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Abstract: Membrane-based separation technology has attracted great interest in many separation
fields due to its advantages of easy-operation, energy-efficiency, easy scale-up, and environmental
friendliness. The development of novel membrane materials and membrane structures is an urgent
demand to promote membrane-based separation technology. Graphene oxide (GO), as an emerging
star nano-building material, has showed great potential in the membrane-based separation field.
In this review paper, the latest research progress in GO-based membranes focused on adjusting
membrane structure and enhancing their mechanical strength as well as structural stability in aqueous
environment is highlighted and discussed in detail. First, we briefly reviewed the preparation and
characterization of GO. Then, the preparation method, characterization, and type of GO-based
membrane are summarized. Finally, the advancements of GO-based membrane in adjusting
membrane structure and enhancing their mechanical strength, as well as structural stability in
aqueous environment, are particularly discussed. This review hopefully provides a new avenue for
the innovative developments of GO-based membrane in various membrane applications.

Keywords: membrane; graphene oxide; graphene oxide membrane; separation performance;
structural stability

1. Introduction

In the past few decades, membrane-based separation technology has attracted considerable
attention in many separation fields due to its advantages of easy-operation, energy-efficiency,
and environmental friendliness [1]. Advanced membranes with superior selectivity and permeability
are essential to the development of membrane-based separation technology. Currently, polymeric
membrane has governed the entire membrane market, including real-world application and academic
research, owing to its advantages of energy-efficiency, easy-operation, low-cost, and inherent simplicity.
Nevertheless, restrictions of polymeric membranes still exist for most practical applications, because
most of them tend to foul, have low resistance to chlorine, strong acids/alkaline, high temperature
and organic solvents, and suffer from aperture shrinkage under high pressure [2]. The strong trade-off
relation between membrane selectivity and permeability is a common challenge for all of polymeric
membranes [3]. These restrictions have urged membrane scientists to constantly seek new membrane
materials and develop novel membrane structures with superior chemical stability, thermal stability,
water permeability, as well as high selectivity [4]. Recently, carbon-based materials like carbon
nanotubes (CNTs), graphene, and its derivative graphene oxide (GO), have shown notable potential
in membrane-based separation fields because of their strong mechanical strength, high resistance to
strong acids/alkaline and organic solvents, and easy accessibility [5–8]. Among them, GO was served
as one of the emerging nano-building materials for the fabrication of novel separation membrane
owing to its distinct two-dimensional (2D) and single-atomic-thick structure, high mechanical strength,
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high chemical inertness, nearly frictionless surface, and good flexibility combined with large-scale and
cost-effective production in solution [9–11].

GO was first synthesized by Brodie [12] in 1859. Subsequently, Staudenmaier [13] and
Hummers [14] improved the preparation method in 1898 and 1958, respectively. Afterwards, several
modified Hummers’ methods as well as some other new methods were successively developed [15–17].
In order to identify the surface morphology and chemical structure of the resultant GO, several
characterization techniques are widely employed, such as atomic force microscopy (AFM), scanning
electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman
spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR),
thermogravimetric analysis (TGA), and Zeta potential [15,16,18,19]. The resultant GO contains plentiful
of oxygenated functional groups—such as hydroxyl, epoxy, and carboxyl—on its basal plane and
at its edge [20], as shown in Figure 1. These functional groups endow GO good hydrophilicity and
favorable water solubility, which enables a convenient and cost-effective solution process for the
preparation of GO-based membrane [21,22]. Additionally, these oxygenated functional groups make
GO nanosheets readily to be further surface-modified and the correspondingly functional GO-based
composite membranes with preferable separation performance can be obtained.
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Figure 1. Structure mode of graphene oxide [23]. Copyright 2015 Journal of the Physical Society
of Japan.

Based on these advantages as well as high surface-to-volume ratio structure of GO nanosheets,
various GO-based membranes have been widely developed and exhibited great promise in many
membrane separation fields such as gas separation [24,25], water purification [26], desalination [27],
and pervaporation (PV) [28]. In recent decades, patents and papers (including research articles and
review papers) focusing on GO-based membranes are growing exponentially, as shown in Figure 2.
Among them, several review papers focused on summarizing the structure, physicochemical property,
application, and separation mechanism of GO-based membranes appeared [9,23,29–39]. Based on
these research articles, we learned that the structure, mechanical strength, and structural stability of
GO-based membrane have significant influence on membrane separation performance.

In this review paper, the latest research progress in GO-based membranes centered on
improving membrane structure, mechanical strength as well as structural stability in aqueous
solution is highlighted and discussed in more detail. First, we briefly reviewed the preparation
and characterization of GO. Then, the preparation method, characterization, and type of GO-based
membrane are summarized. Finally, the advancements of GO-based membrane in adjusting
membrane structure and enhancing their mechanical strength as well as structural stability in aqueous
environment are particularly discussed, in order to promote the development of GO-based membranes
in real-world applications.
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2. Preparation and Characterization of GO

2.1. Preparation of GO

The synthetic process of GO mainly contains two steps: oxidation of graphite and exfoliation of
graphite oxide, as shown in Figure 3. So far, various methods have been reported for the preparation
of GO [12–17,40]. These methods, as well as their characteristics, are summarized in Table 1.
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Table 1. Methods for the preparation of GO.

Oxidant Method Acid Reaction
Time

Interlayer
Spacing C:O Ratio Note Reference

KClO3

Brodie HNO3 3–4 days 5.95 Å 2.16 Toxic gas ClO2 [12]
Staudenmaier HNO3, H2SO4 1–10 days 6.23 Å 1.85 Toxic gas ClO2, NOx [13]

Hofmann HNO3, H2SO4 4 days – – Toxic gas ClO2, NOx [40]

KMnO4

Hummers NaNO3, H2SO4 ≈2 h 6.67 Å 2.25 Toxic gas NOx, Mn2+

in GO
[14]

Modified Hummers K2S2O8, P2O5,
H2SO4

8 h 6.9 Å 2.3 – [17]

Improved Hummers 9:1
H2SO4/H3PO4

≈12 h 9.3 Å – Mn2+ in GO [16]

K2FeO4
Iron-based green

method H2SO4 1 h 9.0 Å 2.2 Fe3+ in GO [15]

GO was first synthesized by Brodie in 1859 [12]. In this procedure, graphite was repeatedly
oxidized in a fuming nitric acid (HNO3) with potassium chlorate (KClO3) as the oxidant for three
to four days. The extent of oxidation characterized by the C:O ratio was determined to be 2:1.
This procedure proved to be time consuming and generated toxic gas (ClO2), which was unsafe
and harmful to the environment. Nearly 40 years later in 1898, Staudenmaier improved Brodie’s
method by adding KClO3 in multiple aliquots during the oxidation course and further acidifying
the mixture by adding concentrated sulfuric acid (H2SO4) [13]. This method was more practical
and convenient for the production of GO with comparable oxidation degree to Brodie’s method.
However, similarly to Brodie’s method, this method also produced toxic gases (ClO2, NOx) and was
not environmentally friendly.

In 1937, Hofmann modified Brodie’s method, which substituted fuming HNO3 with non-fuming
HNO3 during the oxidation course [40]. Nearly 20 years after Hofmann, in 1958, a different
approach was put forward by Hummers and Offeman, who utilized potassium permanganate
(KMnO4) as oxidant combined with a hybrid of concentrated H2SO4 and sodium nitrate (NaNO3) [14].
A more highly oxygenated form of GO could be obtained by this method in less than 2 h. As such,
this procedure was more efficient and less time consuming compared to the aforementioned methods
and widely used in current research. In 1999, Kovtyukhova et al. [17] developed a modified Hummers’
method, which included two oxidation procedures. First, they preoxidized the graphite in a mixing
solution of concentrated H2SO4, K2S2O8, and P2O5 at 80 ◦C. Then the mixture was washed and dried at
ambient temperature. After that, the mixture was ulteriorly oxidized by Hummers’ method. Compared
to Hummers’ method, the oxidization extent of graphite was slightly higher via this method. However,
it should be noted that both Hummers’ method and modified Hummers’ method generated toxic
gases (NO2, N2O4) and much more attention should be paid to control the reaction temperature during
the process.

In order to develop a more convenient and safer method for producing GO, Marcano et al. [16]
proposed an improved Hummers’ method in 2010, in which a hybrid of H2SO4/H3PO4 with
volume ratio of 9:1 was used as the mixed acid and KMnO4 was used as the strong oxidant.
Compared to Hummers’ method, the improved Hummers’ method was simpler and higher yielding,
and generated no toxic gas, making it possible for large-scale production of GO. Nevertheless, all of
the Hummers’-related methods faced a common problem, that is the introduction of environmentally
hazardous heavy metal Mn2+ in the preparation process, and the existence of trace of Mn2+ would
affect the physicochemical properties of GO. In order to solve this problem, Gao et al. [15] reported
a new environmentally-friendly approach, in which the K2FeO4 was utilized as the strong oxidant to
avoid the introduction of heavy metal Mn2+. Meanwhile, this procedure was less time consuming (1 h)
and enabled the recycle of H2SO4, which decreased the pollution to environment. They claimed that
this green, safe, and highly efficient method was promising for large-scale commercial applications
of GO.
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As mentioned above, an approach which is highly oxidized, low-cost, safe, simple,
and environmentally friendly will provide the possibility for large-scale production of GO. Therefore,
continuous efforts are required to achieve this objective. Additionally, it should be noted that the
resultant GO produced with different methods differs significantly in structure and physicochemical
property, which depends not only the species and dosage of oxidant, but also on the reaction condition
and initial graphite source. So the method for GO preparation should be carefully designed in
a practical application.

2.2. Characterization of GO

In order to verify the successful synthesis of GO and identify its chemical structure, a variety of
characterization techniques have been employed. For example, in order to obtain the information of
surface morphology and size of GO, SEM, TEM, and AFM are widely used [16,19]. With respect to the
chemical composition of GO, quantitative XPS and inductively coupled plasma mass spectrometry
(ICP-MS) are usually utilized [15]. Additionally, Raman spectra, XRD, and FTIR spectra are extensively
applied to identify the chemical structure of GO [15,16,18]. To obtain more information about GO
properties, TGA, and Zeta potential are also employed by researchers to judge its thermal stability and
electrochemical property [16,22]. More detailed descriptions about these characterization techniques
are summarized in Table 2.

Table 2. Methods for the characterization of GO.

Name Characterization
Method Characterization Information Reference

Micromorphology and
size of GO

SEM Lateral size distribution of GO sheets, observe
the structural morphology of GO [15,16]

TEM Morphology of GO (wrinkles), monolayer
character of GO sheets [15–18]

AFM Lateral size and thickness of GO sheets [16–19]

Thermal stability TGA Thermal stability of GO [15,16]

Chemical structure of
GO

XPS Quantitatively analyze the chemistry
composition of GO [15–17]

ICP-MS Chemistry composition of GO, identified the
metal ion content in GO [15]

FTIR
Characteristic bands corresponding to oxygen
functional groups, confirmed the successful
synthesis of GO

[15–18]

XRD
Crystalline structures of the GO nanosheets,
inter-sheet distance of GO, confirmed the
successful synthesis of GO

[15–18]

Raman spectroscopy Analyze the chemical structure of GO
combined with XPS, FTIR, XRD, ICP-MS [15,16,18]

Electrochemical property Zeta potential
measurement

GO nanosheets are negatively charged over
a wide pH range [22]

3. GO-Based Membranes

3.1. Preparation Methods of GO Membranes

Based on stable aqueous dispersity as well as high aspect ratio structure of GO, GO membranes can
be easily fabricated via different methods such as filtration-assisted method, casting/coating-assembly
method, and layer-by-layer (LbL) assembly method. Additionally, evaporation-assisted method,
templating method, shear-induced alignment method, and hybrid method are also applied to prepare
GO membranes (Table 3). The different preparation methods for GO membranes will be described in
detail as follows.
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Table 3. Methods for the preparation of GO membranes.

Method Description Note

Filtration-assisted
Vacuum filtration
Pressure filtration

Good nanoscale control over the membrane thickness;
laminar structure of GO membranes is dictated by the
filtration force; highly scalable

Casting/coating-based

Spinning-casting/coating
Nonuniform deposition of GO nanosheets; poor control
over the membrane thickness; producing highly
continuous GO membranes; highly scalable

Drop-casting
Dip-coating

Spray-coating
Doctor blade-casting

LbL assembly Layer-by-layer assembly Easily control of the GO layer number, packing,
and thickness

Others

Hybrid approach Easily control of the GO assembly, industrial-scalability,
rapid throughput.

Evaporation-assembled method Scale-up, easily control of the membrane thickness
and size

Templating method –

Langmuir–Blodgett (LB) assembly Producing highly uniform, close-packed monolayered
GO membrane

Shear-alignment method Scale-up, industrial-scalability, producing large-area GO
membrane, rapid throughput

3.1.1. Filtration-Assisted Method

Filtration-assisted method, including vacuum filtration and pressure-assisted filtration, is a widely
used approach to prepare GO membranes at present, especially for the free-standing GO
membranes [28,41,42]. Dikin et al. [42] fabricated a free-standing GO membrane by vacuum
filtration, in which GO nanosheets were bonded together in a near-parallel way. They reported
that the physicochemical property of GO nanosheets did not change during the preparation process.
Tsou et al. [43] investigated the influence of GO membrane structure prepared via three distinct
self-assembly methods (pressure-, vacuum-, evaporation-assisted technique) on membrane separation
performance (Figure 4a). Results showed that the GO membrane obtained via pressure-assisted
technique exhibited exceptional PV performance and superior operating stability at a high temperature
(70 ◦C) due to its dense packing and highly ordered laminate structure. In another study,
a highly ordered GO/mPAN (modified polyacrylonitrile) composite membrane was prepared
via pressure-assisted self-assembly (PASA) technique [28] (Figure 4b). The resultant GO/mPAN
composite membrane exhibited excellent PV performance for an isopropyl alcohol (IPA)/water mixture.
They reported that the membrane thickness could be readily adjusted by changing the concentration
and volume of GO solution.

From above discussion, we can conclude that filtration-assisted method allows reasonable and
easy control over the membrane thickness and microstructure, and is a potential route for large-scale
preparation of GO membrane.

3.1.2. Casting/Coating-Assisted Method

At present, many GO membranes have been developed based on casting/coating-assembly
method, which includes drop-casting [44], dip-coating [45], spaying-coating/casting [6], and spin-coating
approach [46]. Park et al. [25] fabricated several layered GO membranes via spin-coating method on
a polyethersulfone (PES) substrate and studied their gas separation performance. They reported that high
gas separation selectivity could be achieved by controlling gas flow channels through adjusting stacking
manner of GO nanosheets. Robinson et al. [46] presented that large-area and ultrathin GO membranes
with excellent mechanical property could be obtained by a modified spin-coating method (Figure 4c).
In this procedure, dry nitrogen was utilized to accelerate GO solution evaporation, which correspondingly
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obtained continuous GO membranes with strong interfacial adhesion force between GO nanosheets and
substrate surface. Meanwhile, membrane thickness could be controlled on nanometer scales through
varying GO concentration in solution or volume of GO suspension. Individual GO nanosheets within GO
membranes fabricated by casting/coating-assembly method are strongly held together with hydrogen
bonding and Van der Waals force.
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3.1.3. Layer-by-Layer Assembly Method

Recently, LbL assembly approach has been attracting great attention for the preparation of
GO membranes. An interlayer stabilizing force can be conveniently introduced into laminate GO
membranes by electrostatic interaction or covalent bonding through this method [26,49]. Hu et al. [47]
have developed a new-type of water purification membrane through this approach (Figure 4d).
The negatively charged GO nanosheets were interconnected with positively charged poly (allylamine
hydrochloride) (PAH) via electrostatic interaction and then assembled onto a porous PAN support.
Results showed that the resultant GO membrane reserved a compact structure in solutions of low ionic
strength and showed excellent separation performance. Typically, the membrane thickness can be
easily adjusted by changing the number of LbL deposition cycles [47,50].

3.1.4. Other Methods

Apart from aforementioned methods for the preparation of GO membrane, some novel
preparation methods such as evaporation-assisted method [48,51], templating-assisted method [52],
Langmuir–Blodgett assembly method [53,54], hybrid method [55], and shear-induced alignment
method [56] have also been utilized to fabricate GO membrane. Recently, facile engineering of GO
membranes was realized via a hybrid approach by Guan et al. [48], in which spray-coating and
solvent evaporation-induced assembly technique were included (Figure 4e). They reported that the
membrane structure could be finely and conveniently manipulated by adjusting the spraying times
and evaporation rate. The resultant GO membranes with ordered and compact structure presented
excellent gas separation performance, which exceeded the upper bound of most polymeric membranes.
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Specifically, this process was less time consuming and more productive compared with filtration
method. This study provided a rather facile and productive approach for large-scale preparation of
defect-free GO membranes.

Chen et al. [51] fabricated large-area free-standing GO membranes via an evaporation-driven
self-assembly method. They reported that the thickness and area of the membrane could be readily
adjusted by controlling the evaporating time and the liquid/air interface area. This is a facile and
scale-up approach for preparation of GO membrane. Akbari et al. [56] provided a rapid, scalable,
and industrially adaptable method, shear-induced alignment method, to produce large-area GO-based
membranes by taking advantage of the flow properties of a discotic nematic GO fluid. The resultant
membranes had large in-plane stacking order of GO sheets and showed remarkable enhancement
in water permeability with comparable or better retention of small organic molecules and ions by
molecular sieving and electrostatic repulsion. Meanwhile, the obtained membranes showed good
stability in aqueous environments and excellent fouling resistance due to the hydrophilic groups on
GO membrane. This shear-alignment processing method is conducive to bridging laboratory curiosity
to industrial productivity for GO membranes.

From above description, it can be concluded that various methods have been developed and
utilized to fabricate GO-based membrane. Specifically, it should be noted that the structure and
separation performance of the resultant GO membranes significantly depended on the fabrication
method and corresponding fabrication conditions. Hence, in a specific practical application,
a desired GO membrane can be obtained by appropriate preparation method and optimized
fabrication conditions.

3.2. Characterization of GO Membranes

In order to identify the structure and determine the separation property of GO membranes,
various characterization techniques have been exploited, including SEM, TEM, AFM, TGA, contact
angle measurement (CA), FTIR, XPS, XRD, Raman spectroscopy, surface zeta potential, and mechanical
measurements. Specifically, in order to get the surface characteristics (i.e., membrane uniformity,
surface morphology, and surface roughness), cross-sectional morphology and thickness of the
synthesized GO membrane, SEM, TEM combined AFM are usually utilized. With respect to the
chemical composition and microstructure of membrane, XRD, XPS, and Raman spectroscopy combined
with FTIR spectroscopy are most commonly utilized. Moreover, in order to get more insights into the
application potential of the resultant GO membranes, surface zeta potential, TGA, CA, and mechanical
measurements are further accomplished. Specifically, an experimental characterization technique
using an integrated quartz crystal microbalance with dissipation and ellipsometry was proposed
by Mi et al. [57]. This characterization technique could accurately quantify the d-spacing of a GO
membrane in an aqueous environment and well beyond the typical measurement limit of (~2 nm) of
XRD. Detailed information about these characterization techniques are summarized in Table 4.

Table 4. Methods for the characterization of GO membrane.

Characterization Method Characterization Information Reference

Surface Zeta potential Identified the surface charges of membrane [22]
Stress–strain curves Mechanical stability of the membrane, tensile strength, Young’s modulus [22]

SEM Surface morphology and cross-section structure [26]
AFM Surface roughness of membrane, membrane uniformity [26]
CA Surface hydrophilic or hydrophobic property of membrane [27]

FTIR Chemical structure of membrane, surface functional groups of membrane [48]
XPS Quantitatively analyze the elemental compositions of membrane [48]

Raman spectroscopy Identified the existence of GO in composite membrane [48]
TGA Thermal stability of membrane [49]
TEM Surface morphology and cross-section structure [53]
XRD Crystalline structures, d-spacing of membrane [58]

Integrated quartz crystal
microbalance with dissipation

and ellipsometry

Accurately measure the d-spacing of GO membranes in an aqueous
environment [57]
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Despite aforementioned characterization techniques having been extensively utilized for
analyzing structure and separation performance of GO membrane, there still remain several challenges
for the accurate and deep characterization of the transport passage of GO membrane. For example,
there is a lack of in situ characterization technique for evaluating interlayer spacing of GO membrane
when the membrane is under operation. Additionally, an appropriate method for calculating the
tortuosity of GO membrane has not been developed. Therefore, more efforts are badly needed to
achieve better understanding of the separation mechanism of GO membrane.

3.3. Types of GO-Based Membranes

Today, there is a blossoming of studies focused on the development of GO-based membrane,
including free-standing GO membrane, supported-GO membrane, and GO-modified composite
membrane. Specifically, for the free-standing GO membrane, GO membrane is directly used as
a separation layer. With respect to the supported-GO membrane, GO membrane is supported by
a polymeric or an inorganic substrate with GO layer as the active separation layer. GO-modified
composite membrane is referred to the GO-based membranes obtained by directly incorporating GO
nanosheets into polymer casting solutions during membrane fabrication process or functionalizing
membrane surface by post-coating of the pre-fabricated membrane with GO nanosheets. In this section,
the recent advancements in the three GO-based membranes are in detail reviewed. Table 5 summarized
their applications and corresponding separation performances.

3.3.1. Free-Standing GO Membranes

At present, a variety of approaches have been employed to fabricate free-standing GO membrane,
such as vacuum filtration [59,60], evaporation-driven self-assembly [51], self-assembly process
under ambient conditions [61], drop casting [62], and pressurized ultrafiltration (UF) method [63].
Sun et al. [62] developed free-standing GO membranes via a drop-casting method and investigated
their water purification performance. They reported that the sodium salts could be effectively separated
from the heavy-metals salts and organic contaminants through these free-standing GO membranes.
In a different study, free-standing GO thin films were fabricated via a pressurized filtration method
and utilized for dehydration of ethanol [63]. The synthesized GO membranes showed excellent
separation performance with water permeability of 13,800 Barrer and water/ethanol selectivity of 227.
They said that the excellent separation performance was ascribed to the high structural stability and
hydrophilicity of the free-standing GO membranes. Recently, Zhao et al. [60] fabricated a free-standing
GO-polygorskite (GOP) nanohybrid membrane for oil/water separation. The obtained free-standing
nanohybrid GOP membrane presented outstanding separation performance and anti-fouling property
for various oil-in-water emulsion systems, which demonstrated the potential application of such GO
membranes in wastewater treatment. More detailed information and a comparison of the membrane
performance based on these descriptors are summarized in Table 5.

3.3.2. Supported-GO Membranes

Although free-standing GO membranes have achieved great progresses in membrane separation
applications, a GO membrane supported on desired mechanical support for high-pressure application
is rather necessary. Additionally, depositing GO layers onto certain polymeric or inorganic membrane
surface could also improve the separation performance and antifouling property of pristine membranes.
Hung et al. [28] prepared GO-modified PAN composite membranes via PASA technique and studied
their PV separation performance for an IPA/water mixture. High permeability and selectivity were
obtained by the resultant GO/mPAN composite membrane. They pointed out that the high selectivity
of the GO/mPAN composite membranes might be ascribed to the highly ordered, packed laminate
and dense structure, which permitted the transport of water but rejected IPA molecules. Recently,
a highly permeable and borate cross-linked GO/PES composite membrane was developed via vacuum
filtration method and presented efficient carbon capture in separating the CO2/CH4 mixture [64].
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Chu et al. [65] prepared GO-coated PES UF membranes via a simple vacuum filtration process
and used the resultant membranes for humic acid (HA) removal. Study results showed that the
GO-coated membranes presented approximately 20% higher pure water flux and 3.4 times higher HA
rejection than that of the original PES membranes. Meanwhile, they reported that GO sheets were
not easily damaged or detached from the PES substrate during filtration or water rinsing due to the
strong hydrogen bonding interactions between the sulfone groups on PES and carboxylic groups on
GO sheets. Rao et al. [66] fabricated a novel and highly-efficient nanofiltration (NF) membrane via
surface decoration of metal-organic framework/GO (IRMOF-3/GO) onto polydopamine (PDA)-coated
polysulfone (PSF) substrate and used it for the heavy metal removal from water. Results showed
that the resultant NF membrane exhibited a highly-efficient rejection of copper (II) (up to 90%) with
a relatively high flux of 31 L/m2/bar/h at the pressure of 0.7 MPa and pH 5.0. Additionally, the NF
membrane showed excellent stability during the 2000 min NF test. This study provided a promising
potential for water purification.

In another study, ceramic hollow fiber supported-GO membranes were prepared via vacuum
filtration method by Li et al. [67]. They reported that the synthesized GO membranes showed superior
organic solvent NF property. However, such GO membranes were unstable at dry state because GO
layers are easily exfoliated from the substrate due to the weak interaction with the support surface.
Aiming to solve this problem, several covalent linkers were utilized to strengthen the interfacial
adhesion force between GO layers and substrate surface. For example, Goh et al. [68] designed
a type of NF-like GO/poly (amide-imide) (PAI) hollow fiber membrane using polyethyleneimine
(PEI) as covalent linker. They reported that the resultant novel GO/PAI-PEI composite membranes
presented excellent separation performance and great stability for water treatment. Similarly,
Jin et al. [69] fabricated a GO/ceramic composite membrane via dip-coating method by modifying
the ceramic support surface with silane. The fabricated membranes presented good integrity,
continuity, and enhanced stability; and they exhibited superior PV performance for separating water
from water/ethanol mixtures. Similar modification technique has been reported by Huang and
co-workers [27,70], who prepared highly stable, permselective, and reproducible GO/Al2O3 and
three-dimensional GO framework (GOF)/Al2O3 composite membrane using PDA and 1, 4-phenylene
diisocyanate (PDI) as covalent linker, respectively. The GO nanosheets were strongly bounded onto the
support surface due to the great adhesive abilities of PDA and PDI. Both of the modified GO/Al2O3

and GOF/Al2O3 composite membranes presented favorable seawater desalination performance and
excellent long-term operation stability with constant ion rejection and water flux for 3.5 wt % seawater.
These extraordinary separation performances demonstrated the great potential applications of the
covalently cross-linked GO membranes for seawater desalination. Recently, Salehi et al. [71] prepared
a novel highly-efficient forward osmosis (FO) membrane by LbL assembly of positively charged
chitosan (CS) and negatively charged GO sheets onto a negatively charged sulfonated PES (SPES)-PES
substrate via electrostatic interaction. Briefly, the negatively charged SPES-PES substrate was prepared
by blending hydrophilic sulfonated PES into PES matrix via phase inversion method. The negatively
charged SPES-PES substrate was firstly immersed in the positively charged CS solution and a CS layer
was deposited on the substrate surface via electrostatic interaction. Then the CS decorated substrate
was soaked in the GO solution and a GO layer was formed on the CS decorated substrate surface via
electrostatic interaction and amide bonds formed between the carboxylic groups of GO and amino
groups of CS. Study results showed that the membranes obtained by LbL assembly of CS/GO had
2–4 orders of magnitude higher water permeation with a little compromise of the salt rejection than that
of the thin film composite (TFC) membrane. Additionally, the LbL assembly of CS/GO membranes
had enhanced long-time operation stability due to the amide bonds formed between CS and GO.
The CS could be used as an effective crosslinker to crosslink GO sheets onto the negatively charged
substrate by electrostatic interactions and to crosslink GO adjacent layers by electrostatic interactions
coupled with amide bonds formed between CS and GO, which could significantly enhance interfacial
compatibility between GO active layer and substrate as well as inter-layer bonding force within GO
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layers. The more detailed information and comparison of the membrane performance based on these
works are summarized in Table 5.

3.3.3. GO-Modified Composite Membranes

Apart from the two types of GO-based membrane described above, in which GO nanosheets
were directly used as the active separation layers, researchers also focused on modifying polymeric
membranes with GO nanosheets via different methods. By now, various GO-modified polymeric
composite membranes have been developed and presented improved water permeability, selectivity,
and anti-microbial performances [72–74]. Specifically, based on the modified methods of GO,
two strategies have been developed to modify the polymeric membranes. For the first method,
the GO nanosheets were directly incorporated into polymeric casting solutions during membrane
fabrication process [73,75–82]. For the other one, GO nanosheets were utilized to functionalize
polymeric membranes via surface modification technique [83–85].

Table 5. Application and separation performance of GO-based membranes.

Types of GO
Membrane

Name of GO
Membrane

Fabrication
Method Application Membrane Performance Reference

Free-standing

GO membrane Flow-directed
self-assembly – Elastic modulus: 32 GPa

Tensile strength: 70.7 MPa [42]

GO membrane Evaporation-driven
LbL self-assembly – Elastic modulus: 12.7 GPa

Tensile strength: 67.7 MPa [51]

Cross-linked
GO membrane Vacuum filtration Ion dialysis separation Elastic modulus: 10.5402 GPa

K+/Mg2+ selectivity factor: 7.15 [59]

GOP
nanohybrid
membrane

Vacuum filtration Oil/water separation Water flux: 1869 L/m2/h
Superior anti-oil-fouling

[60]

GO membrane
Self-assembly

under ambient
condition

–
Tensile strength: 46.20 MPa

Elongation: 1.29%
Young’s modulus: 5.08 GPa

[61]

GO membrane Drop-casting Ion penetration

Entirely blocked heavy-metal salt
(e.g., copper sulfate) and organic

contaminants (rhodamine B);
low rejection of sodium salts

[62]

GO membrane Pressurized
ultrafiltration

Dehydration of 85 wt %
ethanol

Water permeability: 13,800 Barrer
Selectivity: 227 [63]

Supported

GO/PES Spin-casting Gas separation CO2 permeability: 8500 Barrer
CO2/N2 selectivity: 20 [25]

GOF/Al2O3 Vacuum filtration 3.5 wt % seawater
desalination

Water flux: 11.4 kg/m2/h
Ion rejection: >99.9%

[27]

GO/mPAN
Pressure-assisted Pervaporation of a 70 wt %

IPA/water mixture
Permeation flux: 4137 g/m2/h

Separation factor: 1164
[28]self-assembly

GO/PAN LbL assembly Water purification Water flux: 2.1–5.8 L/m2/h
Sucrose rejection: 99%

[47]

GO/Nylon Shear-alignment
method Water treatment

Water permeability:
71 ± 5 L/m2/bar/h

Rejection: organic probe molecules
(hydrated radius >5 Å): >90%
Monovalent and divalent salts:

30–40%

[56]

GO/PES Vacuum filtration Gas separation CO2 permeance: 650 GPU
CO2/CH4 selectivity: 75 [64]

GO/PES Vacuum filtration Humic acid removal Rejection: 85.3–93.9%
Superior antifouling capability [65]

IRMOF-3/
GO/PDA-PSF Dip-coating Heavy-metal removal Water flux: 31 L/m2/h

Copper(II) rejection: 90%
[66]

GO/ceramic Dip-coating Pervaporation separation of
water/ethanol mixtures

Total flux: 461.86 g/m2/h
Water recovery: 39.92 wt %

[69]

GO/Al2O3 Vacuum filtration 3.5 wt % seawater
desalination

Water flux: 48.4 kg/m2/h
Ion rejection: ≥99.7%

[70]
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Table 5. Cont.

Types of GO
Membrane

Name of GO
Membrane

Fabrication
Method Application Membrane Performance Reference

GO-modified

GO/PSF Phase inversion Water purification
water flux: 353.5 L/m2/bar/h

Rejection: Na2SO4 (95.2%); MgSO4
(91.1%); NaCl (59.5%)

[72]

GO/PSF Phase inversion Water treatment Water flux: 450 L/m2/h
BSA rejection: 99%

[73]

GO/PESc
LbL

Water treatment
Water flux: 7.1 kg/m2/MPa/h

Rejection: Mg2+ (92.6%)
Na+ (43.2%)

[75]
Self-assembly

Pebax/GO/PVDF Dip-coating Gas separation
N2 permeance: 9.6 GPU

CO2 permeance: 413.3 GPU
CO2/N2 seletivity: 43.2

[76]

GO/H-PAN Electrospinning Oil/water separation
Water flux: 3500 L/m2/h

Rejection ratio: 99%
Superior anti-oil-fouling

[83]

GO/APAN – Oil/water separation
Water flux: 10,000 L/m2/h

Rejection ratio: ≥98%
Superior anti-oil-fouling

[84]

GO/PEI/DPAN Dip-coating Solvent resistant NF

Ethanol flux: 10.8 L/m2/h
Acetone flux: 15.7 L/m2/h

Ethyl acetate flux: 12.9 L/m2/h
n-heptane flux: 3.1 L/m2/h

PEG(Mw 200) rejection 96.8%

[85]

– GO/PES Phase inversion Water treatment
Water flux: 20.4 kg/m2/h

Direct Red 16 rejection: 96%
Superior anti-fouling capability

[86]

The first approach has been employed by several researchers. Lee et al. [73] fabricated
GO-incorporated PSF membrane bioreactors (MBRs) via phase-inversion method and investigated their
performance. Results showed that the resultant MBRs exhibited excellent anti-fouling performance
and a five-fold increase in the time between scheduled chemical cleaning. A new-type of PES
composite matrix membrane embedded GO nanosheets was developed via phase-inversion method
by Zinadini et al. [86]. The obtained composite membranes with wider finger-like pore structure
and superior hydrophilicity compared to the pristine PES membranes exhibited improved water
permeability and fouling resistance. In the same way, Ding et al. [87] also synthesized solvent
resistant NF GO-embedding PEI/PAN membranes. Briefly, the PAN substrate was first modified
with dopamine to strengthen the interfacial bonding force between the GO-embedding PEI layer
and PAN substrate. They found that the GO nanosheets were horizontally-aligned within PEI
matrix and provided particular transport channels for small-sized molecules whereas rejecting
large-sized molecules. With such a unique membrane structure, enhanced solute rejection and
solute flux were achieved. Recently, a new-type of thin film nanocomposite (TFN) membrane
was prepared by Lai et al. [72], who incorporated different quantities of GO into PSF substrate.
The obtained TFN membrane presented higher permeability and selectivity compared with the
pristine TFC membrane. The 0.3 wt % GO incorporated TFN membrane exhibited highest water
flux (353.5 L/m2/bar/h) with superior rejections for Na2SO4 (95.2%), MgSO4 (91.1%), MgCl2 (62.1%),
and NaCl (59.5%). More critically, the resultant TFN membrane overcame the trade-off effect between
permeability and selectivity owing to the improved hydrophilicity and surface negativity after GO
incorporating. Zhang et al. [76] fabricated shear-aligned GO laminate/polyethylene oxide-polyamide
block copolymer (Pebax) ultrathin composite hollow fiber membranes by dispersing GO into Pebax
solution via a facile dip-coating approach. Study results showed that the introduction of the aligned GO
laminates into the composite membrane remarkably improved the CO2 permeance (up to 90%) of the
original Pebax membrane without compromising the CO2/N2 selectivity. Specifically, the incorporation
of GO strikingly improved the Young’s modulus of the composite membrane, which contributed to the
mechanical strength of GO and the good interfacial compatibility between GO and Pebax polymers.
Additionally, the flexibility and mechanical properties of the resultant composite membrane were
significantly enhanced, which were preferable for large-scale manufacture of the shear-aligned GO
laminate/Pebax composite hollow fiber membrane.
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Perreault et al. [83] utilized the second method to improve the property of TFC polyamide (PA)
membrane via a simple GO surface functionalization. Briefly, GO was strongly bounded to the
membrane surface through the amide coupling between carboxyl groups of GO and carboxyl groups
of the PA active layer. The post-coating surface functionalization strategy allowed GO nanosheets
presenting at the membrane surface and conveniently inactivated bacteria. In addition, this method
could remarkably reduce the quantity of GO required for the functionalization and correspondingly
lowered the cost. Study results showed that the functionalized-TFC PA membranes exhibited excellent
antimicrobial property with bacteria directly contacting the membrane surface, which resulted in
65% bacterial inactivation after 1 h. These results demonstrated that the surface functionalization
of TFC membranes by GO was a potential route for the design of novel antimicrobial membranes.
Recently, Zhang et al. [84] fabricated a GO/aminated PAN (GO/APAN) fiber hierarchical-structured
membrane by controlled assembly of GO sheets on the surface of APAN fibers and the gap between
fibers, and used them for microfiltration (MF) of oil–water emulsion. Study results showed that
the resultant membrane had ultra-high water flux (~10,000 L/m2/h) due to the superhydrophilicity
and large porosity of GO/APAN membrane. Moreover, the GO/APAN membrane also presented
preferable rejection ratio (≥98%) and excellent fouling resistance due to the smaller GO sheets modified
on the APAN fibers and larger GO sheets assembled on the gap between fibers. More importantly,
the GO/APAN membrane exhibited transnormal stability in separating oil–water emulsion with
a broad pH range or high-concentration salt. These results indicated that the novel GO/APAN
membrane was promising for practical applications in treating oily wastewater. A similar study was
also proposed by Zhang et al. [85] with analogous results. More detailed information and a comparison
of the membrane performance based on these studies are summarized in Table 5.

From above discussion, we can conclude that different kinds of GO-based membranes could
be fabricated via various preparation methods, which showed superior separation performances
in various applications including water purification, wastewater treatment, gas separation, and PV.
Based on the discussion and analysis of the presented works, the GO-based membranes had promising
potentials in real-world applications by selecting the appropriate preparation method. For example,
a rapid, scalable, and industrially adaptable method—shear-induced alignment method—was
proposed by Akbari et al. [56] to produce large-area GO-based membranes. The resultant membranes
not only had enhanced water permeability but also showed excellent stability and fouling resistance in
aqueous environments. This method was conductive to bridging laboratory curiosity to industrial
productivity for GO membranes. In an another study, a hybrid approach including spray-coating and
solvent evaporation-induced assembly technique was proposed by Guan et al. [48] to engineer GO
membranes. The membrane structure could be finely and conveniently manipulated through this
method with less time consuming and more productive compared with filtration method. The resultant
GO membrane exhibited excellent gas separation. They reported that this method provided a rather
facile and productive approach for large-scale preparation of defect-free GO membranes. While the
aforementioned methods were predicted to be the scalable and industrially adaptable methods for
preparing GO membrane, many more efforts should be taken to prepare highly-efficient GO-based
membranes with enhanced separation performance and long-term operation stability to realize the
real-world application of GO membranes.

4. Enhanced Separation Performance of GO Membrane

Although GO membrane has shown good permeability and selectivity in research experiments,
there significant effort is still needed to enhance its separation performance to realize its real-world
application and meet industrial demands [88]. So far, several strategies have been put forward to
develop high-efficiency GO membranes with improved separation performance for the requirements
of specific applications. Herein, according to the different modified ways and interaction between
modifying agent and GO sheets, two approaches are introduced: physical approach and chemical
approach. Additionally, several other unique methods were also developed by researchers for
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enhancing the separation property of GO membranes. All of these approaches will be reviewed
and discussed in detail as follows.

4.1. Physical Approach for Improving Separation Performance of GO Membrane

For the physical approaches, separation property of GO membrane can be improved by
controlling GO nanosheets size [44,89,90] and GO membrane thickness [91]; changing water
pH [22]; controlling the fabrication condition [92]; intercalating nanoscale materials such as carbon
dots (CDs) [93], single-walled carbon nanotube (SWCNT) [94], palygorskite nanorods (PGS) [60],
metal–organic framework (MOF) [95] into laminar GO membranes; or incorporating surfactants
such as cetyltrimethylammonium bromide (C16TAB) into laminated GO membrane. Shen et al. [44]
fabricated GO-polyether block amide (PEBA) composite matrix membranes with different lateral size
of GO sheets for CO2 separation. Results showed that the membrane microstructure, physicochemical
property, and gas separation performance were greatly influenced by the lateral size of GO sheets.
Coleman et al. [91] reported a study of two charge-equivalent ruthenium complex ions ((Ru(bpy)3

2+

and Ru(phen)3
2+)) transporting through GO membranes with different thicknesses. Despite only

a sub-angstrom size difference between the two ions, their diffusion rates through the GO membranes
were markedly distinct. Their analysis suggested that the flow rate ratio of Ru(phen)3

2+ to Ru(bpy)3
2+

declined significantly with the increasing of membrane thickness. They pointed out that for the
relatively thin GO membranes, ion transport was mainly accelerated by large pores (>1.75 nm in
diameter). Whereas, for the thick membranes, inter-layer spacing formed between adjacent GO
sheets dominated only. Huang et al. [22] demonstrated that separation performance of small molecules
through GO membranes could be readily controlled by tuning the nanochannels within GO membranes
by adjusting the water pH. They reported that at low pH (2–6), the pore size of membrane remarkably
decreased with the decreasing water pH because of the increased electrostatic repulsion force between
adjacent GO sheets, which correspondingly reduced permeability and increased selectivity of GO
membranes. At pH ≤ 2, the GO membranes were nearly impermeable to water. When the pH was
in the range of 6–8, the pore size of nanochannels almost kept constant owing to the unchangeable
negative charges on GO sheets. Consequently, the permeability and selectivity of GO membranes
had no remarkable change. When the pH exceeded 9, the negative charges on GO sheets still almost
unchanged, but the ionic screening effect became significant due to the increasing ion concentration in
water. This shrank the inter-layer spacing of GO sheets and correspondingly resulted in a reduction
of permeability and an increase of rejection rate. Recently, Xu et al. [92] reported that the interlayer
nanostructure of ultrathin GO membranes could be easily tuned by simply controlling single layer GO
(SLGO) deposition rate. Study results showed that the GO membranes fabricated by slow deposition
of SLGO sheets had 2.5–4 times higher water permeation rate and 1.8–4 times higher salt rejection
than that of the membranes prepared by fast deposition. This enhancement could be attributed to the
structure formed by slow deposition of SLGO sheets, which was more thermodynamically favorable
and accelerated fast water permeation. This study demonstrated that the trade-off between water flux
and selectivity of GO membranes could be broken by self-assembly of SLGO via simple deposition
rate control.

Wang et al. [93] fabricated GO membranes with adjustable permeability by incorporating
controllable sized CDs into the interspace between GO layers (Figure 5a) and studied their filtration
performance. They found that the porosities of the CD-embedding GO membranes increased by
42–171% due to the enlarged nanochannels within GO layers compared with those control GO
membranes, which remarkably improved membrane permeability coupled with high-efficiency
removal rates of organic pollutants. Specifically, the stability of the CDs-embedding GO membranes
was also enhanced due to the more compatible integration of the two materials. Gao et al. [94] prepared
ultrathin GO membranes with expanded nanochannels by intercalating SWCNT into GO layers
(Figure 5b) and evaluated their separation performance. Results showed that the SWCNT-intercalated
GO membranes presented higher permeability than original GO membranes with similar rejection rates
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for nanoscale molecules and particles. In another study, a free-standing GO nanohybrid membrane was
developed by Zhao et al. [60], who tuned the inter-layer spacing of GO membranes by intercalating
PGS nanorods into adjacent GO sheets (Figure 5c). Study results showed that the resultant PGS
nanorod-intercalated GO (GOP) nanohybrid membrane exhibited a sharp increase in permeate fluxes
from 267 L/m2/h for GO membrane to 1867 L/m2/h for GOP membrane. Moreover, the GOP
membranes presented exceptional anti-oil-fouling performance for oil-in-water emulsion system with
various conditions. They contributed the enhancement of water permeability, separation efficiency,
and anti-fouling properties to the enlarged mass transport channels, increased hydration capacity,
and the introduction of hierarchical nanostructures on membrane surfaces after intercalating PGS
nanorods into the GO layers. Recently, Ying et al. [95] developed novel MOF-intercalated GO
(MOF@GO) composite membranes via PASA filtration method by intercalating superhydrophilic
MOFs nanoparticles into GO layers and used the resultant MOF@GO membranes to separate ethyl
acetate (EA)/water mixtures (98/2, w/w) through PV process (Figure 5d). They reported that the
MOF@GO membranes presented outstanding water permeation and separation factor for EA/water
mixtures. Specifically, a 159% increment of permeate flux and 244% increment of separation factor
was obtained for the MOF@GO-0.3 membrane (corresponding MOF loading: 23.08 wt %) compared
with pristine GO membrane. Meanwhile, the fabricated MOF@GO membranes presented excellent
operation stability with almost unchanged permeability and separation factor during the test period
as long as 120 h at 303 K. In a recent work conducted by Lian et al. [96], the C16TAB was applied
to increase the inter-layer spacing between adjacent GO layers, as shown in Figure 6. As a result,
the inter-layer spacing between adjacent GO sheets increased from 0.86 nm for original GO membrane
to 3.0 nm for GO-surfacant membrane (confirmed by the XRD analysis), leading to a drastic increase in
permeate fluxes from 1.5 L/m2/bar/h for pure GO membrane to 20 L/m2/bar/h for GO-surfacant
membrane without compromising the rejection for sucrose molecules. The significant increase of
inter-layer spacing might be ascribed to the unique arrangement of C16TAB within GO-surfacant
membrane, with some portion of the C16TAB molecule (around 1.99 nm length and 0.2 nm width,
as seen in Figure 6d) vertically aligned and the rest of horizontally aligned between GO sheets.
Specifically, the vertically aligned portions of the C16TAB primarily expanded the inter-layer spacing
of GO membranes, as shown in Figure 6c.
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Figure 5. Schematic diagram of the process tuned the structure of GO membrane by physical method:
(a) The fabrication process of CD–GO membranes [93]. Copyright 2014 Royal Society of Chemistry;
(b) The preparation process of the SWCNT-intercalated GO ultrathin membrane [94]. Copyright 2015
Royal Society of Chemistry; (c) The fabrication process of the GOP membranes [60]. Copyright 2016
American Chemistry Society; (d) The fabrication process of the MOF@GO Membranes via PASA
technique [95]. Copyright 2017 American Chemistry Society.
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Figure 6. Schematic illustration of possible arrangement of C16TAB within GO membranes: (a) The
pure GO membrane; (b) Two C16TAB paralleled to GO plane; (c) Two C16TAB perpendicularly
arranged to GO laminate plane; (d) Molecular structure of C16TAB with C1–N chain length about 1.99
nm [96]. Copyright 2017 Elsevier.

4.2. Chemical Approach for Improving Separation Performance of GO Membrane

For the chemical approaches, separation property of GO membranes can be adjusted by
changing GO membranes structure through reducing GO membrane [6,24,97–109] or intercalating
chemical groups such as copper hydroxide nanostrands (CHNs) [88], diamine monomers [59,110,111],
dicarboxylic acids with different chain lengths [112], 1,3,5-benzenetricarbonyl trichloride (TMC) [26],
or soft polymer chains such as poly-(vinylpyrrolidone) (PVP) [113] and PDI [27] into GO membranes
via covalently cross-linking or electrostatic interactions using the oxygenated functional groups on
GO nanosheets, or introducing in-plane nanopores on GO nanosheets [114], or functionalizing GO
sheets using one-step carboxylation via nucleophilic substitution reaction [115]. A study conducted
by Shen et al. [24] demonstrated a facile thermal annealing method for finely adjusting the transport
channel of GO membranes by controllably removing oxygenated functional groups on GO sheets,
as shown in Figure 7a. Subnanometer inter-layer spacing within GO membranes could be created by
this method and highly-selective gas transport properties can be obtained accordingly. The GO-0.55
membrane (O/C ratio of 0.55) with 0.36 nm inter-layer nanochannels exhibited highest CO2/N2

separation performance (CO2 permeability: 97 Barrer, CO2/N2 selectivity: 86), transcending the
upper-bound for the most advanced membranes. It was further demonstrated that the size of inter-layer
nanochannels within GO membranes could be finely and effectively regulated by controlling the
oxygenated groups on GO sheets via chemical reduction.
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Huang et al. [88] fabricated nanostrand-challenged GO (NSC–GO) membranes by incorporating
positively CHNs (diameter around 2.5 nm) into GO layers. Briefly, a mixture of CHNs and GO sheets
was firstly filtered onto a porous support; then partially reduced with hydrazine for 15 min; lastly,
CHNs were removed from the NSC–GO membranes using an acid solution, as shown in Figure 7b.
The finally resultant NSC–GO membranes exhibited remarkably enhanced water permeability (10-fold
enhancement) compared with that of pristine GO membranes with the similar rejection rate for
dye molecules, and showed >100 times higher water permeability than that of the conventional UF
membranes with similar rejection. Hung et al. [110] prepared composite GO-Framework (GOF)
membranes with varying d-spacing from 10.4 Å to 8.7 Å by utilizing diamine monomers with
different structures as cross-linkers, as shown in Figure 7c. The synthesized GOF membrane presented
excellent PV performance for a 90 wt % ethanol/water mixture and long-term operation stability
due to its short inter-layer spacing and strong chemical bonding between GO layers and diamine
monomers. Li et al. [113] put forward a strategy to tune the inter-layer spacing of GO membranes by
intercalating water-soluble polymer material PVP into GO layers. Results showed that the permeation
rate of Reactive Red X–3B across the PVP-intercalated GO membranes was significantly increased.
Recently, Feng et al. [27] utilized the PDI as cross-linker to covalently modify GO nanosheets to form
a three-dimensional GO framework (GOF) membrane (Figure 7d). The fabricated 18 µm thick GOF
membrane exhibited significantly increased water flux (11.4 53 kg/m2/h) and ion rejection (over 99.9%)
for 3.5 wt % seawater desalination via PV.

Ying et al. [114] successfully prepared mesoporous GO sheets by reoxidizing GO with KMnO4 and
subsequently assembled them into laminar GO membranes for molecule separation. The introduction
of in-plane pores not only remarkably diminished the transport path, but also increased the amount of
effective channels for water transporting (Figure 8a,b). The mesoporous GO membranes exhibited
nearly 2–3-fold enhancement in permeability compared with that of the original GO membranes with
the similar rejection rate for small molecules (3 nm). In addition, the mesoporous GO membranes
also showed excellent structural stability, which was demonstrated by the pressure loading and
releasing process, as shown in Figure 8c. Yuan et al. [115] fabricated GO NF membranes with
enhanced desalination performance by functionalizing GO sheets using one-step carboxylation through
the nucleophilic substitution reactions between epoxy groups of GO and amino groups of glycine.
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Study results showed that the GO–COOH membranes presented higher water permeation and salt
rejection compared with original GO membranes due to the enhanced surface hydrophilicity, increased
water nanochannels, and negativity of GO–COOH membranes. The carboxylation of GO sheets not
only enhanced the electrostatic repulsion between adjacent GO–COOH nanosheets but also increased
the number of wrinkles on the GO–COOH membranes surface, which resulted in larger nanochannels
between GO sheets and correspondingly higher water flux. Additionally, the addition of carboxyl
groups on GO sheets increased the negative charge distribution on the GO–COOH membranes surface,
which improved the salt rejection of the membranes due to the strengthening electrostatic repulsion
between anions and the negatively charged membranes.
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4.3. Other Approach

Apart from the above described strategies for optimizing the separation property of GO
membranes, several unique approaches were also developed by researchers for improving the
separation performance of GO membranes. Huang et al. [116] found that fast two-dimensional (2D)
channels within GO membranes were possibly not fully utilized during the aqueous separation process.
Hence, in order to solve the problem to maximize the separation performance of GO membrane,
they developed a bio-inspired membrane that combined an ultrathin surface water-capturing polymeric
layer (<10 nm) with GO layers, as shown in Figure 9a. Results showed that the integrated membrane
showed improved water permeability and the transport channels of GO laminate were fully utilized.
Shen and co-workers [55] reported a novel method to accurately regulate the nanostructure of
GO-assembled 2D channels, as shown in Figure 9b. The external forces applied in both outside
and inside the GO layers effectively overcame the intrinsic electrostatic repulsive force between
adjacent GO sheets and correspondingly eliminated non-selective stacking defects. The resultant
GO membranes presented 2–3 times higher H2 permeability and three-fold improvement in H2/CO2

selectivity compared with commercial membranes. Recently, Shen et al. [117] proposed a facile method
to adjust the inter-layer spacing of GO membrane with solvent green (SG) for improving the NF
performance of GO membranes. Results showed that the SG modified GO nanosheets significantly
enlarged the inter-layer spacing of the SG@GO composite membrane due to the enhanced static
repulsion force between adjacent SG@GO sheets, which resulted in a nearly six-fold enhancement
in water flux compared to that of the original GO membranes with the similar rejection rate for dye
molecules. In addition, they also found that the resultant SG@GO composite membrane presented
excellent pressure resistance ability and long-term operating stability, which contributed to the strong
π-π stacking interactions between SG and GO nanosheets.
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From above discussion, we can conclude that the separation property of GO membranes could
be effectively and successfully improved by different approaches, such as changing GO sheets sizes,
or adjusting GO membrane thickness, or intercalating nanomaterials into GO layers, or intercalating
chemical groups or soft polymer chains into GO laminar structure, or reducing GO membranes,
or introducing in-plane nanopores onto GO sheets. However, there still remain several challenges for
tuning the transport channels of GO membrane with these methods. For instance, how to keep the
structural integrity of membrane is one big challenge for the reduction treatment on GO membranes.
Additionally, special attention should be paid to the compatibility between intercalating material
and GO when selecting intercalating nanomaterials. Hence, more efforts should be made to develop
highly-efficient GO membranes with improved separation performance.

5. Advanced Aqueous Stability and Mechanical Strength of GO Membranes

At present, despite significant advancements in GO-based membranes have been achieved,
a few critical challenges in realizing real-world application of GO-based membranes still exist.
Specifically, the instability of the inter-layer spacing between adjacent GO nanosheets is a great
challenge for utilizing laminar GO membranes as selective aqueous separation barriers, especially
for water-related treatment. This is because GO membrane easily disintegrated and redispersed in
water over time due to the highly hydrophilic nature of the GO sheets and electrostatic repulsion
between the negatively charged GO sheets on hydration , and then the integrity of the laminar
GO membranes and inter-layer nanochannels formed by stacking GO sheets would be damaged
during aqueous separation process [118,119]. Therefore, it is very much desirable to enhance the
structural stability of GO membrane by forming stable bonding between GO nanosheets to realize
real-world applications of GO membranes in aqueous environment. Currently, it has been reported that
stable GO-based membranes suitable for aqueous system application could be obtained by introducing
various cross-linking interactive forces, including electrostatic interactions and covalent bonds between
adjacent GO nanosheets or by reducing GO membranes [6,26,34,47,49,98,115,120–130].

Park et al. [122,123] first developed a chemically cross-linking GO membrane using divalent ions
and polyallylamine (PAA), respectively. In comparison to the original GO membrane, the modified GO
membrane showed significantly enhanced mechanical strength. Using LbL deposition, Mi et al. [26,47]
fabricated cross-linked GO membranes using TMC (Figure 10) and positively charged PAH as
cross-linkers (Figure 4d), respectively. Results showed that the cross-linked GO membrane exhibited
excellent stability for water treatment compared to the pristine GO membrane.
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A highly stable GO-based ultrathin hybrid membrane was developed by Zhao et al. [121],
who utilized gelatin (GE) as the cross-linker to interconnect adjacent GO nanosheets by electrostatic
interaction, hydrophobic interaction, and hydrogen bond, as shown in Figure 11a. Enhanced operation
stability was obtained for the GE cross-linked GO hybrid membrane used for water/ethanol separation.
Recently, a covalently cross-linked GO membrane was developed by Lim et al. [124], who used
tannic-acid (TA)-functionalized GO as the membrane material and PEI as cross-linker, as shown in
Figure 11b. The resultant cross-linked TA–GO membrane exhibited excellent structural stability in
an aqueous environment due to the stable layered structure formed by the cross-linking reaction
between TA-GO and PEI. Nguyen et al. [49] fabricated ultra-stiff GO thin films cross-linked GO with
borate. They reported that the mechanical strength of the cross-linked GO films obtained by adding
0.94 wt % boron to the GO suspensions was remarkably increased (up to 255% and 20%, respectively)
compared to that of the unmodified films. Such significant enhancement was attributed to the strong
bonded force between neighboring GO sheets because of the formation of covalent bonds between the
hydroxyl groups on GO nanosheets surface and the borate ions (Figure 12). Recently, Liu et al. [127]
fabricated highly-aqueous-stable GO membrane by incorporating triethanolamine (TEOA) modified
titanate nanowires (TNWs) in GO membrane. They reported that the GO/TEOA–TNWs composite
membrane showed significantly improved aqueous stability within even for one month usage due to
the strong covalent bonds between the epoxy groups and carboxyl groups on the surface of GO and
the N+ groups in TEOA. Furthermore, the water flux of the composite membranes was significantly
increased due to the intercalation of TNWs between GO sheets, which could introduce plentiful
of nanochannels inside the membranes and simultaneously improved surface hydrophilicity of
membranes. These results demonstrated that the GO/TEOA–TNWs composite membranes had great
potential in the long-term practical water treatment applications. Zhang et al. [128] designed novel GOF
membranes using isophorone diisocyanate (IPDI) as a chemical crosslinker for covalent crosslinking of
GO nanosheets by a facile vacuum-assisted filtration method. The resultant IPDI–GOF membranes
not only presented enhanced structural stability but also showed improved water permeation due to
the enlarged nanochannels among GO sheets. The IPDI-GOF membranes exhibited a high water flux
of 80 L/m2/h under an extremely low pressure (1.0 bar) and excellent removal efficiency for organic
dyes molecules (up to 96%). This study provided an approach for enhancing the stability and water
permeability of GO membrane which could be applied to real-world water treatment.

Additionally, some studies also showed that reducing GO sheets might also increase the stability
of GO membrane by enhancing the π-π interactions between the GO nanosheets. Nevertheless,
this would also reduce the water permeation of the membrane because of the shrunken channel
distance [6,34,98,115,129]. Yang et al. [129] fabricated PDA-coated reduced GO (PDA–rGO) membranes
by chemically reducing GO laminates and then introducing a hydrophilic adhesive PDA layer onto
the rGO laminates and used for FO desalination. Study results showed that the resultant PDA–rGO
membranes presented excellent aqueous stability and outstanding water flux (36.6 L/m2/h) with
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a high salt rejection rate (92.0%) in FO desalination due to the compacted nanochannels and improved
surface hydrophilicity of rGO laminates. They pointed out that the chemical reduction of GO laminates
could remarkably increase the salt rejection rate of the membranes by forming highly stable and
compacted nanochannels between GO sheets. Moreover, the introduction of a hydrophilic PDA
coating onto the rGO laminate surface could further improve the water flux by facilitating the water
absorption speed into rGO nanochannels.
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borate ion. (a) Water molecules bound the GO sheets through hydrogen bond; (b) Borate anions bound
to the GO sheets through covalent bond; (c) More covalent bonds formed within the GO sheets after
thermal annealing. Right: Mechanical strength of respective films [49]. Copyright 2011 John Wiely
and Sons.

Yeh et al. [118] found that the neat GO membranes readily disintegrated in water, but the
membranes became stable once they were crosslinked by multivalent cationic metal contaminats
(e.g., Al3+ and Mn2+), which were introduced unintentionally during the synthesis and processing of
GO (Supplementary Figures S1 and S2). They contributed remarkably improved membrane stability
in water to the unexpected contaminants (i.e., the Al3+ in the resultant GO membrane), which acted
as crosslinkers and then effectively strengthened the final membrane (Supplementary Figure S3).
Meanwhile, they pointed out that significant variability existed for GO membrane stability in water
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between different modified methods. For example, an around 10% increase in overall stiffness could
be observed for GO membrane crosslinked with divalent metal ions [105]. In contrast, in this study
even partial Al3+ contamination could lead to a more than 340% enhancement in the membrane
stiffness. The remarkable variability was attributed to the fact that the ‘unmodified’ GO papers were
probably already crosslinked by unintentionally introduced multivalent cationic metal contaminats
(e.g., Al3+ and Mn2+), thus only a modest stiffness difference between unmodified and “crosslinked”
GO membrane. That is, for the variability in reported stiffness and stability of GO membranes
obtained with different modified methods might be, at least partially, attributed to different degrees
of crosslinking by unintentionally introduced contaminants. In order to further identify this point,
they removed Al3+ from GO (AAO) membranes through ionic exchange with HCl or other monovalent
cations such as Na+ and Li+, after which the membranes readily disintegrated in water (Supplementary
Figure S4a,b). XPS detected no Al after the ionic exchange (Supplementary Figure S4c). In addition,
they intentionally treated a clean GO (Teflon as the filter disc) membrane with Al3+ by utilizing
this crosslinking effect, which effectively strengthened the water stability of GO (Teflon) membranes
(Supplementary Figure S5). Based on this study, we learned that it is essential for researchers in the
field to provide thorough and necessary characterization data for GO (e.g., XPS, XRD in this work)
to further identify the potential mechanisms of such phenomena. This finding is very helpful to
understand the intrinsic mechanical properties of GO membranes and strengthened mechanism of GO
membrane stability in water.

Although the mechanical integrity and structural stability of GO-based membranes could be
enhanced in different strategies, more efforts should be taken to prepare highly-efficient GO-based
membranes with enhanced separation performance and long-term operation stability for practical
applications. At the same time, the intrinsic mechanical properties of GO membranes and strengthened
mechanism of GO membrane stability in water should be explored and better understood in
more detail.

6. Conclusions

In summary, based on the unique single-atomic-thick and two-dimensional structure, together
with excellent physicochemical property, GO as an emerging star nano-building material has attracted
great interest in the membrane-based separation field. In this review paper, the preparation and
characterization of GO were simply summarized. Then we focused on reviewing the preparation
method, characterization as well as type of GO-based membrane. Special attention has been paid
to the latest advancements of GO-based membrane with respect to the adjustment of membrane
structure as well as the enhancement of mechanical strength and structural stability in aqueous
environment. An approach which is highly oxidized, low-cost, safe, simple, and environmentally
friendly will provide the possibility for massive production of GO. The structure and separation
performance of GO membrane significantly depend on the fabrication method and corresponding
fabrication conditions. So in a specific practical application, a desired GO membrane can be obtained
by employing appropriate preparation method and optimized the fabrication conditions. Despite
many characterization techniques having been extensively utilized for analyzing the structure and
performance of GO membrane, there still remain several challenges for the accurate and deep
characterization of GO membrane. The separation performance of GO membranes could be effectively
and successfully improved by different approaches, including physical approach, chemical approach,
and some other novel approaches. The mechanical strength and structural stability of GO membrane
could be enhanced by different strategies, such as cross-linked GO membrane using different
cross-linkers through covalent bonding or electrostatic interaction, or reduced GO membrane through
thermal or chemical process to enhance the π-π interactions between the adjacent GO nanosheets.
However, several challenges still remain for these strategies. So in order to facilitate the development
of GO-based membrane in real-world application, continuous efforts are still required to improve the
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separation performance and structural stability of GO-based membranes, especially for water-related
separation applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0375/7/3/52/s1.
Figure S1: (a) GO membranes obtained from AAO filter, Teflon filter and cellulose nitrate (CN) filter had different
stability in water; (b) GO (AAO) membrane remained intact whereas GO (Teflon) membrane; and (c) GO (CN)
membrane readily disintegrated in water. Notes that the photos were taken after the solutions had been stirred with
a lab spatula, except for the one showing GO (Teflon) and GO (CN) in water for 30 min. Figure S2: The side-view
photos complementary to those shown in Figure S1 contrasting to the stability of neat GO membrane and Al3+

contaminated GO membrane in water. (a) The neat GO membrane (obtained with Teflon or cellulose nitrate filter
paper) readily swelled upon soaking in water. After 2 h of soaking, disintegration could already be observed
without any agitation. After gentle stirring with a lab spatula for a few seconds, it completely disintegrated
and started to redisperse in water. In contrast, (b) the Al3+ crosslinked GO (AAO) membrane remained stable
in water after days of soaking, which clearly demonstrated that GO (AAO) membrane was stable and neat GO
membrane readily disintegrated. Figure S3: GO membrane obtained from the AAO filter was contaminated with
Al3+. (a) Photo showed an 18 µm thick GO membrane detached from an AAO filter disc. (b) Sets of Al 2p spectra
measured during XPS depth profiling of GO (AAO) from the bottom side and (c) from the top side. (d) Al/C
ratio as a function of etching depth from both sides of the GO (AAO). (e) Depth profiling of GO (Teflon) from
the bottom side suggested that no Al3+ was presented. Figure S4: Removal of Al3+ by ionic exchange. (a) Photos
of GO (AAO) membrane soaked in 0.1 M HCl for 3 days (top) and then in water for 30 min (bottom); (b) Ionic
exchange with monovalent cations such as Na+ and Li+ led to the removal of Al3+ and disintegrated of GO (AAO)
membranes in water; (c) XPS Al 2p spectra of GO (AAO) membrane before and after HCl treatment, suggesting
removal of Al3+. Note: All the photos were taken after the solutions were stirred with a lab spatula. Figure S5:
Strengthening of GO (Teflon) membrane by Al3+ crosslinking. (a) Photos of GO (Teflon) membrane soaked in
0.1 M Al(NO3)3 for 1 day (top) and then in water for 5 days (bottom); (b) XRD patterns of GO (Teflon) membranes.
GO (Teflon) membrane (non-crosslinked) disintegrated in water and damaged interlayer ordering. While in
Al(NO3)3, it swelled and maintained the lamellar structure. After drying, the presence of Al3+ resulted in slightly
larger interlayer spacing than that of neat GO membrane. Upon rehydration, the Al3+ crosslinked GO membrane
swelled to yield a lamellar structure with better stacking.
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