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Abstract: Background: Understanding microvascular physiology is key to any reconstructive proce-
dure. Current concepts in anesthesia increasingly involve regional peripheral nerve blockade during
microvascular reconstructive procedures. Whereas favorable effects on perfusion due to these tech-
niques have been reported earlier, little evidence focusing on its effects in most peripheral vascular
compartments is available. Methods: A total of 30 patients who were to receive axillary plexus block-
ade (APB) were included. Microcirculatory assessment of the dependent extremity was conducted
utilizing combined laser-Doppler flowmetry and white light spectroscopy. Two probes (1-2 and
7-8 mm penetration depth) were used to assess changes in microcirculation. Results: APB resulted in
significant changes to both superficial and deep cutaneous microcirculation. Changes in blood flow
were most prominent in superficial layers with a maximum increase of +617% compared to baseline
values. Significantly lower values of +292% were observed in deep measurements. Consecutively,
a significant enhancement in tissue oxygen saturation was observed. Further analysis revealed a
significant impairment of perfusion characteristics due to reported nicotine consumption (max Bf:
+936% vs. +176%). Conclusion: Cutaneous microcirculation is strongly affected by APB, with signifi-
cant differences regarding microvascular anatomy and vascular physiology. Smoking significantly
diminishes the elicited improvements in perfusion. Our findings could influence reconstructive
strategies as well as dependent perioperative anesthetic management.

Keywords: microcirculation; cutaneous perfusion; axillary plexus anesthesia; regional anesthesia;
reconstructive microsurgery; smoking

1. Introduction

Regional anesthesia, such as axillary plexus anesthesia, has evolved as a standard
procedure in the current practice of perioperative analgesia. The safety and efficacy of
the procedure has been demonstrated in multiple examinations as wells as in the absence
of adverse effects on the conducted surgery [1]. The German Speaking Society for Micro-
surgery of Peripheral Nerves and Vessels recommends the utilization of regional anesthesia
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techniques in the context of microsurgical reconstructive procedures according to an expert
opinion-based consensus statement [2,3]. Derived from the available literature, it is com-
monly accepted that regional anesthesia has a beneficial influence on perfusion dynamics
as well as on local microcirculation [4-6]. However, despite earlier publications already
acknowledging the benefits of regional anesthesia in the context of microsurgical interven-
tions, such as digital replantation, there is only limited evidence available from clinical
trials with an emphasis on its effects on free flap perfusion and specifically, microcirculatory
characteristics [7-9].

Most of the conducted studies reported an increase in local perfusion by vasodilation
of the greater arteries and accompanying veins as a result of sympatholytic effects. Reduced
vascular tone due to sympathetic blockade, which otherwise represents one major vaso-
constrictive agent, may also reduce vasospasm of microvessels and transplanted tissues.
In previous works, Wenger et al. demonstrated the vasodilatory effects of axillary plexus
blockage with enhanced microcirculation regarding blood flow and tissue oxygenation of
the finger pulp prior to scheduled hand surgery [6]. Continued postoperative measure-
ments also showed a sustained improvement in microcirculatory parameters for at least
6 h after inception of the anesthesia [5].

A deep understanding of the microvasculature and its perfusion physiology has al-
ways been a cornerstone in reconstructive surgery. Nowadays, super-microsurgery and its
accompanying new concepts such as perforator-to-perforator anastomosis in free tissue
transfer highlight the importance of microcirculation, its disturbance and potential treat-
ment options even more [10,11]. Thus, an understanding of the perfusion physiology of the
subdermal plexus and dermal capillary network has gained the attention of reconstructive
microsurgeons [12,13].

The aim of our presented study was to further examine the influence of axillary plexus
anesthesia via sympathetic blockade on microcirculatory changes in the dependent extrem-
ity in humans prior to scheduled hand surgery. In order to represent the complexity of the
microvascular network, we focused on the assessment of microcirculation in superficial
and deep dermal/subdermal tissue layers with an explorative approach. Our primary
hypothesis included the assumption of a different microvascular response with regard
to variant vessel anatomy. Beyond that, further analysis of our data could provide an
insight into the affectation of microvascular response due to active smoking, which repre-
sents a common habit within the European civilization and is known to induce peripheral
vascular disease.

2. Materials and Methods

The presented study was approved by the local ethics committee of the Ruhr-University
Bochum (Reg. number 5176-14, 4 August 2014) and carried out in accordance with the Decla-
ration of Helsinki. All actions were conducted at the BG University Hospital Bergmannsheil
Bochum, Germany. Informed consent was obtained from all patients before intervention.
All measurements were conducted by the same investigator.

For our prospective study, we included 30 patients (18-50 years of age) scheduled
for elective hand surgery at the Department of Plastic Surgery and Hand Surgery, BG
University Bergmannsheil Bochum. Exclusion criteria involved infection or injury of the
hand, chronic regional pain syndrome of the hand, the use of vasoactive medication, history
of vascular disease and pregnancy. Active smoking was defined as daily consumption of
cigarettes (>5/daily) for at least one year.

Heartrate (bpm), blood pressure (mmHg) and general oxygen saturation were mea-
sured prior to any intervention.

Microcirculatory changes as a result of single-shot axillary plexus anesthesia were
continuously assessed with the use of an O2C-device (°LEA Medizintechnik, Giefen,
Germany) [14]. Comprehensive analysis of perfusion was carried out with combined
laser Doppler and white light spectroscopy assessments for changes in blood flow (Bf),
postcapillary tissue oxygen saturation (StO,) and relative hemoglobin content (rHb) [15].
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Two probes with different penetration depths were placed and secured on the palm of the
ipsilateral hand. A superficial dermal probe (1-2 mm) was attached to the digital pulp of
the middle finger, and a deep subdermal probe (7—8 mm) was centered onto the thenar
prominence (Figure 1).

P

e

Figure 1. Study se-up: two probes of an “O2C-device” (°LEA Medizintechnik, Giefen, Germany)
were attached to the palmar skin of the finger pulp (penetration depth 1-2 mm) and the thenar
prominence (penetration depth 7-8 mm) for continuous assessment of microcirculatory changes.
After a 10 min period of strict rest, the ipsilateral axillary plexus blockade was conducted (marked
in green).

Ultrasound-guided single-shot axillary plexus anesthesia was conducted by special-
ized board-certified anesthesiologists according to a standardized protocol. A 2:1 mixture
of 2%-prilocaine and 1%-ropivacaine was used for injection in all cases. Intervention started
after a 10-min period of strict rest, with patients positioned in a supine position.

Loss of sensory and motor function (pain, temperature discrimination and movement)
due to anesthesia was evaluated by repetitive clinical examinations before and after com-
pletion of the procedure. In addition, an inspiratory gasp maneuver was carried out to test
for loss of function of the sympathetic nervous system.

Statistical Analysis

For statistical analysis, Microsoft Excel and IBM SPSS commercially available software
were used. All descriptive parameters were presented as mean values & SD.

Microcirculatory changes as a result of the intervention were calculated as relative
changes compared to baseline values (BL). Statistical significance was determined by the
confidence interval method. Data are shown as mean and 95 % confidence intervals.
For correction of short-term artifacts of continuous microcirculation measurements (one
data point per second), these data were separated into corresponding intervals of 5 min
length, and linear regression analysis was performed to create a corrected slope. The
time of intervention was summarized as one interval, regardless of the elapsed time
until completion.

All parameters were checked for normal distribution, and paired students’ t-tests were
used for comparison of superficial vs. deep measurements and smoking vs. non-smoking,
if appropriate. Otherwise, the nonparametric Wilcoxon rank test was chosen.
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3. Results

Perfusion data of 12 women and 18 men with a mean age of 34.6 years (range: 20—
50) were included in the analysis. A mean body mass index of 25.5 kg/m? (43.6) was
calculated. Active smoking was reported in 43.3% of cases. The mean blood pressure of
the participants was 130.0 (£14.7)/73.2 (£8.2) mmHg, and global oxygen saturation was
98.3% (£1.5).

The mean volume of infiltrated local anesthetic was 20.63 mL (£2.23) of 2%-prilocaine
and 10.63 mL (£1.97) and 1%-ropivacaine. Completion of the brachial plexus anesthesia
took 8.35 min (£3.7).

3.1. Microcirculatory Measurements

Please see Table 1 for a complete overview of the microcirculatory data.

Table 1. Microcirculatory analysis.

Relative Change (CI) 4
Superficial (s) Deep (d) (5 vs. d)
Blood Flow (Bf)
Completion of APB 4.51 (2.349-6.676) 3.74 (0.568-6.920) 0.037
+5 min 6.33 (4.079-8.588) 3.92 (1.401-6.446) 0.002
+10 min 6.49 (4.169-8.809) 3.80 (1.369-6.229) 0.001
+15 min 7.17 (4.122-10.211) 3.92 (1.346-6.497) 0.001
Post-capillary Tissue Oxygen Saturation (S5tO5)
Completion of APB 1.10 (1.023-1.167) 1.20 (0.987-1.406) 0.428
+5 min 1.15 (1.049-1.245) 1.26 (1.051-1.469) 0.299
+10 min 1.14 (1.030-1.246) 1.24 (1.076-1.399) 0.102
+15 min 1.12 (1.008-1.236) 1.26 (1.054-1.475) 0.102
Relative Hemoglobin Content (rHb)
Completion of APB 1.06 (0.984-1.138) 1.21 (1.072-1.344) 0.349
+5 min 1.13 (1.075-1.178) 1.37 (1.192-1.553) 0.060
+10 min 1.14 (1.088-1.184) 1.35 (1.191-1.515) 0.023
+15 min 1.10 (1.043-1.166) 1.40 (1.236-1.558) <0.001

Complete overview of microcirculatory data. significant changes compared to baseline values are marked bold
(APB = axillary plexus blockade, CI = 95%—confidence interval).

3.1.1. Blood Flow (Bf)

Blood flow (Bf) immediately increased due to axillary plexus anesthesia in both the
superficial dermal and deep subdermal layers by +351% (CI 2.349-6.676) and +274% (CI
0.568-6.920), respectively. A further increase was observed until the end of the measure-
ments, with a maximum change of +617% (CI 4.122-10.211) in the superficial measurement
and +292% (CI 1.346—6.497) for deep measurements during the 15 min follow-up interval.
Comparison between both probes showed a significantly more pronounced improvement
in superficial vs. deep layers (p < 0.05) (Figure 2).
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Figure 2. Relative changes in mean blood flow (Bf) within superficial (pulp) and deep (thenar
eminence) tissue layers over the duration of the investigation.

3.1.2. Postcapillary Tissue Oxygen Saturation (S5tO;)

Tissue oxygen saturation was significantly increased within the superficial tissue lay-
ers by +10% (CI 1.023-1.167) right after completion of the intervention. A further increase
was observed over the following 15 min with a maximum change of +15% (CI 1.049-1.245).
Immediate subdermal changes in the StO, values did not reach statistical significance. Dur-
ing the continued observation, a significant maximum increase of +26% (CI 1.054-1.475)
compared to BL was reached. There was no significant difference between both measure-
ment sites regarding changes in StO, values due to the intervention at any time (Figure 3).

Post-capillary Tissue Oxygenation (StO,)
- fold increase
1.50
1.40
1.30
.‘.-lu....'...........liI.
120 e=sperficial (s)
sece deep (d)
1.10
1.00 mm ol - - ——
Baseline (BL)
0.90
Start Completion APB + 5min + 10 min + 15 min

Figure 3. Relative changes in mean post-capillary oxygen saturation (StO,) within superficial (pulp)
and deep (thenar eminence) tissue layers over the duration of the investigation.

3.1.3. Relative Hemoglobin Content (rHb)

Relative hemoglobin content (rHb) within superficial layers increased by +6% (CI
0.984-1.138) immediately after completion of the intervention. Changes reached signifi-
cance during the follow-up period, with a maximum increase of +14% (CI 1.088-1.184). At
the subdermal level, an increase of +21% (CI 1.072-1.433) was observed after completion
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of the intervention, with a further increase of +40% (CI 1.236-1.558) compared to BL at
the end of the follow-up interval. Differences between rHb changes reached statistical
significance (p < 0.05) during the follow-up period at least 10 min after completion of the
intervention (Figure 4).

Relative Hemoglobin Content (rHb)
- fold increase
1.50
1.40 .
eteens '...o--o
. L N
1.30
120 = s perficial (s)
e udeep (d)

1.10
1.00 w—— — i —————————————— —

Baseline (BL)
0.90

Start Completion APB + 5 min + 10 min + 15 min

Figure 4. Relative changes in mean relative hemoglobin content (rHb) within superficial (pulp) and
deep (thenar eminence) tissue layers over the duration of the investigation.

3.2. Microcirculatory Analysis: Smoker vs. Nonsmoker

Please see Table 2 for a complete overview of the microcirculatory data.

Table 2. Microcirculatory subgroup analysis smoker vs. nonsmoker.

Relative Change (CI)

Superficial Deep

P 14
Smoker Non-Smoker $ VS. ns Smoker Non-Smoker § Vs. ns
(s) (ns) (s) (ns)
Blood Flow (Bf)

Comlj\l;gon of  554(1324-3.750)  5.38 (1.929-8.841) 0.245 1.77 (1.059-2.474)  2.37 (1.597-3.140) 0.394
. 8.69

+5 min 2.76 (1.837-3.679) (5.231-12-149) 0.011 1.72 (1.181-2.257)  3.30 (2.580-4.015) 0.005
. 9.17

+10 min 2.51 (1.698-3.331) (5.673-12.659) 0.012 1.62 (1.073-2.166)  3.24 (2.538-3.941) 0.004

+15 min 2.49 (1.667-3.314) 10.36 0.006 1.65 (1.080-2.218)  3.30 (2.604-6.497) 0.003

’ ’ ’ (5.597-15.118) ’ ’ ’ ’ ’ ’ ’ :
Post-capillary Tissue Oxygen Saturation (S5tO,)

Comfjf\lligon of  103(0967-1.088) 111 (1.013-1.213) 0.347 1.11 (1.035-1.191)  1.08 (1.080-1.159) 0.556
+5 min 1.04 (0.962-1.115)  1.21 (1.058-1.364) 0.195 1.17 (1.035-1.314)  1.15 (1.082-1.211) 0.394
+10 min 1.01 (0.954-1.073)  1.21 (1.042-1.388) 0.088 1.19 (1.055-1.322)  1.14 (1.078-1.207) 0.777
+15 min 1.01 (0.941-1.072)  1.19 (1.003-1.372) 0.303 1.18 (1.041-1.328)  1.15 (1.076-1.217) 0.777
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Table 2. Cont.

Relative Change (CI)

Superficial p Deep p
Smoker Non-Smoker S Vs. ns Smoker Non-Smoker S VS. ns
(s) (ns) (s) (ns)
Relative Hemoglobin Content (rHb)

Com%igo“ of  097(0803-1.130)  1.12 (1.080-1.159) 0.038 1.30 (1.050-1.559)  1.15 (1.004-1.287) 0.586
+5 min 1.07 (0.983-1.158) 1.16 (1.104-1.220) 0.166 1.44 (1.125-1.750) 1.34 (1.126-1.558) 0.983
+10 min 1.07 (1.010-1.122) 1.18 (1.118-1.246) 0.021 1.47 (1.196-1.736) 1.29 (1.093-1.487) 0.444
+15 min 1.05 (0.964-1.134) 1.14 (1.056-1.222) 0.140 1.44 (1.174-1.698) 1.39 (1.182-1.592) 0.913

Complete overview of the microcirculatory data. Significant changes compared to baseline values are marked in bold (APB = axillary plexus blockade,
CI = 95%—confidence interval).

A comparison of smokers (s) vs. nonsmokers (ns) showed significant differences
(p < 0.05) in perfusion changes resulting from axial plexus anesthesia. An improvement in
superficial Bf was significantly diminished in s, with an increase of +149% (CI 1.667-3.314)
vs. +936% (CI 5.597-15.118) in ns. A similar relationship was observed in deep layers with
a maximum increase of +77% (CI 1.059-2.474) in s compared to +230% (CI 2.580—4.015)
in ns. Whereas superficial StO, values in s were not significantly altered, ns showed
significant changes resulting from the anesthesia, with a maximum increase of +21% (CI
1.058-1.364). In deep layers, an improvement of StO, values in s equaled that of ns. In
superficial layers, rHb values were significantly elevated in ns by a maximum of +18% (CI
1.118-1.246) compared to BL. The maximum increase in s was 7% (CI 1.010-1.122). Similar
to StO, values, changes in rHb reached statistical significance compared to BL in both s
and ns for deep measurements, but no significant difference was found between groups
(Figures 5 and 6).

Blood Flow (Bf)

12.00
- fold increase p<0.05
*
10.00
8.00
n.s.
6.00 * W Smoker
ps0.08 Non-Smoker
4.00 ns. .
* * *

SN AR (R [l I h
0.00

s Completion APB s+ 15 min d Completion APB d + 15 min

Figure 5. Relative increase in mean superficial (s) and deep (d) blood flow (Bf) in smokers vs.
nonsmokers right after completion of the axillary plexus blockade (APB) and after an additional
15 min. BL = baseline value, n.s. = nonsignificant, * significant change compared to BL.
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Post-capillary Tissue Oxygen Saturation (StO,)
3.00 - fold increase
2.00
mSmoker
e = .2 ns Non-Smoker
* * * * . *
1.00 = —pume =& = — = - - -_—— - - - - - BL
0.00
s Completion APB s+ 15 min d Completion APB d + 15 min

Figure 6. Relative increase of mean superficial (s) and deep (d) post-capillary oxygen saturation
(StOy) in smokers vs. nonsmokers right after completion of the axillary plexus blockade (APB) and
after an additional 15 min. BL = baseline value, n.s. = nonsignificant, * significant change compared
to BL.

4. Discussion

Our investigation of changes in cutaneous microcirculation due to regional anesthesia
clearly demonstrates the importance of neural signaling in the regulation of perfusion
dynamics within the dermal and subdermal compartments. As a result of axillary brachial
plexus blockade, a significant increase in cutaneous blood flow and tissue oxygenation
as well as relative hemoglobin content was observed. Whereas the improvement in local
blood flow was significantly more pronounced within the superficial dermal layer, changes
in tissue oxygenation and relative hemoglobin content were most prominent within the
subdermal compartment. A comparison between smokers and nonsmokers revealed a
significant impairment of microcirculatory improvements resulting from axillary brachial
plexus blockade due to active smoking.

Our results are in line with previous work from Wenger et al., who conducted a
prospective analysis of the effects of regional anesthesia on cutaneous microcirculation [5,6].
Whereas their investigation focused on the quantification and course of the elicited effects,
our goal was to analyze acute effects within different tissue layers and, therefore, different
vascular territories.

Cutaneous vascular anatomy includes a rich network consisting of two horizontal
plexuses on a superficial sub-papillary level (1-2 mm in depth), which are fed by a deeper
(sub-)dermal plexus (7-8 mm in depth) [16]. Regulation of the vessel diameter and there-
fore cutaneous blood flow, is subjected to a complex interaction of neurohumoral signaling,
which, amongst others, involves sympathetic reflex cascades and local endothelial mech-
anisms [17]. Due to axillary plexus anesthesia, interruption of the sympathetic signaling
abrogates its vasoconstrictive effects, which ultimately leads to peripheral vasodilation and
an increase in perfusion [18,19].

Based on our findings, the increment in perfusion was more pronounced in the most
peripheral superficial part of the vascular network (sub-papillary/papillary plexus), with
a consecutive increase in tissue oxygen saturation. A microstructural analysis of the
human cutaneous anatomy via electron microscopy revealed characteristic differences in
the architecture of the vessels corresponding to their location within the skin. Whereas
superficial subpapillary arterioles are usually less than 25 pm in diameter and consist of
1-2 layers of smooth muscle cells (SMC) accompanied by pericytes, the arterioles of the
deep horizontal plexus adjacent to the subcutaneous fatty tissue are of much larger caliber
(>50 pm), with 5-8 layers of SMC. Although not fully understood, pericytes, which are
also present within the deep dermis, are believed to act as vasomotor cells capable of the
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regulation of vessel diameter [20,21]. Similar to the arterioles, the accompanying veins
within the deep (sub-)dermis are of much larger caliber, collecting the blood from a wider
range of smaller superficial sub-papillary venules. Corresponding to those anatomical
differences, our data show a greater increase in local relative hemoglobin concentration
(rHb) within the deeper layers as a result of a generally enhanced state of perfusion. Due
to the enhanced Bf, a higher volume of oxygenated blood is directed to the deep venous
compartments, so deep StO;-values are also increasing. Since the oxygen consumption
of dependent cells remains unchanged and total blood volume is higher within the deep
layers, changes in StO;-values are even more pronounced compared to superficial layers.

Whereas anatomical differences in the vascular network can partially explain our
observations, it is likely that there are also functional differences between the superficial
and deep plexuses based on the impact of sensory innervation and the autonomic nervous
system. In a prior study, Roddie et al. observed a higher oxygen content in blood samples
collected from the superficial (primarily skin) compared to deeper (primarily muscle) veins
during local heat stress. The increased oxygen content due to an improved perfusion
resulting from heat stress was attenuated by a prior nerve blockade proximal to the
heating site as well as by sympathectomy [18]. Previous work by Kellogg et al. showed
that cutaneous vasoconstriction due to cold stress was abolished after the application of
a noradrenergic neuron-blocking agent (bretylium tosylate) [22]. Moreover, functional
regulation of skin blood flow via neuronal transmission depends on the body site [18].
Beyond that, there is an active system of cutaneous vasodilation, which has not been fully
revealed yet but is believed to consist of complex interactions between (partly unknown)
neurotransmitters as well as endothelial mechanisms [17].

Further analysis of our collected data revealed an impairment of the elicited effects
in patients who reported active smoking. Previous research demonstrated that chronic as
well as acute cigarette smoking significantly affect endothelial function within the human
cutaneous microcirculation with consecutively diminished blood flow capacities [23,24].
The marked difference between smokers and nonsmokers that is demonstrated by our
presented data can therefore point to the complex mechanistic background of vascular
physiology. Whereas axial plexus anesthesia induces vasodilation by suppression of
sympathetic vasoconstrictive signaling to smooth muscle cells and pericytes, a staged
endothelial-dependent mechanism can nearly abolish the resultant effects. Whether this is
caused by an acutely impaired signaling, specifically alterations in metabolic pathways, or
results from anatomical variances within capillary morphology due to chronical inflam-
matory processes is beyond our examination [25]. Additionally, our study lacked a more
precise definition of active smoking. It is likely that the disturbance in tissue microcircula-
tion could depend on the daily number of consumed cigarettes as well as differences in the
overall duration of active consumption that could impact the severity of vascular disease
and perfusion disorders.

Li et al. conducted a dose-response study on the effects of different concentrations
of ropivacaine during supraclavicular blockage of the upper extremity blood flow [26].
Briefly, they could demonstrate that there was a dose-dependent effect with increased
blood flow changes resulting from higher concentrations of the applied anesthetic agent.
Furthermore, the authors concluded that full blockage of the sympathetic vasoconstrictive
transmission requires a higher concentration than complete sensory blockade. Based on
the results published by Wenger et al., the more pronounced changes in cutaneous blood
flow in our current study might be the result of the different composition of the anesthetic
agents utilized as well [6].

There is only limited and, in part, conflicting evidence focusing on the effects of
regional anesthesia on perfusion, specifically, microcirculation in the field of reconstructive
microsurgery. Whereas regional anesthesia appears favorable for reconstructive procedures
by means of the aforementioned effects and is generally considered safe, only a few
studies were conducted to assess circulatory changes in free tissue transfer due to this
anesthetic procedure [27,28]. Moreover, some authors already questioned the advantages
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of regional anesthesia, for example, in epidural/ peridural techniques, based on its resultant
changes in general blood flow distribution with consecutive risk of steal-phenomena [29].
Whereas our investigation focused on acute changes due to a single-shot plexus blockade,
continuously applied anesthetics via a peripheral nerve catheter might have additional
effects on long-term modulation of dependent microcirculation. A continuing enhancement
in local microperfusion independent from adverse systemic effects could ultimately lead to
improved wound healing, especially in regions of otherwise compromised microcirculation.
In summary, further research is required to examine the effects of regional anesthetic
procedures on perfusion characteristics of free microsurgical transplants via comprehensive
analysis of local microcirculation, thus facilitating specific utilization of these techniques
depending on the reconstructive strategy.

5. Conclusions

Axillary plexus anesthesia directly affects skin perfusion in dependent tissues in
humans. Active smoking leads to a significant impairment of microcirculatory response
to regional anesthesia. The amount of observed changes in cutaneous blood flow showed
significant differences between the superficial and the deep (sub-)dermal plexuses. Our
findings point out the importance of vascular anatomy and the complex mechanistic
background of its controlling physiology. Further research is warranted to observe the
effects of continuously applied anesthetics on microcirculation within transplanted tissues.
With respect to currently evolving concepts in reconstructive microsurgery, especially at
the sub-dermal/dermal level, our observations could influence reconstructive strategies as
well as dependent perioperative anesthetic management.
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