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Abstract: Background: Skeletal muscle mass (SMM) and fat mass (FM) are essentially required for health
and quality of life in older adults. Objective: To generate the best SMM and FM prediction models using
machine learning models incorporating socioeconomic, lifestyle, and biochemical parameters and the
urban hospital-based Ansan/Ansung cohort, and to determine relations between SMM and FM and met-
abolic syndrome and its components in this cohort. Methods: SMM and FM data measured using an
Inbody 4.0 unit in 90% of Ansan/Ansung cohort participants were used to train seven machine learning
algorithms. The ten most essential predictors from 1411 variables were selected by: (1) Manually filtering
out 48 variables, (2) generating best models by random grid mode in a training set, and (3) comparing
the accuracy of the models in a test set. The seven trained models’ accuracy was evaluated using mean-
square errors (MSE), mean absolute errors (MAE), and R? values in 10% of the test set. SMM and FM of
the 31,025 participants in the Ansan/Ansung cohort were predicted using the best prediction models
(XGBoost for SMM and artificial neural network for FM). Metabolic syndrome and its components were
compared between four groups categorized by 50 percentiles of predicted SMM and FM values in the
cohort. Results: The best prediction models for SMM and FM were constructed using XGBoost (R2 =0.82)
and artificial neural network (ANN; R2 = 0.89) algorithms, respectively; both models had a low MSE.
Serum platelet concentrations and GFR were identified as new biomarkers of SMM, and serum platelet
and bilirubin concentrations were found to predict FM. Predicted SMM and FM values were significantly
and positively correlated with grip strength (r = 0.726) and BMI (r = 0.915, p < 0.05), respectively. Grip
strengths in the high-SMM groups of both genders were significantly higher than in low-SMM groups
(p<0.05), and blood glucose and hemoglobin Alcin high-FM groups were higher than in low-FM groups
for both genders (p < 0.05). Conclusion: The models generated by XGBoost and ANN algorithms exhib-
ited good accuracy for estimating SMM and FM, respectively. The prediction models take into account
the actual clinical use since they included a small number of required features, and the features can be
obtained in outpatients. SMM and FM predicted using the two models well represented the risk of low
SMM and high fat in a clinical setting.

Keywords: skeletal muscle mass; fat mass; machine learning; grip strength; prediction model; platelet;
C-reactive protein

1. Introduction

Societal aging is a global phenomenon, and in Korea, people aged over 65 years consti-
tuted 10.7% of the population in 2010, 12.7% in 2014, and 14.3% in 2020. Sarcopenia is charac-
terized by a decline in skeletal muscle mass (SMM) and reduced age-related muscle strength
[1]. According to reports, SMM and muscle strength begin to reduce after middle age at an
annual rate of 1-2% per year after age 50 [2].
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SMM loss increases the risk of falls, comorbidities, and premature death [3]. Maintaining
SMM plays a crucial role in promoting quality of life and reducing mortality and morbidity in
older adults [4]. SMM plays an essential role not only in daily activities but also in many met-
abolic pathways. SMM is an essential part of insulin stimulation and acts to maintain glucose
homeostasis [3] and is also involved in fatty acid metabolism. Disorders of SMM metabolism
lead to insulin resistance, metabolic syndrome, and obesity [3]. In older adults, SMM reduc-
tion is linked to increases in fat mass [5]. Furthermore, the prevalence of obesity is increasing
rapidly [6], and obesity increases the risk of various metabolic diseases, such as diabetes and
cardiovascular disease [6]. In addition, obesity and SMM loss can act synergistically to cause
more severe health problems [7,8].

The potential mechanisms responsible for SMM reduction involve changes in anabolic
hormonal signaling, protein oxidation, oxidative stress, inflammation, metabolic stress, and
neuromuscular junction degeneration, and these processes replace muscle fiber with fats
[9,10]. SMM reduction and obesity have many overlapping causes, and it is speculated that
the two are closely related and exacerbate each other [7,8]. Researchers have explored the un-
modifiable and modifiable risk factors of SMM and FM over the past few decades. However,
no research study has investigated the relative importance of a series of unmodifiable and
modifiable risk factors. The random forest model of the machine learning approach can find
potential biomarkers among many candidates and rank these by relative importance, thus this
model has been applied in many studies [11-13].

SMM and FM can be estimated by bioelectric impedance (BIA), dual-energy X-Ray ab-
sorptiometry (DXA), magnetic resonance imaging (MRI), and computed tomography (CT).
However, all of these techniques have limitations in measured SMM and FM accuracy [14].
SMM and FM have been measured in a small number of cohort studies. In KoGES, SMM and
FM were measured by BIA only in the Ansan/Ansung cohort (1 = 8,842) but not the city hos-
pital cohort (1 =56,486). However, since the Ansan/Ansung cohort was relatively small, it was
unsuitable for investigations aimed at identifying novel risk regulators of SMM or FM using
association methods. Nonetheless, best prediction algorithms based on integrating the relative
importance of risk factors from the Ansan/Ansung cohort using a machine learning approach
can be used to predict SMM and FM [12,15]. We hypothesized that the best SMM and FM
prediction models could be generated from the Ansan/Ansung cohort using the machine
learning approach, and the metabolic characteristics and grip strength were different accord-
ing to the predicted SMM and FM in the urban hospital-based cohort. We aimed to examine
this hypothesis in adults aged > 40 years in two KoGES cohorts.

2. Methods
2.1. Participants

KoGES included the Ansan/Ansung cohort and the urban hospital-based cohort. Partic-
ipants were aged 51.97 + 8.85 and residents of Ansan City (a large city area) or Ansung City (a
small city area) from 2001 to 2007. In Ansan/Ansung cohort, body compositions, including
SMM and FM, were measured using Inbody 4.0 (Inbody, Seoul, South Korea). After excluding
participants lacking SMM and FM data, 6657 participants (3216 men and 3441 women) were
included in the present study, and 1411 variables were used to build predictive models of
SMM and FM. Ansan/Ansung cohort was used to generate the best prediction model for SMM
and FM using a machine learning approach.

The urban hospital-based cohort is another KoGES cohort conducted from 2004 to 2013
and had 53,843 participants, and the predictive model was applied to predict SMM and FM of
the participants in this cohort. However, body compositions, including SMM and FM, were
not collected. After excluding participants with missing data for predictive model parameters,
31,025 participants (including 10,370 men and 20,655 women) aged 52.23 + 8.1 were included
in the present study. The age distribution of Ansan/Ansung and urban hospital-based cohorts
were similar (Supplementary Figure S1A and S1B).
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The study protocol was approved by the Institutional Review Board of the Korea Centers
for Disease Control and Prevention (KBP-2015-055) and Hoseo University (1041231-150811-
HR-034-01). Written informed consent was obtained from all participants.

2.2. Experiment Design

The present study was conducted in three parts (Figure 1). First, the sample sizes of the
training and testing sets were determined using the G-power test in the criteria of effect size,
power, and significance level at 0.1, 0.01, and 0.99, respectively. A sample size of 656 was
found to be suitable. Thus, the testing set was defined as 10% of the Ansan/Ansung cohort (1
=666). We manually excluded participants with missing values and duplicates from the 1,411
in the Ansan/Ansung cohort. Forty-eight variables were used to train a random forest algo-
rithm to predict SMM and rated in order of importance. In order to reduce the number of
variables required to predict SMM using the machine learning approach, we removed the
variables one by one from low to high importance and iteratively trained the random forest
model until the mean square errors (MSEs) of the model did not decrease significantly after
eliminating one variable each. Finally, when the top 10 variables had been identified (Figure
1A), we applied the same screening method to the prediction of FM.

The second step was to train seven algorithms using the selected ten variables. The seven
machine learning algorithms used were linear regression, support vector machines (SVM),
XGBoost, decision tree, random forest, K-nearest neighbor (KNN), and artificial neural net-
work (ANN). The best combination of variables was selected using a random grid search
method for each algorithm, and each trained algorithm was used to calculate SMM and FM in
the test set. The best algorithm was selected by comparing MSEs, mean absolute errors
(MAES), and R? values of SMM and FM predicted by each algorithm in the test set.

The third step involved predicting the SMMs and FMs of participants in the urban hos-
pital-based cohort using the selected best models for SMM and FM. Clinical characteristics of
the participants with a high or low SMM or EM in a city hospital-based cohort are provided

in Figure 1B.
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Figure 1. Experimental flowchart. (A) Flow to filter features for SMM and FM in Ansan/Ansung cohort. (B) Flow to generate the
best model by a random grid model in the training set and checking the error in the test set. (C) Flow to analyze clinical character-
istics of the participants with high or low skeletal muscle mass (SMM) and fat mass (FM) of the urban hospital-based cohort.

2.3. Training for SMM and FM Prediction Model

Participants in the Ansan/Ansung cohort were randomly divided 90%:10% to a train-
ing set or a test set. The mean age in the SMM training set cohort was 51.38 + 8.9, and the
mean age in the test set cohort was 51.17 + 8.9 (Supplementary Figure S1C). For FM, the
corresponding mean ages were 51.39 +8.91 and 51.42 + 8.72, respectively (Supplementary Fig-
ure S1D). The train-test-split package of sklearn was used to train the seven algorithms. In
order to find the optimal hyperparameter settings of the models, a random grid search method
was used when training each model [16]. A hyperparameter range was set for each model,
and the best combination of ten variables was generated from 300 variable combinations
within the assigned hyperparameter range. Hyperparameter combinations with the best per-
formances were used as best models. The random forest and XGBoost algorithms returned
the best combinations during these processes, each containing ten important variables for
SMM and FM. The linear regression model was used to generate correlations between in-
cluded variables.

2.4. Verifying the Predictive Models

The trained models’ accuracies were evaluated using the remaining 10% of the An-
san/Ansung cohort as a test set by calculating mean-square errors (MSE), mean absolute errors
(MAE), and R? values of the seven trained models. We also evaluated absolute errors in three
SMM and FM ranges by quintiles (Q1, Q2-Q4, and Q5) to check accuracy differences according
to the ranges of SMMs and FMs. The optimal SMM prediction model was XGBoost, and its
optimal hyperparameters were as follows—84 of trees and 2 of max depth. The optimal FM
prediction model was ANN, and its optimal hyperparameter was as follows— 10 artificial neu-
rons in the input layer, six artificial neurons in a hidden layer, “relu” of the activation function,
and one artificial neuron in the output layer.

2.5. Predictions of SMM and FM in the Urban Hospital-Based Cohort Using the Predictive
Algorithm Models

We used the two trained models by XGBoost and ANN algorithm to predict SMM and
EM, respectively, in the urban hospital-based cohort and investigated the relationships be-
tween SMM and grip strength and between FM and BMI. We dichotomized subjects in the
urban hospital-based cohort into 4 SMM/FM groups using SMM first quartile cutoffs of 48 kg
for men and 35 kg for women and FM cutoffs of 25% for men and 30% FM for women. Ac-
cordingly, the four groups were: the HMLF group (high SSM and low FM); the HMHF group
(high SSM and high FM), the LMLF group (low SSM and low FM), and the LMHF group (low
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SSM and high FM). Adjusted means and standard errors were determined for metabolic syn-
drome component and lifestyle variables after adjusting for age, gender, residence area, edu-
cation, income, and BMIL.

2.6. Statistical Analysis

The normality test of each continuous variable was determined, and the variables
showed normal distribution. The significances of differences between variables for men and
women were determined using the two-sample t-test in the Ansan/Ansung and urban hospi-
tal-based cohorts. Linear relationships were analyzed using Pearson’s correlation coefficients.
Adjusted means and standard errors were calculated after adjusting for age, genders, resi-
dence area, education, income status, and BMI in the four groups (described above) of the
urban hospital-based cohort. One-way ANOVA was used to determine the significances of
intergroup differences. The analysis was performed using SPSS version 20 (IBM, Chicago, IL,
USA), and statistical significance was accepted for p-values < 0.05. Results are presented as
means * standard deviations.

3. Results
3.1. Metabolic Characteristics of the Ansan/Ansung and Urban Hospital-Based Cohorts

The mean subject age was ~51 in the Ansan/Ansung cohort and 54 in the urban hospital-
based cohort (Table 1). BMI and waist and hip circumferences were similar in both cohorts.
SMM was 37.7 + 4.5 kg for men and 28.4 + 3.2 kg for women in the Ansan/Ansung cohort, but
it was not provided in the urban hospital-based cohort (Table 1). Grip strength was not meas-
ured in the Ansan/Ansung cohort but was higher for men than women in the urban hospital-
based cohort (Table 1).

Metabolic parameters, including glucose and lipid levels, inflammation, and blood pres-
sure, were better in the urban hospital-based cohort than in the Ansan/Ansung cohort, and
with the exceptions of serum total cholesterol and platelet concentrations, which were better
in women than men in both cohorts (Table 1). Energy intakes and proportions of carbohy-
drates, protein, and fats consumed were similar in the two cohorts. Women had higher energy
intakes based on estimated energy requirements and carbohydrate intakes than men but had
lower fat intakes than men (Table 1). Anthropometric and metabolic parameters showed sim-
ilar gender relationships in both cohorts.

Table 1. The characteristics of participants according to the genders in the Ansan/Ansung and urban hospital-based cohorts.

Ansan/Ansung Cohort Urban Hospital-Based Cohort
Variables Men Women Men Women
(3216) (3441) (n=10,370) (n = 20,655)
Age (years) 50.6 +8.46 51.8 + 8.88 *** 55.2 +8.30 53.1 £7.75 ***
Body mass index (kg/m?) 244 +2.86 24.8 +3.24 *** 245+2.71 23.6 +£2.98 ***
Waist circumferences (cm) 83.6 £7.51 80.6 +9.49 *** 85.5+7.49 77.8 +8.05 ***
Hip circumferences (cm) 94.4 + 5.54 94.1 £5.96 95.4+5.71 92.8 +5.8 ***
Skeletal muscle mass (kg) 37.7 £4.51 28.3 £3.21 *** - -
Fat mass (kg) 152+4.81 19.0 +£5.29™ - -
Grip strength (kg) - - 38.5£0.09 23.3 £0.04 ***
Serum glucose (mg/dL) 116 £16.3 115+19.2 100 £22.9 93.8 £18.1 ***
Blood HbA1lc (%) 5.78 +0.02 5.73+0.01 5.78 +0.01 5.68 +£0.005 ***
SBP (mmHg) 75.8+11.4 72.9 £11.9 *** 38.5+0.09 23.3+0.04 ***
DBP (mmHg) 91.1+244 85.2 £20.3 *** 100 £22.9 93.8 £18.1 ***
Serum triglyceride (mg/dL) 177 + 118 146 + 86.5 *** 148 £ 102 114 +74.0 ¥
Serum HDL (mg/dL) 43.4 £9.69 45.9 +£10.2 *** 50.2+£12.3 57.6 £13.7 ***
Serum total cholesterol (mg/dL) 194 + 36.3 192 + 36.2 ** 193 £ 35.9 201 + 36.3 ***

Serum CRP (mg/dL) 0.23+0.44 0.21 +0.41 0.16 + 0.44 0.13 +0.38 ***
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Serum total bilirubin (mg/dL) 0.73+0.37 0.54 +0.26 *** 0.83 +0.34 0.67 +0.26 ***
Blood platelet (10%/pL) 259 +64.9 271 £ 63.6 *** 237 +54.1 262 +59.8 ***
GFR (mL/min) 77.7 +8.97 83.7 £15.7 *** 84.3+14.8 120 +20.9 ***
Energy intake (EER%) 96.4+32.3 104 + 38.6 *** 90.8 £25.9 101 + 32.9 ***
CHO intake (energy%) 69.1 £6.48 71.5+6.77 *** 71.0+7.03 71.8 +7.14 %

Protein intake (energy%) 13.9+£2.29 13.6 £2.37 *** 13.4£2.54 13.4+2.57
Fat intake (energy%) 15.7 +£4.98 13.8 +£5.26 *** 14.5£5.49 13.9 + 5.56 ***

- No measurement in the cohort. SBP: Systemic blood pressure; DBP: Diastolic blood pressure; HDL: Serum high-density
lipoprotein; CRP: Serum C-reactive protein; GFR: Glomerular filtration rate; HbA1C: Glycosylated hemoglobin; CHO,
Carbohydrate; energy %, the percentage intake of energy. ** Significantly different from the men group in each cohort at
p <0.01, **at p < 0.001.

3.2. Relative Importance of Parameters in the Random Forest and XGBoost Prediction Models

Random forest and XGBoost algorithms in the seven trained ones returned the im-
portance of features (Figure 2A,B). Of these features, hip circumferences and BMI were
the most important predictors for SMM, whereas BMI and gender were for FM. According
to the linear regression analysis, hip circumference, BMI, waist circumference, and total
activity were positively associated with SMM, whereas age, glomerular filtration rate
(GFR), female gender, and serum concentrations of total cholesterol, triglyceride, and
platelets exhibited negative associations (Figure 2A). FM was predicted using the method
used for SMM. Parameters with high relative importance were BMI, gender, hip circum-
ference, and waist circumference in both algorithms, such as random forest and XGBoost.
BM], female, hip circumference, waist circumference, and serum triglyceride, total choles-
terol, total bilirubin, and CRP concentration positively influenced FM prediction. How-
ever, serum platelet concentrations and total activity were negatively affected by physical
activity serum platelet concentration (Figure 2B).
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Figure 2. The relative importance of variables for predicting SMM and FM, as determined by the random forest and
XGBoost algorithm. (A) Skeletal muscle mass (SMM); (B) fat mass (FM). BMI, body mass index; C., circumferences; GFR,
glomerular filtration rate; Total chol., serum total cholesterol concentrations; TG, serum triglyceride concentrations.

3.3. Accuracies of the Predictive Models for SMM and FM Using XGBoost and ANN Algorithm
in the Test Set

The MSE and MAE values of the XGBoost SMM predictive models were the smallest,
and R? was close to 1, indicating the model using the XGBoost algorithm exhibited strong
relationships. The model’s MSE and MAE values for FM prediction using the ANN algo-
rithm were the smallest, and its R? was also close to 1 (Table 2).



J. Clin. Med. 2021, 10, 2133

8 of 16

Table 2. Accuracy of prediction models using the test set of the Ansan/Ansung cohorts.

. . . Prediction of SMM Prediction of FM
Machine learning algorithm

MSE = MAEP® R2¢ MSE a MAE® R2¢
Linear regression 2.60 2.03 0.82 1.86 1.48 0.89
Support Vector Machines 2.71 2.12 0.80 1.98 1.52 0.87
XGBoost 2.56 2 0.82 1.82 1.43 0.89
Decision Tree 2.81 2.22 0.78 2.21 1.75 0.84
Random Forest 2.65 2.09 0.81 1.80 141 0.89
K-Nearest Neighbor (KNN) 3.08 24 0.74 2.16 1.68 0.85
Artificial neural network (ANN) 2.57 2 0.82 1.79 1.4 0.89

A prediction model was generated by training the results using 90% of Ansan/Asung cohort participants, and the accuracy
of the prediction model was evaluated in the test set using mean square error (MSE) ?, mean-absolute-error (MAE) b, and
correlation efficiency of determination (R?) < to predict skeletal muscle mass (SMM) and fat mass (FM). Bold values were
corresponding to the best algorithm.

The random forest prediction model was applied to seven machine learning algo-
rithms (Table 2, Figure 3A,B). Predicted SMM had an absolute error of 7% in the test set.
XGBoost was the best predictive model for SMM. Predicted SMM by XGBoost was di-
vided into three groups by 20th and 80th percentiles. Mean square errors were lowest in
the 20th-80th group for SMM prediction, and the absolute error was < 2%. Mean square
errors were higher in the < 20th and > 80th percentile groups than in the 20th-80th per-
centile. Linear regression, XGBoost, random forest, and ANN models showed the lowest
absolute errors. Since the absolute error of the best prediction model for SMM was highest
in the <2 Oth percentile group, it was unsuitable for subjects with a low SMM (Figure 3A).

In the FM predictive models provided by seven machine learning algorithms, the
absolute error percentage in overall FM was ~10%, and it was bigger for FM than SMM.
The prediction models generated by XGB, random forest, and ANN algorithm had the
lowest absolute errors for FM prediction in all FM ranges. The absolute error was ~5% in
the 20th-80th percentile range for the ANN model, and the prediction of FM in the > 80th
percentile range exhibited a much higher absolute error value (Figure 3B).
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Figure 3. Absolute errors of SMM prediction with ranges in the test set for the seven machine
learning algorithms. (A) Skeletal muscle mass (SMM); (B) fat mass (FM). Absolute errors were
calculated by subtracting actual values from predicted values. The SMM and FM were divided
into quintiles and Q1, Q2-Q4, and Q5. The absolute errors of predicted SMM and FM by XGBoost
and ANN models were calculated in each of these three ranges.
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3.4. Anthropometric and Metabolic Parameters According to Predicted SMM and FM in Men
and Women in the Urban Hospital-Based Cohort

Since men and women had significantly different SMM and FM, SMM and FM cut-
offs were defined separately for men and women (Tables 3 and 4). The cutoffs (75th per-
centiles) of SMM for men and women were 48 and 36 kg, respectively, whereas those of
FM were 25% and 30%, respectively. Predicted SMM increased in the order LMLF, LMHF,
HMLF, and HMHF, whereas predicted FM reduced HMHF, LMHF, HMLF, and LMLF.
As was expected, BMI and waist and hip circumferences were higher in the HMHF,
LMHEF, HMLEF, and LMLH groups, and order was similar to SMM and FM. However, grip
strength was highest in the HMLF group and lowest in the LMHF group.

Table 3. Adjusted means! and standard errors in anthropometric and biochemical parameters according to skeletal muscle
mass (SMM) and fat mass (FM) in men at the urban hospital-based cohort.

Metabolic Parameters HMLF HMHF LMLE LMHEF
(n = 4448) (n =3201) (n=2517) (n =231)

Predicted SMM (kg) 38.7+0.03° 41.3+0.052 34.3+0.034 35.0£0.06 ¢
Predicted FM (%) 22.4+0.03 ¢ 27.3+£0.04 20.1 £0.06 ¢ 26.6 £0.15°
Body mass index (kg/m?) 241+0.02 ¢ 27.0+0.04 21.8+0.04 4 24.6+0.10°
Waist circumferences (cm) 84.7 +0.08 < 92.5+0.10 78.3+0.114 85.4+0.29°
Hip circumferences (cm) 95.6 +0.05 P 100 £ 0.09 2 89.2+0.07 4 91.8+0.17 ¢
Grip strength (kg) 39.9+0.13 38.6+0.17° 36.3+0.16 ¢ 33.8+0.54¢
Serum glucose (mg/dL) 98.6+0.33 b 102+£0.402 98.6+0.46° 102 +1.94 2
Blood HBA1C (%) 570+0.01° 5.93+0.012 5.72+0.02° 5.91 +0.06 =
Serum triglyceride (mg/dL) 141 +1.56° 177 +1.87 124 +1.73 " 173 +6.90 =
Serum HDL (mg/dL) 50.2+0.18" 46.9+0.18 ¢ 543 +0.27a 49.2+0.82b
GFR (mL/min) 84.0 + 0.22 be 829+0.27¢ 86.3+0.29a 85.4+0.93
Alcohol intake (g/day) 39.0+1.09 2 39.8+1.062 29.1+0.77° 32.7+3.24°

HBAI1C: Glycosylated hemoglobin, GFR: estimated glomerular filtration rate. HDL: Serum high-density lipoprotein,
HbA1C: Glycosylated hemoglobin, GFR: Estimated glomerular filtration rate. HMLF: High SSM and low fat-per, HMHEF:
High SSM and high fat-per, LMLF: Low SSM and low fat, LMHF: low SSM and high fat-per. The cutoff of SMM and fat
mass was 48kg and 25%, respectively. 'After adjusting for age, gender, residence area, education, and income status, and
BML. ab<d Different superscript letters on the means in the same row indicated significant differences between the groups
by the Duncan test.

Table 4. According to skeletal muscle mass (SMM) and fat mass (FM) in women at the urban hospital-based cohort, ad-
justed means and standard errors in anthropometric and biochemical parameters.

Metabolic parameters HMLE HMEHF LMLF LMHF
(n =5220) (1 =10522) (1 = 3615) (n=1368)

Predicted SMM (kg) 27.8+0.02° 29.3+0.02° 25.0+0.02¢4 25.4+0.02°¢
Predicted FM (%) 27.6+0.03 34.0+0.03° 26.2+0.04 4 322+0.06°
Body mass index (kg/m?) 21.8+0.02¢ 255+0.022 20.6+0.03 ¢ 234+0.04°
Waist circumferences (cm) 74.3 +0.07 82.6+0.07 2 69.4+0.09 4 76.6+0.14"
Hip circumferences (cm) 91.3+0.05° 96.4+0.05¢ 85.9+0.06 ¢ 89.04 +0.08 ©
Grip strength (kg) 24.6£0.08 23.3+0.06" 22.6+0.09¢ 20.5+0.13 ¢
Serum glucose (mg/dL) 90.8+0.19 4 954 +0.19° 925+0.28¢ 96.4+0.70 2
Blood HBA1C (%) 5.52+0.01¢ 576 £0.01° 5.61+0.01¢ 5.85+0.02°
Serum triglyceride (mg/dL) 92.3+0.87 4 125+0.77 104 +1.04¢ 137 £2.07 2
Serum HDL (mg/dL) 60.3+0.19° 551+0.12¢ 612+0.25° 55.8+0.36
GFR (mL/min) 122+0.282 120+£0.21° 118+0.34 < 116 £0.59 ¢
Alcohol intake (g/day) 6.89 +0.21° 6.39 +0.41° 4.81+£0.23° 3.14+0.32¢

HBAIlc: Glycosylated hemoglobin, GFR: Estimated glomerular filtration rate, HDL: Serum high-density lipoprotein.
HMLEF: High ASM and low fat-per, HMHF: High SSM and high FM, LMLF: Low SSM and low FM, LMHF: Low SSM and
high FM. The cutoffs of SMM and FM were 36 kg and 30%, respectively. After adjusting for age, gender, residence area,
education, and income status, and BMI. #b<d Different superscript letters on the means in the same row indicated signifi-
cant differences between the groups by the Duncan test.
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In men, serum glucose and HbA1c concentrations were higher in the high-fat groups,
regardless of SMM. Serum triglyceride concentrations reduced in the order LMLF, HMLF,
and HMHF = LMHF, whereas serum HDL concentrations increased in the order HMHF,
LMHF = HMLF, and LMLF. GFR was higher for a low SMM and a high FM. SMM and
waist and hip circumferences in women showed a similar trend to those observed in men.
Grip strength was highest in the HMLF group and lowest in the LMHF group. In women,
serum concentrations of glucose and HbAlc were higher in the HF than in the LF groups
regardless of SMM. GFR exhibited different trends in men and women. In men, GFR was
higher for low SMM and FM than for high SMM and FM, but in women, GFR was higher
in high SMM and low-FM than for low SMM and high FM.

3.5. Linear Relationship between SMM and Grip Strength in the Urban Hospital-Based Cohort

Since grip strength is positively correlated with SMM and negatively associated with
sarcopenia [1,2], the XGBoost model’s reliability for predicting SMM was examined with
the relationship between grip force and SMM using linear regression analysis. Grip
strength and SMM showed a significant linear relationship (p < 0.001, Figure 4A) with a
Pearson’s correlation coefficient (r) value of 0.726, indicating the strongest correlation.
BMI also showed a significant linear relationship with FM in both genders (p < 0.001, Fig-
ure 4B). The r-value (correlation coefficient) of the correlation between SMM and grip
strength in the urban hospital-based cohort was 0.915.
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Figure 4. Linear regression analysis. (A) The relation between skeletal muscle mass and grip Scheme 4. Discussion.
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Machine learning has been attracted considerable attention during recent years, and
machine learning data processing, clustering, classification, dimensionality reduction, re-
gression, and other functions provide potent data mining tools. Unlike traditional com-
puter algorithms that produce results when commands are executed, machine learning
algorithms can construct and train algorithms to process data and obtain results in re-
quired forms [3]. In the medical field, machine learning-based predictive algorithms have
been developed to analyze metabolic factors related to various diseases [4—6], and in the
present study, we used machine learning algorithms to create regression models that pre-
dict SMM and FM. In men and women, muscle mass accounts for 47-60% of body weight
and maintains energy expenditure throughout the body [7]. Therefore, promoting skeletal
muscle mass is essential for maintaining the quality of life and extending health expec-
tancy. Women tend to experience more rapid muscle loss than men due to lower testos-
terone concentrations and muscle renewal rates [8]. In women, estrogen deficiency after
menopause reduces bone density [9], muscle mass [10], and increases FM [11], thus SMM
and FM vary considerably between genders.

In the importance analysis, the random forest [12] and linear regression [13] showed
the importance of variables and their positive and negative correlations, respectively. Ran-
dom forest and XGBoost algorithm were used to analyze the importance of variables and
select the top 10 by importance. In the prediction model for SMM, the variables in de-
scending order of importance were sex, hip circumference, age, BMI, waist circumference,
GFR, total activity, and serum concentrations of total cholesterol, triglycerides, and plate-
lets. Previous studies have reported that BMI, sex, hip circumference, waist circumference,
and BMI are related to SMM and FM [14,15], and that age is negatively correlated with
SMM [16]. GFR levels are low in patients with chronic kidney disease, who usually exhibit
SMM loss [17], and a study on patients with chronic diabetic kidney complication reported
reductions in lean body mass. These results suggested that appendix skeletal muscle loss
is significantly related to GFR decline [17]. Platelet levels reflect the destruction of blood
vessels and tissues, as platelets play crucial roles in hemostasis and wound healing [18].
Furthermore, platelet activation plays a central role in accelerating atherothrombosis re-
lated to insulin resistance, inflammation, oxidative stress, and endothelial dysfunction
[19]. According to the National Health and Nutrition Examination Survey (1999 to 2004),
mean platelet volume is strongly associated with the presence of type 2 diabetes [20].
However, the clinical effects of platelets on skeletal are still unclear. In our SMM model,
platelet levels and SMM showed a weak negative correlation, which suggests platelets
may have different effects on skeletal muscles in the presence of different combinations of
insulin resistance, inflammation, and protein synthesis.

In the present study, the FM prediction model using ANN included BMI, sex, hip
circumference, waist circumference, total activity, and serum triglyceride, total choles-
terol, total bilirubin, CRP, and platelet concentrations. Excessive fat accumulation is dis-
tributed in subcutaneous tissues related to disruption of lipid metabolism and inflamma-
tion in obese individuals to fatty liver and dyslipidemia [21]. In the present study, the FM
prediction model using ANN indicated that total body fat and predicted serum triglycer-
ide and total cholesterol concentrations were positively correlated with FM.

Plasma bilirubin concentration, an index of liver and gallbladder damage, is posi-
tively related to hepatic fat accumulation [22], and our FM model showed total bilirubin
was weakly and positively correlated with predicted FM.

In the present study, we compared the accuracies of regression models using ma-
chine learning algorithms and selected the best prediction models for SMM and FM. Of
the seven machine algorithms examined, random forest, XGBoost, and ANN had the low-
est MSEs for predicting SMM and FM in the Ansan/Ansung cohort test set. XGBoost and
ANN have also been reported to achieve good accuracies, and XGBoost has been shown
to enable the identification of biomarkers [23,24]. Grip strength is applied to validate
SMM’s prediction because grip strength is generally considered to reflect muscle strength
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[25]. Because no direct measurements could be used to judge the accuracy of SMM pre-
dictions in the urban hospital-based cohort, we examined the correlation between SMM
and grip strength and found grip strength and SMM were strongly correlated, which sug-
gested predicted SMMs were reliable. On the other hand, we found predicted FM was
linearly and positively correlated with BML Thus, it appears that predicted values of SMM
and FM in the urban hospital-based cohort are reliable.

We also divided anthropometric parameters into the HMLF, HMHF, LMLF, and
LMHEF groups to predict SMM and FM in men and women. Both male and female HM
groups had higher grip strengths than their counterparts in the LM groups, which is con-
sistent with the results of a previous study regarding the correlation between SMM and
grip strength [25]. Serum triglyceride (a biochemical indicator of obesity) levels were
higher in men and women in HF groups than in LF groups [21]. Impaired glucose toler-
ance (IGT) can contribute to an increase in fasting blood glucose concentration, a critical
factor of visceral fat accumulation [26], which can lead to obesity and is closely related to
the risk of type 2 diabetes [27]. Both men and women in the HF groups had higher blood
glucose levels than their counterparts in the LF groups, which might have been related to
IGT caused by fat accumulation. HbAlc is an essential indicator of the diagnosis of diabe-
tes and reflects an individual’s blood glucose level 2 to 3 months after testing [28]. As was
observed for blood glucose data, men and women in the HF groups had higher HbAlc
ratios than those in the LF groups, and women in the LMHF group had the highest mean
HbAlc ratio.

We trained multiple prediction models for SMM and FM using Ansan/Ansung data
and eventually obtained SMM and FM predictions for urban hospital-based cohorts using
the XGBoost and ANN models. The maximum R? values of the SMM and FM models were
0.82 and 0.89, respectively, which is in line with actual application indicators in the med-
ical system. The results of the present study can be applied to clinical setting since the
SMM and FM had specific characteristics as follows: (1) The prediction model of SMM
and FM included relatively small number of variables, (2) variables included in the pre-
diction algorithm was not fluctuated quickly in a short time, and (3) SMM and EM of the
adults fell in the accurate ranges of prediction algorithm [29]. Therefore, these models can
quickly and accurately predict SMM and FM values through existing routine test data in
a clinical environment. These models can be used for the accurate prediction of SMM and
FM at a low cost. Many cohorts lack SMM and FM data, and these models can also be used
to predict missing data and conduct research. Furthermore, the predicted SMM and FM
of the participants in the urban hospital-based cohort were found to well-represent the
clinical characteristics of SMM and FM like grip strength and hyperglycemia. Therefore,
the ten variables in the prediction models could be used to be modulated to prevent SMM
reduction or FM elevation in a clinical setting.

However, the trained prediction models have several limitations. (1) Since they were
trained using Korean data, our results may be unsuitable for applications in European or
Hispanic populations. (2) Our study was performed on Koreans > 40 years old and thus
our findings may not be applicable in younger populations. (3) SMM and FM values de-
termined in the Ansan/Ansung study were obtained using the Inbody machine, which is
less accurate than DXA. However, we confirmed the applicability of the prediction models
in a large urban hospital-based cohort, and the accuracy of predicted values was verified
by linear relationships between grip strength and SMM and BMI and FM. (4) Regarding
the feature importance analysis, we used simple XGBoost, random forest, and linear re-
gression to explore important variables without knowing the impact of each variable.
However, according to Lundberg’s research on SHapley Additive exPlanations (SHAP),
the SHAP value can explain how each feature affects machine learning algorithms,
providing a new interpretation method for the machine learning black box algorithms
[30]. In the future study, SHAP algorithm needs to be used to determine the impact of
each variable in the prediction model. GFR and serum platelet concentrations among the
ten variables screened by random Forest and XGBoost have also shown to be potential
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biomarkers for SMM and FM, as shown to the possibility as biomarkers in previous stud-
ies [21,26-28]. Furthermore, our study shows that Koreans with a high FM have higher
fasting blood glucose levels and suggests a higher risk of type 2 diabetes in this popula-
tion.

5. Conclusions

The best prediction models, which included ten variables for SMM and FM, were
generated using XGBoost and ANN algorithms, respectively, using the Ansan/Ansung
cohort. The SMMs and FMs predicted by the models well represented the risk of low SMM
and high FM in this hospital-based cohort. Adults with a low SMM and high FM are at
risk of hyperglycemia, and the prediction models included potential biomarkers for SMM,
such as serum platelet levels, triglyceride concentrations, and GFR. In contrast, those for
FM included serum bilirubin and triglyceride concentrations. The prediction algorithm
for SMM and FM can be considered to use in the clinical site since the variables in the
algorithm are easy access. The prediction models are of practical significance in clinical
settings and the predicted SMM and FM values can convince the patients to modulate
their diet and physical exercise plans.

Supplementary Materials: The following are available online at www.mdpi.com/2077-
0383/10/10/2133/s1, Figure S1: Age distribution of Ansan/Ansung and city hospital-based cohorts.
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