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Abstract: Background: Since cone-beam computed tomography (CBCT) technology has been widely
adopted in orthodontics, multiple attempts have been made to devise techniques for mandibular
segmentation and 3D superimposition. Unfortunately, as the software utilized in these methods
are not specifically designed for orthodontics, complex procedures are often necessary to analyze
each case. Thus, this study aimed to establish an orthodontist-friendly protocol for segmenting the
mandible from CBCT images that maintains access to the internal anatomic structures. Methods: The
“sculpting tool” in the Dolphin 3D Imaging software was used for segmentation. The segmented
mandible images were saved as STL files for volume matching in the 3D Slicer to validate the repeata-
bility of the current protocol and were exported as DICOM files for internal structure analysis and
voxel-based superimposition. Results: The mandibles of all tested CBCT datasets were successfully
segmented. The volume matching analysis showed high consistency between two independent
segmentations for each mandible. The intraclass correlation coefficient (ICC) analysis on 20 additional
CBCT mandibular segmentations further demonstrated the high consistency of the current protocol.
Moreover, all of the anatomical structures for superimposition identified by the American Board of
Orthodontics were found in the voxel-based superimposition, demonstrating the ability to conduct
precise internal structure analyses with the segmented images. Conclusion: An efficient and precise
protocol to segment the mandible while retaining access to the internal structures was developed on
the basis of CBCT images.

Keywords: CBCT; segmentation; mandible; superimposition

1. Introduction

Two-dimensional (2D) radiographs have been widely used in the field of orthodontics
since 1922 [1]. At that time, when cephalometric tracing norms were established, cone-
beam computed tomography (CBCT) was not available. Application of three-dimensional
(3D) CBCT was first reported in 1994 [2]. As it significantly reduced radiation exposure
and costs, 3D CBCT has since been broadly adopted in orthodontics after 2007 [2]. As early
as 2010, Nalçaci et al. demonstrated that 3D cephalometric approaches are fairly reliable
and comparable with traditional 2D cephalometry [1]. In addition, a growing body of
evidence continues to demonstrate the application of CBCT in orthodontics as a front-line
technology development topic [2–7]. However, the radiation exposure of cranial CBCTs is
still not acceptable in most orthodontic patients, even though the dosage is dramatically
reduced compared to when CBCT technology was first applied to orthodontics. To address
this issue, Farronato et al. established a reliable sagittal skeletal classification system using
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CBCT images with a reduced field of view [8]. Overall, both clinicians and researchers
are dedicating great efforts to maximize the benefits of 3D CBCT in patient care while
minimizing the radiation exposure to patients.

As the only bone that connects to the cranium by unique temporomandibular joints
and exhibits variable growth and remodeling responses to orthodontic treatment, the
mandible has been one of the classic and central topics for evaluating patients’ growth
and development and assessing the influence of orthodontic and orthopedic treatments.
However, the most commonly cited method of investigating the mandible today is still 2D
cephalometric radiograph-based superimposition [9]. There is no doubt that 2D image-
projected 3D structure analysis not only limits the regions that can be evaluated (e.g.,
mandibular condyle [10], glenoid fossa [11], coronoid process, mandibular canal [12]),
but also exposes the findings to inherent and unavoidable errors, such as those rooted in
differences in magnification, head position, landmark identification, tracing, and reference
lines and planes used for superimposition [13]. Thus, reliable 3D mandibular structure
analysis technologies are in high demand, especially those that can provide valuable
information previously inaccessible using 2D methods [2,3]. In particular, Kadiogly et al.
stated, “Questions that were answered previously in 2D study are being asked again, and
new studies are reassessing older and possibly outdated concepts with the aid of CBCT” [3].

Indeed, multiple attempts at mandibular segmentation and superimposition based
on 3D CBCT imaging have been reported [13–17]. For instance, a significant amount of
research into mandibular measurements has been conducted with such methods in the past
few months [17–20], evidencing the high demand for 3D-based mandibular measurements.
However, all of these pioneering methods utilize either open-source software such as
ITK-Snap (www.itksnap.org) and 3D Slicer (www.slicer.org) or licensure-required software
such as Mimics (Materialise, NV) [13–20]. Since the software packages mentioned above
are not specifically designed for orthodontic applications, multiple software packages
are generally necessary to analyze a single case. This issue significantly increases the
complexity of usage and financial input, as well as time and labor costs for the clinicians or
orthodontic researchers for mandible-related evaluations and investigations.

To overcome the technical, time-consuming, and financial challenges thus far as-
sociated with evaluations of the mandible, it is necessary to establish an efficient and
precise mandibular segmentation protocol based on 3D CBCT that can (1) be performed
with commonly used orthodontic imaging analysis software, (2) be easy to follow (not
technique-sensitive), (3) access the internal structures, and (4) allow novel 3D and tradi-
tional 2D superimpositions.

2. Experimental Section

CBCT scans for this study were derived from preexisting clinical databases and
approved by the University of Pennsylvania Institutional Review Board (IRB protocol
#843611). No additional CBCT images were taken for the current study. Five CBCT scans
from 3 patients were selected on the basis of the following criteria:

Patient #1: An adult female patient without craniofacial syndromes who underwent
orthodontic treatment. The initial (CBCT #1, when the patient was 23 years old) and final
(CBCT #2, when the patient was 25 years old) records were selected to

(1) establish the initial mandibular segmentation protocol to exclude the potential influ-
ence of gross pathologies and significant skeletal asymmetry;

(2) perform and validate the 3D voxel-based superimposition [13] with no detectable
mandibular growth as determined by the American Board of Orthodontics (ABO)
standard 2D landmark-based superimposition [21].

Patient #2: A late adolescent female patient diagnosed with hemifacial microsomia.
The initial record (CBCT #3, when the patient was 16 years old) was selected to validate the
precision and efficiency of the current protocol to segment the mandible, which presented
a significant amount of asymmetry.

www.itksnap.org
www.slicer.org
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Patient #3: An adolescent male patient without craniofacial syndromes who under-
went orthodontic treatment. The initial (CBCT #4, when the patient was 11 years old) and
progress (CBCT #5, when the patient was 12 years old) records were selected to

(1) further validate the current protocol to segment the mandible;
(2) perform 3D voxel-based superimposition to determine the sensitivity of the current

segmentation and superimposition protocol for detecting mandibular growth and
development in the one-year interval;

(3) observe the potential growth and remodeling trends of the mandible.

CBCT DICOM files were all imported into the Dolphin 3D software (Dolphin Imaging;
version 11.95 Premium, Chatsworth, CA; user license purchased by the University of
Pennsylvania, School of Dental Medicine, Department of Orthodontics). The mandible was
segmented from each CBCT with the following steps:

(1) In the “Orientation” module, set the facial midline as the midline of the full-volume
CBCT and ensure that the cranial base structures and key ridges on the left and right
sides overlap. This step is the same as the orientation setting for routine craniofacial
CBCT assessments.

(2) In the “Sculpting tool” module, orient the CBCT to the right view, and sculpt the
majority of the cranial and maxilla structures with the option “free form”, as shown
in Figure 1A,B.

(3) Orient the CBCT to the bottom view in which the borders of the condyles are clearly
visible. Sculpt the visible cranial and maxillary structures, as shown in Figure 1C,D.

(4) Orient the CBCT to the right oblique view (Figure 1E), enlarge the CBCT, and change
the “Seg Volumes” to identify the lower and upper density values in the appropriate
range to differentiate the condyle from the surrounding structures (Figure 1F). This
adjustment will produce a translucent view of the right condyle (orange arrow),
glenoid fossa (yellow arrow), and remaining maxillary structures (Figure 1G). Sculpt
the glenoid fossa along the inferior border and remaining maxillary structures.

(5) Repeat step 4 for the left condyle with the CBCT oriented to the left oblique view.
(6) Return to the right oblique view, in which some remaining cranial structures can be

found around the left condyle (Figure 1H, yellow arrows). Sculpt them (Figure 1I).
(7) Repeat step 6 for the right condyle with the CBCT oriented to the left oblique view.
(8) The segmented mandible CBCT is ready for either “Export” as DICOM files or “Create

surface,” which yields an STL file (Figure 1J).

Each CBCT was segmented by the same examiner twice, with a 1-week interval in
between. Each CBCT was also independently segmented by another examiner. The 3
STL files of each mandible were imported into 3D Slicer (open-source software, www.
slicer.org) to evaluate intra-examiner and inter-examiner reproducibility, as well as the
reliability of the current protocol using the “Model-to-Model distance” module [13]. The
DICOM files of each mandible were imported into the Dolphin 3D software for voxel-based
superimposition [22] using the chin and symphyseal regions [13] and internal anatomical
structure analysis. To further assess the intra- and inter-examiner reliability, we used
20 additional CBCTs for mandibular segmentation by 2 individual clinicians in a blinded
fashion (Figure S1). Intraclass correlation coefficient (ICC) was employed to assess the
consistency of volumetric measurements on the mandibles segmented by the current
protocol with IBM SPSS software (Statistical Package for Social Sciences version 26.0,
Chicago, IL, USA).

www.slicer.org
www.slicer.org
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Figure 1. The flowchart of the mandible segmentation protocol by using the Dolphin 3D sculpting tool. (A,B) On the right 
view, sculpt the majority of the cranial structure and maxilla with the “free form” tool. (C,D) On the bottom view, the 
border of the condyles can clearly be seen. (E–G) On the right oblique view, enlarge the cone-beam computed tomography 
(CBCT) and change the “Seg Volumes,” which will produce a translucent view of the right condyle (orange arrow), glenoid 
fossa (yellow arrow), and remaining maxillary structures. (H) After sculpting around the left condyle in the left oblique 
view, return to the right oblique view. Some remaining cranial structures can be found around the left condyle (yellow 
arrows). Sculpt them (I). (J) The segmented mandible CBCT can either be exported as DICOM files or be used to create 
the surface structure and saved as an STL file. 
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formed with two independent segmentations from two clinicians for each CBCT, shown 
in Figure 3, displaying inter-examiner reproducibility. The 3D Slicer Model-to-Model dis-
tance results showed perfect surface matching of the mandibular body, ramus, and con-
dylar regions for all five samples in Figures 2 and 3, illustrating the reliability of the seg-
mentation protocol described above. As no prominent landmarks could be found in the 

Figure 1. The flowchart of the mandible segmentation protocol by using the Dolphin 3D sculpting tool. (A,B) On the right
view, sculpt the majority of the cranial structure and maxilla with the “free form” tool. (C,D) On the bottom view, the border
of the condyles can clearly be seen. (E–G) On the right oblique view, enlarge the cone-beam computed tomography (CBCT)
and change the “Seg Volumes,” which will produce a translucent view of the right condyle (orange arrow), glenoid fossa
(yellow arrow), and remaining maxillary structures. (H) After sculpting around the left condyle in the left oblique view,
return to the right oblique view. Some remaining cranial structures can be found around the left condyle (yellow arrows).
Sculpt them (I). (J) The segmented mandible CBCT can either be exported as DICOM files or be used to create the surface
structure and saved as an STL file.

3. Results

It took less than 15 min each to complete all segmentations. The volume matching re-
sults of the two segmentations from the same clinician for each CBCT are shown in Figure 2,
demonstrating intra-examiner reproducibility. Volume matching was also performed with
two independent segmentations from two clinicians for each CBCT, shown in Figure 3,
displaying inter-examiner reproducibility. The 3D Slicer Model-to-Model distance results
showed perfect surface matching of the mandibular body, ramus, and condylar regions for
all five samples in Figures 2 and 3, illustrating the reliability of the segmentation protocol
described above. As no prominent landmarks could be found in the maxillary dentition
to determine the segmentation border in this region, some volume differences were de-
tected by 3D Slicer. Some slight surface differences were also observed in CBCT #1 around
the lower right first molar region, which could be attributed to the metal crown-derived
noise around this tooth. However, these negligible differences did not influence further
analysis of the mandible. For the ICC analysis based on the segmentation of 20 mandibles
by two clinicians, intra-examiner reliability (ICC = 0.998; 95% CI = 0.964–1.000) and
inter-examiner reliability (ICC = 0.998; 95% CI = 0.908–1.000) were excellent.
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Figure 3. The model-to-model distance analysis in the 3D Slicer software for two segmentations individually performed by
two examiners for each CBCT.

Comparing the panoramic radiograph images generated from the full-volume CBCT
and the segmented mandible CBCT, no gross morphological differences were noted in
any tested samples (Figure 4). Furthermore, the panoramic radiographs generated from
the segmented mandible CBCT clearly displayed the inferior alveolar canals, tooth roots,
condyles, and bone marrow (Figure 4).
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Figure 4. Comparison of the panoramic radiographs generated from the full-volume CBCT and those from the segmented
mandible CBCT.

For patient #1, the Dolphin 3D voxel-based superimposition generated evenly dis-
tributed white (initial) and green (final) interval surface colors in the mandibular body
and ramus regions. In contrast, only the green color was observed in the lower anterior
dentition, indicating no significant change of the mandible, while there was proclination
of the mandibular anterior teeth caused by orthodontic treatment (Figure 5A). To further
confirm this observation, we analyzed the superimposed mandibular CBCT images in
all three planes. In the sagittal slice along the facial midline, the symphyseal regions of
the initial (white) and final (green) mandibles were superimposed, while the mandibular
anterior teeth were more proclined in the green than in the white segment (Figure 5B).
The sagittal slice in the left ramus region displayed perfectly matched white and green
images (Figure 5C). The coronal slice in the retromolar region again showed completely
overlapping white and green images (Figure 5D). It is worth noting that the radiopaque
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area on the right side of the mandible (Figure 5D, yellow arrow) and the inferior alveolar
canals on both sides (Figure 5D, red arrows) were clearly seen. In the axial slices, the
left inferior alveolar canal (Figure 5E, red arrow), mandibular foramen (Figure 5F, red
arrows), condyles (Figure 5G, red arrows), and tips of the coronoid processes (Figure 5G,
yellow arrows) were all easily located. Furthermore, all of these slices showed complete
superimposition of the initial and final images at the mandibular body and ramus regions.
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datasets of the mandible for patient #1. (A) The 3D reconstructed surface structure image of the mandible after superimposi-
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process; red arrows: condyle.
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Unlike the observations from patient #1, the Dolphin 3D voxel-based superimposition
of patient #3 showed that the majority of the mandibular surface was green, indicating the
potential growth of the mandible from the initial (white) to progress (green) time points
(Figure 6A). Again, the sagittal slice along the facial midline shows superimposition of the
two images at the symphyseal region (Figure 6B), while the sagittal slice in the right ramus
region (Figure 6C) displays (1) superimposition of the inferior alveolar canal (red arrow),
(2) resorption (blue arrow) of the anterior surface and deposition (yellow arrows) at the
posterior surface of the top half of the coronoid process, (3) posterior and superior growth
of the condyle, and (4) deposition (yellow arrows) at the posterior border of the ramus. For
the coronal slices, in the first premolar region (Figure 6D), the mental foramen could be
found and superimposed in the first premolar region (red arrows). Simultaneously, slight
deposition was also noted at the buccal and inferior surfaces of the mandibular body and
the inner contour of the lingual cortical plate on the right side (Figure 6D, yellow arrows).
In the third molar region (Figure 6E), while the lower borders of the third molars were
superimposed on both sides, deposition was found at the buccal surface of the mandibular
body. For the axial slices, the slice at the root apex level (Figure 6F) showed deposition along
the buccal surface of the mandibular body. In the posterior third of the mandible, both
the buccal and lingual cortical plates moved buccally (Figure 6F, red arrows). The buccal
movement of the buccal and lingual cortical plates in the posterior third of the mandible
was also found in the axial slice at the cervical level of the teeth (Figure 6G). Finally, the
axial slice at the level of the deepest portion of the mandibular notch (Figure 6H) showed
(1) resorption of the anterior surface of the ramus, (2) deposition at the buccal surface of
the ramus, and (3) resorption of the medial posterior surface of the condylar neck.
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Figure 6. The Dolphin 3D voxel-based superimposition of the initial (white, CBCT #4) and progress (green, CBCT #3)
CBCT datasets of the mandible for patient #3. (A) The 3D reconstructed surface structure image of the mandible after
superimposition. (B) Sagittal slice along the facial midline. (C) Sagittal slice in the right ramus region. Red arrow: inferior
alveolar canal; blue arrow: resorption; yellow arrows: deposition. (D) Coronal slice in the first premolar region. Yellow
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level. Red arrows: buccally moved cortical plates. (G) Axial slice at the cervical level of the teeth. (H) Axial slice at the level
of the deepest portion of the mandibular notch.
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4. Discussion

For this short Communication article, our primary aim was to establish a simple pro-
tocol to segment the mandible from a full-volume craniofacial CBCT using the “Sculpting
tool” provided with the Dolphin 3D Imaging software and to evaluate the precision and
reliability of this protocol. In contrast to other newly established mandibular segmentation
protocols, the current protocol only involves one commonly used orthodontic imaging soft-
ware, which reduces the cost, time, and energy of purchasing software, multiple-software
practicing, and file transfers among different software [13–17,22].

The 3D Slicer model-to-model distance analysis demonstrates perfect volume match-
ing of the mandibular body, ramus, and condylar regions in all five tested samples. This
consistency confirms the precision and reliability of the current protocol, which is not
affected by notable mandibular asymmetry, such as seen in patient #2.

We also performed superimpositions using the chin and symphyseal regions [13] with
Dolphin 3D voxel-based superimposition [22]. As demonstrated by the planes of patient
#1, the inner contour of the cortical plate at the lower border of the symphysis, alveolar
canal, and anterior and posterior border of the ramus could all be easily located. Thus,
all of the anatomical structures indicated for mandibular superimposition by the ABO
can be found and superimposed using this 3D voxel-based superimposition dataset. The
complete superimposition of these anatomic structures confirms the precision of the 3D
voxel-based superimposition method, as previously reported [13,22], and further validates
the reliability of the current mandibular segmentation protocol.

As demonstrated in the superimposition image of patient #3, we found that specifically
for this patient (1) the anterior–inferior contour of the chin and the inner contour of the
cortical plate at the lower border of the symphysis can be entirely superimposed for the
initial and progress records, (2) there is deposition at the inferior border of the mandible at
the first premolar region but not at the third molar region, and (3) the ramus demonstrates
anterior border resorption and posterior border deposition. These observations align with
the previously reported and accepted phenomena of mandibular growth and modeling [21].

Interestingly, some previously unreported growth trends were also found in this
patient’s records, such as the deposition along the buccal surface of the mandible (Figure
6A,D–G) and the lateral shift of the buccal and lingual cortical plates in the posterior third
of the mandible (Figure 6F,G), indicating that the mandible may not grow posteriorly along
the direction of the mandibular body. There may be a contour change during growth.
Furthermore, instead of a “V”-shaped growth of the condyle, only the medial posterior
resorption of the condylar neck is observed in the axial slice at the most inferior level of the
mandibular notch (Figure 6H).

In fact, in the newly published article [23], by performing a longitudinal CBCT study
on 25 growing skeletal class II patients, Maspero et al. found that there was significant
mandibular body growth as expected, but the mandibular symphyseal angle maintained
the same. This is different from what we observed in patient #3—a lateral shift of the
mandible is clearly indicated in Figure 6F,G, suggesting an increasing mandibular symphy-
seal angle. It is worth noting that patient #3 was diagnosed as skeletal class III and had
rapid maxillary expansion and facemask treatment before the progress records were taken.
Thus, whether these previously unreported mandibular growth patterns resulted from a
normal skeletal class III pattern of growth or from treatment requires further investigations
with a larger sample size.

Using the current protocol, we could not thoroughly remove the maxillary dentition
without affecting the mandibular dentition. Thus, we decided to sculpt through half of the
maxillary tooth crowns. Although the remaining maxillary dentition did not appear to
influence the mandible analyses, further efforts are still needed to adequately separate the
maxillary and mandibular dentitions.

CBCT has also been proven to be an appropriate tool for evaluating the maxillary
and mandibular bone marrow density [24–26] and condylar volume [27]. Thus, further
exploring the feasibility of the current segmentation and superimposition protocol for
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assessing mandibular bone marrow density and tracking condyle modeling and remodeling
is the next objective of our investigation.

No doubt, Dolphin 3D software is not inexpensive. However, we created this protocol
based on Dolphin 3D because this software is not only routinely used in our clinic but
is also widely utilized in graduate orthodontic programs. According to the PubMed
database, an increasing number of researchers are employing Dolphin 3D software in
their studies encompassing diverse areas of investigation, such as predicting the upper
airway change in orthognathic patients [28], assisting in virtual surgical planning [29],
evaluating dentoskeletal effects of rapid maxillary expansion [30], and even routine 2D
tracing analysis [31]. Thus, we believe that our protocol is based on a widely used software,
which minimizes the chances of imposing additional costs for clinicians and researchers
who are likely to already own Dolphin 3D Imaging software.

Last but not least, the current study is a retrospective study using human data pre-
viously obtained for clinical treatment purposes. No additional radiographs were taken
for the present study. Although technological developments have significantly reduced
the radiation dosage associated with CBCT acquisition [2], we highly recommend that all
clinical CBCTs taken should follow ALARA (as low as reasonably achievable) principles to
avoid unnecessary radiation exposure to patients and clinicians [32].

In summary, a user-friendly 3D-imaging-based mandibular segmentation protocol is
introduced in the current study, with five CBCT images from three patients selected to pre-
liminarily demonstrate the feasibility of the protocol. Without a doubt, many more samples
are needed to draw definitive conclusions in growth and development investigations and
assess treatment efficacy. However, by disseminating our protocol in a timely manner, we
hope that this sharing of knowledge can significantly benefit global collaborative efforts to
achieve a more detailed understanding of how to better evaluate growth and development
and ultimately improve one’s ability to deliver better orthodontic clinical care.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-0
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