0.726

Fibrinogen (mg/dL) 402.6 ± 104 407 ± 19.78 404 ± 7.72 0.994

Creatinine (mg/dL) 1 ± 0.31 1.16 ± 0.06 0.97 ± 0.02 0.001

HbA1c 6.5 [6.0–7.4] 6.4 [5.9–7.1] 6.9 [6.3–7.8] 0.060

Tch 158.6 ± 36.5 153.63 ± 6.15 159.34 ± 2.69 0.628

TG 132.4 ± 61.5 123.46 ± 7.13 125.87 ± 3.12 0.990

HDL 50 ± 30.3 47.50 ± 9.31 51.45 ± 2.44 0.634

LDL 83.8 ± 28.3 81.42 ± 5.35 85.36 ± 2.23 0.670

Failure to achieve lipid control

LDL, %; n ** 108 (49%) 13 (54%) 95 (48%) 0.567

HDL, %; n ** 100 (44%) 9 (39%) 91 (45%) 0.413

Triglycerides, %; n ** 68 (30%) 8 (32%) 60 (29%) 0.778

Concomitant medications n (%)

ß-blockers 178 (72%) 22 (88%) 156 (70%) 0.054

ACE inhibitors 165 (66%) 14 (56%) 151 (67%) 0.252

Statins 179 (72%) 19 (76%) 160 (71%) 0.630

Calcium channel-blockers 94 (38%) 8 (32%) 86 (38%) 0.532

Proton pump Inhibitors 49 (24%) 8 (31%) 41 (23%) 0.407

Randomization group in the AVOCADO study, %; n

ASA (75 mg) *** 167 (66%) 11 (42%) 156 (69%) 0.006

ASA (150 mg) *** 32 (13%) 6 (23%) 26 (12%) 0.093

Clopidogrel *** 53 (21%) 9 (35%) 44 (20%) 0.073

ASA total (75 mg + 150 mg) *** 199 (79%) 17 (65%) 182 (81%) 0.073

miRNAs

miR-126 0.84 [0.16–8.54] 7.23 [1.93–47.3] 0.46 [0.13–6.39] 0.000032

Let-7e 0.64 [0.09–4.10] 3.78 [0.85–25.70] 0.51 [0.08–3.39] 0.000216

miR-223 8.91 [2.09–69.81] 19.98 [6.27–94.85] 8.11 [1.76–67.88] 0.089

miR-125a-3p 0.009 [0.001–0.05] 0.054 [0.006–1.05] 0.0082 [0.001–0.041] 0.0006

* Median follow-up: 5.9 years. ** Failure to achieve lipid control defined as. LDL > 70 mg/dL in patients with a history of coronary artery
disease, myocardial infarction, previous stroke or TIA, current smoking or with eGFR < 30 mL/min/1.73 m2, and LDL > 100 mg/dL in
remaining patients, HDL < 40 mg/dL in men, and < 50 mg/dL in women, triglycerides > 150 mg/dL. *** Study medication (treatment
duration: 8 weeks). Data are reported as mean ± standard deviation (SD) and median [interquartile range]. Abbreviations: ACE,
angiotensin converting enzyme; ACS, acute coronary syndrome; ASA, acetylsalicylic acid; BMI, body mass index; CAD, coronary artery
disease; HDL, high-density lipoprotein; HF, heart failure; LDL, low-density lipoprotein; MI, myocardial infarction; TG, triglycerides.



J. Clin. Med. 2021, 10, 2371 6 of 16

3.2. Circulating miRNA Levels Predict Long-Term All-Cause Death

Patients who died had a 7.5-, 3- and 14-fold higher expression of miR-126, Let-7e
and miR-125a-3p as compared with patients who survived, respectively (p < 0.001 for
all miRNAs; Figure 1a,b,d). The difference in the expression for miR-223 did not differ
statistically between those who died or survived (p = 0.089; Figure 1c). Since RNA was
extracted from blood plasma for the purpose of this investigation, we refer to the expression
of miRNA from extracellular space across this manuscript.
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3.3. Predictive Value of miR-126, Let-7e, miR-223 and miR-125a-3p of Long-Term
All-Cause Mortality

The study population was divided into two subgroups by using ROC curve analysis
for each miRNA, i.e., low- or high value of single miRNAs (see Table 2 and Figure 2). The
cut-off value of ≥2.08, labelled as high miR-126 level (40.5% of the population), the cut-off
value of ≥0.82, labelled as high Let-7e level (47.6% of the population), the cut-off value
of ≥6.62, labelled as high miR-223 level (54% of the population) and the cut-off value
of ≥0.0017, labelled as high miR-125a-3p level (40.9% of the population) provided the
prediction of all-cause mortality.
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Table 2. Statistical estimates for prediction of all-cause mortality by miR-126, Let-7, miR-223 and miR-125a-3p.

miRNA c-Index-AUC
(95% CI) p Cut-Off Sensitivity, % Specificity, % Positive Predictive

Value, %

Negative
Predictive Value,

%

Positive
Likelihood

Ratio

miR-126 0.75
(0.66–0.84) <0.001 2.078 77% 63% 19% 96% 2.07

Let-7e 0.76
(0.63–0.82) <0.001 0.8201 81% 66% 18% 96% 1.84

miR-223 0.60
(0.50–0.70) 0.094 6.617 77% 49% 15% 95% 1.49

miR-125a-3p 0.71
(0.60–0.82) 0.001 0.0017 65% 61% 17% 94% 1.78

Abbreviations: AUC—area under the curve; 95% CI—95% confidence interval.

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 7 of 16 
 

 

3.3. Predictive Value of miR-126, Let-7e, miR-223 and miR-125a-3p of Long-Term All-Cause 
Mortality 

The study population was divided into two subgroups by using ROC curve analysis 
for each miRNA, i.e., low- or high value of single miRNAs (see Table 2 and Figure 2). The 
cut-off value of ≥2.08, labelled as high miR-126 level (40.5% of the population), the cut-off 
value of ≥0.82, labelled as high Let-7e level (47.6% of the population), the cut-off value of 
≥6.62, labelled as high miR-223 level (54% of the population) and the cut-off value of 
≥0.0017, labelled as high miR-125a-3p level (40.9% of the population) provided the predic-
tion of all-cause mortality. 

Table 2. Statistical estimates for prediction of all-cause mortality by miR-126, Let-7, miR-223 and miR-125a-3p. 

miRNA c-Index-AUC 
(95% CI) p Cut-Off Sensitivity, 

% 
Specificity, 

% 

Positive  
Predictive 
Value, % 

Negative 
Predictive 
Value, % 

Positive 
Likelihood 

Ratio 
miR-126 0.75 (0.66–0.84) <0.001 2.078 77% 63% 19% 96% 2.07 
Let-7e 0.76 (0.63–0.82) <0.001 0.8201 81% 66% 18% 96% 1.84 

miR-223 0.60 (0.50–0.70) 0.094 6.617 77% 49% 15% 95% 1.49 
miR-125a-3p 0.71 (0.60–0.82) 0.001 0.0017 65% 61% 17% 94% 1.78 

Abbreviations: AUC—area under the curve; 95% CI—95% confidence interval. 

 
Figure 2. Receiver operating characteristic (ROC) curves of miR-126, Let-7e, miR-223, miR-125a-3p 
for prediction of all-cause death. Abbreviations: AUC, area under the curve; CI, 95% confidence 
interval. 

3.4. Expression of miRNAs According to the Allocation to the Antiplatelet Treatment Strategy 
The expression of miR-126, Let-7e and miR-223 was significantly higher in the 

clopidogrel group as compared to the ASA 75 mg group (p = 0.015; p = 0.014; p = 0.024, 
respectively). This difference was not seen when comparing clopidogrel and ASA 150 mg 
groups for miR-125a-3p (Figure 3a–c; Supplemental Table S2). However, when comparing 
miRNAs expression between clopidogrel and the whole ASA groups (i.e., 75 mg +150 mg), 

Figure 2. Receiver operating characteristic (ROC) curves of miR-126, Let-7e, miR-223, miR-125a-3p for
prediction of all-cause death. Abbreviations: AUC, area under the curve; CI, 95% confidence interval.

3.4. Expression of miRNAs According to the Allocation to the Antiplatelet Treatment Strategy

The expression of miR-126, Let-7e and miR-223 was significantly higher in the clopido-
grel group as compared to the ASA 75 mg group (p = 0.015; p = 0.014; p = 0.024, respectively).
This difference was not seen when comparing clopidogrel and ASA 150 mg groups for
miR-125a-3p (Figure 3a–c; Supplemental Table S2). However, when comparing miRNAs
expression between clopidogrel and the whole ASA groups (i.e., 75 mg +150 mg), miR-126,
Let-7e and miR-223 expressions remained significantly higher in the clopidogrel subgroup
(p = 0.014; p = 0.013; p = 0.028, respectively) (Figure 4).
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3.5. Survival Analysis According to miRNAs Expression

The primary endpoint occurred in 26 (10.3%) out of 252 patients, for whom miR-126,
Let-7e, miR-223 and miR-125a-3p levels were available. Six of the patients who died
(4%) had low miR-126 values, and 20 patients (19%) had high miR-126 values, whereas
for Let-7e, 5 patients (4%) had low Let-7e values, and 21 patients (17.5%) had high Let-
7e values. Moreover, six of these patients who died (5%) had low miR-223 values, and
20 patients (14.5%) had high miR-223 values, whereas for miR-125a-3p, 9 patients (6%) had
low miR-125a-3p values, and 17 patients (17%) had high miR-125a-3p values.
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The primary endpoint in long-term follow-up was significantly more common in
patients with high miRNA levels vs. low miRNA levels, for all analyzed miRNAs, i.e., miR-
126, Let-7e, miR-223 and miR-125a-3p (p < 0.001; p < 0.001; p = 0.016; p = 0.005, respectively).

Adjusted time to event analyses have shown that heightened expression of miR-
NAs was associated with survival, when the models included one single miRNA and
other covariates: miR-126 (HR = 7.31, 95% CI: 2.63–20.28; p < 0.001), Let-7e: (HR = 5.85,
95% CI: 2.08–16.46; p = 0.001), miR-223: (HR = 3.07, 95% CI: 1.17–8.07; p = 0.023), miR-125a-
3p (HR = 2.93, 95% CI: 1.27–6.83; p = 0.013) (Figure 5; Table 3 and Supplemental Table S3).
After inclusion of all 4 miRNAs into one multivariate Cox regression model, increased
expression of miR-126 was associated with a 5.8-fold higher risk for long-term all-cause
mortality (HR = 5.8, 95% CI: 1.2–24.9; p = 0.024), whereas the other miRNAs did not reach
the statistical significance. Additionally, age (HR = 1.1, 95% CI: 1.01–1.12; p = 0.009) and
male gender (HR = 4.06; 95% CI: 1.24–13.34; p = 0.027) were found independently associated
with long-term all-cause mortality (Table 4).
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Table 3. Univariate and multivariate Cox regression model for prediction of long-term all-cause of
mortality for miR-126, Let-7e, miR-223 and miR-125a-3p.

Variable HR
95% CI

p-Value
Lower Upper

High miR-126
Univariate 4.377 1.749 10.956 0.002

Multivariate * 7.310 2.634 20.284 <0.001
High Let-7e

Univariate 4.208 1.580 11.206 0.004
Multivariate * 5.845 2.076 16.460 0.001

High miR-223
Univariate 2.389 0.952 5.977 0.063

Multivariate * 3.073 1.170 8.071 0.023
High miR-125a-3p

Univariate 2.692 1.198 6.052 0.017

Multivariate * 2.929 1.256 6.828 0.013

* After adjustment for age, gender (male), history of smoking, prior ischemic stroke and eGFR < 30 (mL/min/1.73 m2).

Table 4. Multivariate Cox regression model including high levels of miRNAs and clinical data.

Variable HR
95% CI

p-Value
Lower Upper

High miR-126 5.821 1.259 24.927 0.024

High Let-7e 3.449 0.578 21.176 0.173

High miR-223 0.367 0.080 1.679 0.196

High miR-125a-3p 1.115 0.408 3.050 0.832

Age 1.068 1.016 1.122 0.009

Gender (male) 4.059 1.235 13.344 0.027

History of smoking 1.656 0.519 5.289 0.395

Prior IS 4.041 1.242 12.646 0.016

eGFR<30 5.879 0.841 41.100 0.074
Abbreviations: HR, hazard ratio; MI, myocardial infarction, 95%CI, 95% confidence interval.

4. Discussion

The present study determined the association of miR-126 with long-term all-cause
mortality and antiplatelet treatment in patients with T2DM. It demonstrates two major
findings. Namely, we revealed that high expression of plasma miR-126 may independently
predict the risk of long-term all-cause mortality in the T2DM population. We also found
that patients on clopidogrel treatment had higher miR-126, Let-7e and miR-223 expression
compared to patients treated with ASA. It can be concluded with some caution that
clopidogrel may be less beneficial than ASA 150 mg in T2DM with increased platelet
reactivity; however, further studies on larger cohorts should be designed to elucidate
the underlying mechanisms of this phenomenon. In a recent report by Angiolillo et al.,
DM was deemed to be one of the risk factors for high platelet reactivity, clopidogrel
non-responsiveness and subsequent increased risk for adverse ischemic events [35].

MiR-126 belongs to the most abundantly expressed miRNAs in endothelial cells
and is responsible for vascular development, integrity and response to hemodynamic
stress [36]. miRNAs (miR-1, miR-133a and miR-19a) were included into one regression
model; miR-126 and miR-223 were not predictive of death [37]. Moreover, Schulte et al.
did not find a significant predictive value of miR-126 in CV mortality in CAD patients.
Nevertheless, they reported that high miR-223 was predictive of future CV mortality, with
2.1% of the investigated cohort experiencing CV death over a median follow-up time
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of 4 years [38]. In our analysis, we showed that patients with high miR-126 expression
had a 5.8-fold increased risk to experience death from any reason in long term follow-
up. The exact mechanism of miR-126 is yet to be fully elucidated; however, its role in
diabetes and vascular inflammation was reported. Even though miR-126 has been linked
to angiogenesis and to the development of CVD, its role in platelet activation was also
demonstrated [36,39,40]. Inconsistent findings have been reported on the predictive po-
tential of miR-126 in high-risk populations, including patients with diabetes. Previous
studies showed a correlation between low miR-126 and miR-223 expressions and increased
all-cause and CV mortality, principally in patients with overt HF, as well as in individuals
with diabetes. Witkowski et al. demonstrated that vascular tissue factor (TF), which is
prompted by hyperglycemia and triggers pro-thrombotic conditions in diabetes, is con-
trolled on the post-transcriptional level by miR-126, among others [41,42]. As reported by
the team, coexpression of miR-126 with miR-19a results in control of vascular inflammation
and amplifies the post-transcriptional regulation of vascular TF by exhibiting a cooperative
suppression of the TF transcript in a luciferase reporter assay. However, it is worth noticing
that the study was performed in a relatively small cohort of 44 patients with diabetes who
received different hypoglycemic agents, and hence, the results could be biased [41].

The let-7 family are amongst the most highly expressed miRNAs in platelets and are
actively secreted in microvesicles [43]. Moreover, Let-7e has a potential role in platelet
reactivity, platelet regulatory pathways and apoptosis and is linked to inflammatory re-
sponse in vascular endothelial cells [44,45]. To date, the influence of Let-7e on antiplatelet
treatment has not been studied. In the present analysis, we demonstrated for the first time
that Let-7e expression can be altered by different antiplatelet treatment regimens. Let-7e
expression was found to be lower in patients taking ASA compared to clopidogrel group.
This difference can be due to the anti-inflammatory effect of ASA. Importantly, Let-7e
has a significant predictive power and correlates significantly with platelet function itself.
A further possible explanation is the fact that antiplatelet treatment itself may exert an
impact on circulating levels of miR-223 and miR-126, thus attenuating their prognostic
value [46]. Previous studies reported modulation of circulating miRNAs in response to
different antiplatelet treatments and in relation to platelet function. Nevertheless, varying—
sometimes contrasting—results have been reported in multiple studies [16,21,23,47]. In our
study, despite different doses of ASA, no significant impact was observed on circulating
levels of miR-126, miR-223, miR-125a-3p and Let-7, whereas a significant difference in
the expression of miR-126, miR-223 and Let-7 was observed in patients treated with the
purinergic receptor (P2Y12) antagonist clopidogrel. The scarce data should be supported by
further studies on larger cohorts in order to explain the influence of antiplatelet treatment
on miRNAs expression.

In line with our results, miR-223 expression was shown to be differentially expressed
in patients on antiplatelet treatment owing to the presence of binding site for miR-223 in
natural 3′UTR in P2Y12 mRNA. This finding supports the hypothesis that P2Y12 expression
could be modulated by miR-223 in platelets [17]. Reduced levels of plasma miR-223,
primarily of platelet origin, were suggested to be a marker of efficacy of antiplatelet
therapy [16,17,21,23,48,49]. However, Chyrchel et al. reported that decreased plasma miR-
223 is not a marker of platelet responsiveness to dual antiplatelet therapy (DAPT). Instead,
more potent platelet inhibition linked to newer P2Y12 antagonists seems to correspond with
higher miR-223 as compared to the patients with attenuated responsiveness to DAPT [50].
Interestingly, miR-223-3p in peripheral leukocytes does not correlate with the altered
platelet responses in patients treated with clopidogrel [51].

Some reports suggested that miR-125a may have the influence on the development
of atherosclerosis [52,53]. Although little is known about its function in the cardiovas-
cular system, it was recently revealed that miR-125a-5p correlates with the number of
platelets [54].

As we know, platelet function per se is weaving to such an extent that it makes its use-
fulness as a disease biomarker for a chronic condition rather weak, as reported in available
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literature [55]. On the other hand, our findings demonstrate that certain circulating miR-
NAs are able to reflect the current clinical status of platelet inhibition (significant difference
among ASA and clopidogrel) and prognostic power in our study population. Multiple
mechanisms influence the outcome of antiplatelet therapy. Clopidogrel is extensively me-
tabolized, and patients’ response to the drug depends on multiple non-genetic and genetic
factors [56,57]. The pharmacodynamic response is variable, with up to 40% of patients
classed as nonresponders, poor responders or resistant to clopidogrel treatment mainly due
to low inhibition of ADP-induced platelet aggregation or activation [58]. This phenomenon
should be taken into account while interpreting the data. Our results extend previous
findings on the prognostic potential of platelet-derived miRNAs in diabetes [40,46]. The
superiority of P2Y12 antagonists compared to low-dose ASA deserves further investigation
and is in line with recent clinical studies on early ASA interruption in patients on DAPT
to prevent bleeding complications [59–63]. Larger studies should be designed to verify
the use of miRNAs as potential epigenetic biomarkers with the ability of depicting both
genetic and non-genetic risk components.

5. Conclusions

In the current study, we demonstrate that in patients with T2DM, higher miR-126
expression is associated with reduced survival in long-term follow-up. Based on the results
of the multivariate Cox regression, after correcting for clinical factors, one can conclude
that the impact of increased miR-126 expression is unrelated to well-known risk factors for
atherothrombotic disease, which further increases the strength of the results. Our findings
demonstrate significantly higher expression of miR-126, miR-223 and Let-7e in patients
treated with the P2Y12 antagonist clopidogrel compared to patients on ASA treatment.
Future studies are needed to warrant the clinical usefulness of miR-126 as a mortality risk
predictor and to further investigate whether these miRNAs represent only a marker of
disease severity or rather a distinct biomarker, which can be modified by pharmacological
or lifestyle interventions. Exciting opportunities exist to further pursue platelet miRNAs
miR-126, miR-223 and Let-7 to monitor and optimize antiplatelet treatment.

6. Study Limitations

The major limitation of the study is that only a fraction of all known miRNAs that
are related to platelet reactivity and atherosclerosis pathogenesis were analyzed in this
study. The miRNAs analyzed in the present study were chosen a priori based on literature
and due to their roles in potential roles in processes related with platelet biology. A
more comprehensive genome-wide analysis of miRNAs related to platelet function in
T2DM is also warranted. It is therefore possible that other miRNAs might also alter
primary or secondary endpoints. In AVOCADO study, three point-of-care tests (CEPI-
CT and CADP-CT by PFA-100 and ARU by VerifyNow Aspirin Assay) were applied to
evaluate platelet reactivity. Light transmission aggregometry (LTA), which is regarded as
the gold standard for platelet reactivity assessment, was not used due to significant time
consumption and increased cost of research, which were not included in the original study
design [64]. Another limitation is the observational study design with a lack of control
group without T2DM; therefore, it is impossible to account for all possible confounding
influences. Moreover, due to the limited number of observed clinical endpoints, bias
cannot be excluded despite efforts to adjust for baseline differences using multivariate
Cox regression analysis. The method of collecting and scrutinizing the follow-up may
be to blame for this limitation. Due to the long observational period, personal contact
and examination of the patient was difficult. Since it is an observational study that was
performed on a population with specific study entry criteria, a small number of events were
included in primary or secondary endpoint, and not all clinical data or causes of mortality
could be incorporated into the analysis. Because insufficient information is included in
the Polish Statistical Registries, we were unable to obtain explicit details on the cause
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of death of the subject and defined primary end point as all-cause mortality instead of
cardiovascular death.
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.3390/jcm10112371/s1. Table S1: Patient’s characteristics according to miR-126, Let-7e, miR-223 and
miR-125a-3p expression subgroup. Comparison of the study groups. Table S2: MiRNAs expression
interaction with antiplatelet therapy. Table S3: Multivariate Cox regression model for prediction of
long-term all-cause of mortality for miR-126, Let-7e, miR-223 and miR-125a-3p.
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