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Abstract: Glycerol represents an emerging renewable bio-derived feedstock, which could be used as
a source for producing hydrogen through steam reforming reaction. In this review, the state-of-the-art
about glycerol production processes is reviewed, with particular focus on glycerol reforming reactions
and on the main catalysts under development. Furthermore, the use of membrane catalytic reactors
instead of conventional reactors for steam reforming is discussed. Finally, the review describes the
utilization of the Pd-based membrane reactor technology, pointing out the ability of these alternative
fuel processors to simultaneously extract high purity hydrogen and enhance the whole performances
of the reaction system in terms of glycerol conversion and hydrogen yield.

Keywords: glycerol production; glycerol steam reforming; conventional reactor; membrane
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1. Introduction

The need for replacing fossil fuels is driving the development of renewable fuels such as
biodiesel. In the period 2000–2012, biodiesel production increased from 15 to 430 thousand barrels
(Figure 1) [1–3]. In the process of producing biodiesel from the transesterification of vegetable oils,
glycerol (propane-1,2,3-triol) is produced as by-product. Typically, the production of 100 kg of biodiesel
yields approximately 10 kg of glycerol, with purity of around 50%–55% [1].

The increased production of bio-diesel resulted in a significant fall of glycerol prices from 2000
to 2010 in the European Union (UE) and USA, as can be seen in Figure 2. In particular, the price
dramatically decreased from about 3200 $/ton in EU and 2000 $/ton in USA to under 500 $/ton and
600 $/ton, respectively. This was mainly due to a new demand in developing countries as China, India,
Russia and Latin American countries, where the glycerol was utilized as raw material in the personal
care, pharmaceuticals and food and beverage sectors [4–6].

Currently, glycerol is mainly used as an intermediate chemical for the production of a variety of
products [7], such as cosmetics, food, pharmaceuticals, etc., as represented in Figure 3.
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Figure 1. Biodiesel and glycerol production vs. years. 

 

Figure 2. Glycerol price trend in USA and UE. With permission of reprint by Wiley from [1]. 

 

Figure 3. Percentage distribution of the main glycerol applications found in the open literature. 
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1.1. Glycerol Production

Glycerol can be produced by using different processes and feedstocks. For example, it can be
obtained by propylene synthesis via several pathways [8], by hydrolysis of oil or by transesterification
of fatty acids/oils. Nevertheless, glycerol production can be also carried out by fermentation with
yeast such as saccharomyces cerevisiae, candida, bacteria such as Bacillus subtilis and algae such as
dunaliella tertiolecta [9].

1.1.1. Glycerol via Propylene

As stated before, several pathways can be used for producing glycerol by propylene [3,10] and
Figure 4 sketches two of the principal pathways, which involve the use of O2 or Cl2.
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Figure 4. Glycerol production via propylene utilization.

In the propylene chlorination (Figure 5), allyl chloride is produced at 510 ◦C in presence of
hypochlorous acid at 38 ◦C. The allyl chloride reacts to produce glycerine dichlorohydrine. Afterwards,
glycerol dichlorohydrine is hydrolysed by caustic soda in a 6% Na2CO3 solution at 96 ◦C or directly
to glycerine, taking off the epichlorohydrine as an overhead in a stripping column. At the end, the
epichlorohydrine is hydrated to glycerine with caustic soda [3] and the process makes possible final
glycerol yield of about 90%.
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1.1.2. Hydrolysis of Oil

The hydrolysis is a process known since 2800 B.C. and the first industrial plant was built up
in 1860 [11]. This reaction takes place between triglyceride and alkaline hydroxide (caustic soda)
producing glycerol and soap [12] (Figure 6).
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1.1.3. Transesterification of Oil

The transesterification reaction of the beaver oil with ethanol to produce glycerol was conducted
in 1864 by Rochieder [5,13]. Figure 7 represents the schematic of the reaction, where methyl-esters from
triglyceride (oils) and methanol (alcohol) react to produce glycerol and fatty esters (or biodiesel) [10,14,15].
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Figure 7. Transesterification reaction for glycerol production.

Homogeneous and heterogeneous catalysis can be used to produce bio-diesel and thereby for
glycerol production. The process using homogeneous catalysts (in particular, sodium hydroxide or
sodium methylate) [13,16] is shown in Figure 8. The first process step involves the reaction between
vegetable oils and methanol in presence of the catalyst; subsequently, the glycerol separation from the
mixture of products by settler unit takes place. The remnants flow is sent to a unit for the removal
of the catalytic component with mineral acids, producing two streams: a glycerol recovery unit and
an evaporator, which separates biodiesel from the other products. The glycerol purification unit has
three output streams: the first containing 80%–95% of glycerol, the 2nd consisting of water, dissolved
salts and unreacted methanol (which is recycled back to the reactor) and the 3rd stream that contains
fatty ester [15].
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Figure 8. Biodiesel production plant based on homogenous catalyst utilization.

The block diagram of triglycerides trans-esterification with heterogeneous catalysts (mainly
aluminium and zinc oxides) is reported in Figure 9. To increase the vegetable oil conversion, the process
foresees two reaction steps; the first reactor is fed by vegetable oil and methanol. The product stream
passes through a heat exchanger to evaporate part of the unreacted methanol, while the remaining
stream is sent to a decanter to separate polar (largely glycerol) and non-polar (most vegetable oil
and biodiesel) components. In the second reactor, the non-polar stream is reacted for the 2nd time to
increase the production of biodiesel and recover the methanol. The product stream passes through
the heat exchanger, which removes the entire unreacted methanol, while the decanter separates the
biodiesel from polar components. The polar streams of both the first and second polar decanters are
sent to another heat exchanger for recovering the remaining methanol present in the mixture, while
the residual part is sent into a final decanter for the separation of vegetable oil and unreacted glycerol.
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The process of the transesterification reaction through supercritical fluids has been largely
studied, even though it is not yet industrialised. One or two reaction steps are possible: in single-step
supercritical fluid transesterification, the reaction takes place only after the heating up of reactants to
their critical temperature and pressure with triglycerides [17,18]; in two-step subcritical-supercritical
fluid transesterification, triglycerides are firstly converted to free fatty acids and by-products, in the
hydrolysis reaction. Subsequently, the obtained free fatty acids undergo esterification reaction and
produce fatty acid methyl esters in supercritical fluid reaction [19,20].

Depending on the process and feedstock, the glycerol stream is characterized by several
compositions; therefore, its characteristics can be identified looking at the different types of feedstocks
and reactions utilized during the production process [21–28], as summarized in Table 1.
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Table 1. Characteristic of different glycerol streams depending on initial feedstocks and production
reactions (Adapted from [28]).

Feedstock Glycerol (w/w) Methanol (w/w) Soap (w/w) MONG (w/w) Ref.

Waste of palm oil 87.1% – – 5.5% [21]
Jatropha oil 18.0%–22.0% 14.5% 29.0% 11.0%–21.0% [22]
Soybean oil 63.0% 6.2% – – [23]
Soybean oil 22.9% 10.9% 26.2% 23.5% [23]
Soybean oil 33.3% 12.6% 26.1% 22.3% [23]

Waste vegetable oil 27.8% 8.6% 20.5% 38.8% [23]
Palm oil 80.5% 0.5% – <2.0% [24]
Seed oils 62.5%–76.6% – – – [25]

Used frying oil 85.3% – – 14.7% [26]

Tan et al. [25] reviewed most of the advantages and disadvantages of the various techniques of
transesterification, which we updated in this work by adding the transesterification reaction whit
supercritical fluid (Table 2).

Table 2. Advantages and disadvantages of biodiesel and glycerol production by oil transesterification
(Adapted from [25]).

C
at

al
ys

ts
G

ro
up

Type of Catalyst Advantage Disadvantage

H
om

og
en

eo
us

ba
se

ca
ta

ly
st

NaOH
KOH

Very fast reaction rate
The reaction can occur at mild reaction condition and less
energy intensive
High conversion can be achieved
These catalysts are widely available and economical

The usage limits for oil with less than
0.5 wt % FFA
Soap will be formed if the FFA content
in the oil is more than 2 wt %
Excessive soap formation will reduce
the biodiesel yield and cause the
problem during the product purification

H
et

er
og

en
eo

us
ba

se
ca

ta
ly

st

CaO
MgO

Relatively faster reaction rate than acid catalysed
transesterification
The reaction can occur at mild reaction condition and less
energy intensive
Easy separation of catalyst from product
High possibility to reuse and regenerate the catalyst

Sensitive to FFA content in the oil due
to its basicity property
Soap will be formed if the FFA content
in the oil is more than 2 wt %
Excessive soap formation will decrease
the biodiesel yield and cause the
problem during product purification
Leaching of catalyst active sites may
result to product contamination

H
om

og
en

eo
us

ac
id

ca
ta

ly
st

H2SO4
HCl

Insensitive to FFA content and water content in the oil
Preferred-method if low-grade oil is used
Esterification and transesterification can occur
simultaneously
The reaction can occur at mild reaction condition and less
energy intensive
More economical than base catalysed process

Very slow reaction rate
Required high reaction temperature and
high molar ratio of alcohol to oil
Corrosive catalyst such as H2SO4 used
can lead to corrosion on reactor
and pipelines
Separation of catalyst from product
is problematic

H
et

er
og

en
eo

us
ac

id
ca

ta
ly

st ZrO2
TiO2
SnO2

Zeolite

Insensitive to FFA content and water content in the oil
Preferred-method if low-grade oil is used
Esterification and transesterification occur simultaneously
Eliminate the washing step of biodiesel
Easy separation of catalyst from product
High possibility to reuse and regenerate the catalyst
Reduce corrosion problem

Complicated catalyst synthesis
procedures lead to higher cost
Required high reaction temperature,
high alcohol to oil molar
Ratio and long reaction time are
required
Energy intensive
Leaching of catalyst active sites may
result to product contamination

En
zy

m
e

Mucor miehei
(Lipozym IM60)

C. antarctica
(Novozym435)
Bacillus subtilis

Insensitive to FFA and water content in the oil
Preferred-method flow-grade oil is used
Transesterification can be carried out at a low reaction
temperature, even lower than homogeneous base catalyst
Only simple purification step is required

Very slow reaction rate, even slower
than acid catalyzed transesterification
High cost
Sensitivity to alcohol, typically methanol
that can deactivate the enzyme

Su
pe

rc
ri

ti
ca

l
flu

id Noncatalytic

Potential and value of by-products. triacetin and glycerol
carbonate were produced in supercritical methyl acetate
and dimethyl carbonate technology, respectively
High process flexibility of feedstock conditions. Impurities
presence of water and FFA do not give any detrimental
effects to the product yield

High energy consumption
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1.2. Glycerol Applications

Glycerol can be converted into other compounds with high added value, such as butanol,
1,3-propanediol, 2,3-butanediol, citric acid, lipid, poly(hydroxyalkanoates), acrolein, monoglycerides,
etc., via oxidation, reduction, esterification, etc. [27–29], by conventional (Table 3) or fermentation
process (Table 4).

Table 3. Products coming from glycerol conversion by conventional process with related operating conditions.

Reaction Type Product Reactant Catalyst p
(bar) T (◦C) Ref.

Glycerol
oxidation

Dihydroxyacetone

O2 Pd–Ag/C 3 80 [30]
O2 Pt/NCNT – 60 [31]
O2 Au/MWCNT 3 60 [32]
O2 Pt/SiO2 1 100 [33]

Glyceraldehyde O2 Pt/MCN 3 40 [34]
O2 Pt/SiO2 1 100 [33]

Glyceric acid

O2 Pt/MCN 3 40 [34]
O2 Pt/SiO2 1 100 [33]
O2 AuPdCZ 3 60 [35]
O2 Ag/Al2O3 5 60 [36]
O2 Au/Al2O3 5 60 [36]
O2 Pd/Al2O3 5 60 [36]
O2 Pt/Al2O3 5 60 [36]
O2 Au/G 5 80 [37]
O2 Au/CNF-R 5 80 [37]
O2 Au/CNS 5 80 [37]

Glycolic acid

O2 Au-Pt 3 60 [38]
O2 AuPdCZ 3 60 [35]
O2 Ag/Al2O3 5 60 [36]
O2 Au/Al2O3 5 60 [36]
O2 Pd/Al2O3 5 60 [36]
O2 Pt/Al2O3 5 60 [36]
O2 Au/G 5 80 [37]
O2 Au/CNF-R 5 80 [37]
O2 Au/CNS 5 80 [37]

Hydroxypyruvic
acid

O2 PtBi/C – – [39]
O2 Au/G 5 80 [37]
O2 Au/CNF-R 5 80 [37]
O2 Au/CNS 5 80 [37]

Mesoxalic acid

O2 PtBi/C – – [39]
O2 Au/G 5 80 [37]
O2 Au/CNF-R 5 80 [37]
O2 Au/CNS 5 80 [37]

Oxalic acid O2 AuPdCZ 3 60 [35]

Tartronic acid

O2 Ag/Al2O3 5 60 [36]
O2 Au/Al2O3 5 60 [36]
O2 Pd/Al2O3 5 60 [36]
O2 Pt/Al2O3 5 60 [36]
O2 Au/G 5 80 [37]
O2 Au/CNF-R 5 80 [37]
O2 Au/CNS 5 80 [37]

Glycerol
reduction

1,2-propanediol H2 Ru/Al2O3 25 180 [40]

1,3-propanediol H2 Ru/Al2O3 80 240 [41]

Ethylene glycol

H2 Ru/Al2O3 25 200 [42]
H2 Ru/ZrO2 80 240 [35]
H2 Ru/ZrO2 25 200 [42]
H2 Ru/C 80 130 [43]
H2 3% Ru–0.19% Cu/Al2O3 100 180 [44]
H2 3% Ru–1% Cu/Al2O3 80 230 [45]
H2 3% Ru–0.19% Cu/ZrO2 100 180 [44]
H2 2.5% Ru–2.5% Cu/Al2O3 25 200 [42]
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Table 3. Cont.

Reaction Type Product Reactant Catalyst p
(bar) T (◦C) Ref.

Glycerol
dehydrogenation Acrolein

– AlPO4-450 1 190–230 [46]
– AlPO4-650 1 190–230 [46]
– H-ZSM-5(50) 1 170–230 [46]
– H-ZSM-5(30) 1 170–230 [46]
– HY(5.2) 1 170–230 [46]
– 12 wt % V2O5, V/P molar ratio of 0.2 1 325 [47]

Glycerol
halogenation

1,3-dichloropropanol

HCl Aspartic acid 4.5 100 [48]
HCl Glutamic acid 4.5 100 [48]
HCl Cystein 4.5 100 [48]
HCl Glycolic acid 4.5 100 [48]
HCl Diglycolic acid 4.5 100 [48]
HCl Thioglycolic acid 4.5 100 [48]

Glycerol
esterification

Monoglicerides Acetic acid Sb2O5 1 80–120 [49]

Diacylglicerol

Palmitic acid ZrSBA-15 1 160–180 [50]
Acetic acid Graphene oxide 1 120 [51]
Acetic acid ZSM-48 1 120 [51]
Acetic acid ZSM-5 1 120 [51]
Acetic acid H-mordenite 1 120 [51]
Acetic acid WO3/ZrO2 1 120 [51]
Acetic acid MoO3/ZrO2 1 120 [51]
Acetic acid HPW/ZrO2 1 120 [51]
Acetic acid Cs2.5PW 1 120 [51]

Glycerol carbonate
diethyl carbonate 1-Ethyl-3-methylimidazolium acetate 1 120 [52]

diethyl carbonate 1,8-diazabicyclo [5.4.0]
undecenc-7-ene (DBU)-methanol 1 100 [53]

diethyl carbonate CeO2 40 90–190 [54]

Glycerol
pyrolysis

Syngas – Bituminous carbon 1 400–900 [55]
– Coconut shell 1 400–900 [55]

Therefore, an intensive research work has been addressed in order to investigate the conversion
of glycerol to valuable chemicals and Table 3 summarizes some of the most active catalysts for
the conversion of glycerol via oxidation, reduction, dehydrogenation, halogenation, esterification
and pyrolysis. In detail, the oxidation of glycerol leads to a large number of products such as
dihydroxyacetone, glyceric acid, glyceraldehyde, hydroxypyruvic acid, glycolic acid, etc. The control
of reaction selectivity represents a key issue to obtain the desired compounds. For example, glyceric
acid is an important intermediate for more deeply oxidized products such as tartronic acid and
mesoxalic acid [30,34–37]. The catalytic aerobic oxidation of glycerol has been intensively investigated
using monometallic or bimetallic catalysts such as Au, Pt, and Pd in a basic medium and some of the
most representative catalysts [30–37] used in this field are reported in Table 3.

Another way for obtaining added value products from glycerol is the reduction reaction.
Conventionally, this reaction is carried out at medium/high pressures and temperature ranging
from 240 to 270 ◦C over Cu- and Zn-based catalysts promoted by sulfied Ru catalyst [40]. Furthermore,
the reduction of glycerol was also studied over catalysts containing Co, Cu, Mn and Mo as well as
over homogeneous catalysts containing W and group VIII transition metals. This reaction has been
also studied over Cu-Pt and Cu-Ru bimetallic catalysts at mild conditions under reaction pressures
of less than 5 MPa and temperatures of less than 200 ◦C [45]. It was also reported that the glycerol
conversion over Cu-based catalysts was lower than Ru-based catalysts. Indeed, the reduction reaction
of glycerol over activated carbon or alumina supported Ru catalysts, combined with various solid acid
catalysts such as zeolites, sulfated zirconia, rhenium, niobium and an ion exchange resin, have been
recently investigated [42], demonstrating that the combination of Ru-based catalysts and solid acid
catalysts exhibit high catalytic activity in high pressure over 8 MPa and between 120 ◦C and around
200 ◦C (Table 3).
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The production of acrolein from glycerol represents an interesting eco-friendly process, which
shows some advantages such as a reduction in the oil exploitation and a low impact towards
the environment [46]. Generally, the production of acrolein from glycerol is carried out through
acid-catalyzed dehydrogenation over synthetic aluminium phosphate (AlPO4) and zeolites with
different channel structures (HY and H-ZSM-5) and SiO2/Al2O3 ratio [45,46].

In recent years, a new synthetic route for the preparation of chlorohydrins, by reacting a
polyhydroxy aliphatic hydrocarbon with a chlorination agent has been proposed. In particular,
Tesser et al. [48] studied homologous chlorinated series of catalysts for glycerol halogenation, such as
acetic acid, monochloroacetic, dichloroacetic, trichloroacetic acid, etc. focusing on both activity and
selectivity shown by each catalyst.

Table 3 also contains information about one of the most important processes to convert
glycerol such as the esterification with acetic acid to produce monoacylglycerol, diacylglycerol
and glycerol carbonate. These products are widely utilized in cryogenics, biodegradable polyester
and cosmetics [50,51]. Significant acid catalysts can be used for glycerol esterification, including
sulfated based superacids, heteropolyacid-based catalysts, tin chloride, zeolite, ZrO2 based solid
acids, etc. [50–55]. Unfortunately, most of them show as main drawbacks the rapid deactivation,
complex preparation procedures, low reactivity and expensive costs. As a solution to contrast these
disadvantages, graphene and graphene oxide have received great attention because highly active,
inexpensive, robust and sustainable solid acid catalyst for glycerol esterification [51].

Last but not least, the pyrolysis of glycerol to produce syngas represents another way to convert
the glycerol. In the specialized literature, the pyrolysis of biomass has been widely investigated, but in
most of cases only metal-based catalysts have been used. A novel method for syngas production is
represented by the microwave-assisted pyrolysis of glycerol over a carbonaceous catalyst, in which the
heating method and the operating temperature (between 400 and 900 ◦C) can influence the catalytic
effect of the activated carbons in order to maximize syngas production [55].

Regarding the contents of Table 4, in recent years, the need of developing new and alternative
polyol production methods has become of great industrial interest and much attention has been paid
to biochemical processes. In particular, Table 4 shows a small overview about the most representative
products coming from glycerol conversion by fermentation process.
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Table 4. Products coming from glycerol conversion by fermentation process with related operating conditions (Adapted from [29]).

Product Utilization Organism Fermentation
Mode

Oxygen
Availability

Yield
(Product/Glycerol) Productivity Product

Concentration Ref.

1,3-Propanediol

Polytrimethylene terephthalate (PTT), carpets,
special textile fibers, monofilaments, films,
non-woven fabrics, polybutylene terephthalate
(PBT) [56]

C. pasteurianum Batch Anaerobic 0.14 g/g – 4.63 g/L [57]
K. pneumoniae DSM 2026 Fed-batch Microaerobic 0.52 mol/mol 1.57 g/L/h 59.50 g/L [58]
K. pneumoniae LDH 526 Fed-batch Aerobic 0.52 mol/mol 2.13 g/L/h 102.1 g/L [59]

C. butyricum F2 Batch Anaerobic 0.53 g/g 1.05 g/L/h 47.1 g/L [60]
E. coli K12 Fed-batch Anaerobic 90.2% 2.61 g/L/h 104.4 g/L [61]

K. pneumoniae Fed-batch Anaerobic 61 mol/mol 2.2 g/L/h 75 g/L [62]
K. pneumoniae G31 Fed-batch Microaerobic 0.36 mol/mol 0.18 g/L/h 49.2 g/L [63]

2,3-Butanediol

Plastics, anti-freeze solutions, methyl ethyl ketone
production, 1,3-butadiene (used to produce
synthetic rubber), diacetyl and to precursors of
polyurethane (used in the pharmaceutical and
cosmetics industries) [64]

K. pneumoniae G31 Fed-batch Aerobic 0.39 g/g 0.47 g/L/h 70.0 g/L [65]

Ethanol Food and chemical industries [66]
C. pasteurianum Batch Anaerobic 0.06 g/g – 1.87 g/L [57]

E. coli SY 4 Batch Microaerobic 85% 0.15 g/L/h 7.8 g/L [67]
C. pasteurianum Batch Anaerobic 0.29 g/g – 7.85 g/L [57]

Butanol Paints, lacquers, and resin formulations [68] C. pasteurianum Batch Anaerobic 0.36 g/g – 1.8 g/L [69]
C. pasteurianum DSM 525 Batch Anaerobic 0.34 mol/mol – 7 g/L [70]

Dihydroxyacetone Skin care products [71] G. oxydans ZJB09112 Fed-batch Aerobic 88.7% – 161.9 g/L [72]

Glyceric acid
Chemical and pharmaceutical industries and for
the production of polymers [73]

G. frateurii NBRC103465 Fed-batch Aerobic 0.76 g/g 0.81 g/L/h 136.5 g/L [74]
A. tropicalis NBRC16470 Fed-batch Aerobic 0.46 g/g 0.71 g/L/h 101.8 g/L [74]

Lactic acid
Food industry, acrylic acid and 1,2 propanediol
used in polyester resins and polyurethane [75]

E. coli AC-521 Fed-batch Aerobic 0.9 mol/mol 0.49 g/g/h 85.8 g/L [76]
E. coli LA02∆dld Batch Microaerobic 0.83 g/g 1.25 g/g//h 32 g/L [77]

Succinic acid
Pharmaceuticals, antibiotics, amino acids, vitamins,
green solvents, and biodegradable plastics [78]

engineered E. coli Batch Microaerobic 0.69 g/g ~4 g/g/h 14 g/L [79]
Y. lipolytica Y-3314 Batch Oxygen limited 0.45 g/g – 45 g/L [80]

Citric acid agro-industrial products [81] Y. lipolytica Repeated batch Aerobic 0.77 g/g 0.85 g/L/h 124.2 g/L [82]

Oxalic acid Manufacture industries, paper and detergents
industries [83] A. niger Batch Aerobic 0.62 g/g – 21 g/L [84]

Mannitol Food and pharmaceutical industries [85] C. magnoliae Batch Aerobic 0.51 g/g 0.53 g/L/h 51 g/L [86]

Erythritol Food industries [87] Y. lipolytica Wratislavia K1 Fed-batch Aerobic 0.56 g/g 1.0 g/L/h 170 g/L [88]

Arabitol Food industries [89] D. hansenii SBP1 Batch Aerobic 0.50 g/g 0.12 g/L/h 14 g/L [89]

PHB Production of polymers [90] E. coli Arc2 Fed-batch Microaerobic – 0.18 g/L/h 10.81 g/L [91]
Z. denitrificans MW1 Fed-batch Aerobic 0.25 g/g 1.09 g/L/h 54.3 g/L [92]



Membranes 2017, 7, 17 11 of 31

Among the engineered strains, 1,3-propanediol production from glycerol using K. pneumoniae and
E. coli strains is considered one of the most promising methods [29]. It is influenced by the purity and
concentration of the glycerol as well as by fermentation conditions. Furthermore, as reported in Table 4,
also 2,3-butanediol can be obtained as a major product of glycerol fermentation by K. pneumoniae [65].
Bacteria of the Enterobacteriaceae family and the Clostridium genus are useful to convert glycerol to
ethanol, even though their yields are relatively low since ethanol represents only a secondary product
of the fermentation, while the main products are 1,3-propanediol and 2,3-butanediol. Nevertheless,
E. coli can transform glycerol to ethanol anaerobically as well as aerobically. Glycerol conversion of
about 85% to ethanol (i.e., yield, Table 4) is then possible, demonstrating the potentiality of using
E. coli as a host for the production of ethanol from glycerol. Butanol represents a key chemical
platform, because industrially convertible to acrylates, ethers, and butyl acetate, etc. C. pasteurianum
can be considered for producing butanol when grown in crude glycerol, although butanol yields and
productivity on this substrate is considerably lower than on glycerol. However, another important
chemical produced from glycerol fermentation is the dihydroxyacetone, which represents the main
active ingredient in all sunless tanning skincare products. As the dihydroxyacetone, glyceric acid
is biotechnologically produced mainly by the family of acetic acid bacteria, while recently E. coli
has been engineered for homofermentative production of lactic acid from glycerol. Succinic acid
is widely used for manufacturing health-related products, including pharmaceuticals, antibiotics,
amino acids, and vitamins [80]. A recent approach in the production of succinic acid is related to the
exploitation of yeast in an aerobic recombinant strain via Yarrowia lipolytica, able to produce succinic
acid when cultivated on glycerol at low pH. As for the succinic acid, the yeast Yarrowia lipolytica has
gained much attention in recent years because it is able to metabolize several important industrial and
agro-industrial byproducts to produce organic acids such as citric acid, which is considered a weak
organic acid, commercially produced by fermentation of molasses.

Oxalic acid is an organic acid useful in industry for the manufacture of paper and detergents [84].
Its production can take place by Aspergillus niger growing in crude glycerol waste from biodiesel
production plants. Candida magnoliae is an excellent mannitol producer using glucose and fructose
mixtures as carbon sources. Furthermore, mannitol production from glycerol using C. magnoliae can
show a consume of 100 g/L of glycerol in 96 h, resulting in 51 g/L of mannitol, corresponding to a yield
of 0.51 g/g. Commercial erythritol is produced exclusively via fermentation in substrates containing
sugars, such as glucose and fructose, from the hydrolysis of biomass. In case of using residual crude
glycerol, an acetate-negative mutant of Y. lipolytica (Wratislavia K1) is able to simultaneously produce
significant quantities of erythritol and citric acid, while the arabitol production by D. hansenii SBP-1
can achieve a yield of 0.5 g/g.

The last part of Table 4 contains indications about the polyhydroxyalkanoates, which have received
great attention due to their potential application as renewable, biodegradable, and biocompatible
thermoplastics. Poly-3-hydroxybutyrate (PHB) belongs to the group of polyhydroxyalkanoates and
represents the most significative example of biodegradable polyesters [92]. Conversion of glycerol to
PHBs has reached high production levels due to optimization of strains and fermentations conditions.
In particular, fed-batch cultivation improves PHB production by using the Zobellella denitrificans MW1,
which is characterized by a large amount of PHB from glycerol in presence of NaCl.

However, glycerol can be further used for producing H2 via steam reforming, partial oxidation
and pyrolysis reactions [93–161]. In the next part of the review, particular attention is devoted to this
task, with particular emphasis on steam reforming reactions.
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2. Steam Reforming of Glycerol for Hydrogen Production

2.1. Thermodynamic

As also indicated in previous thermodynamic analyses [143,146,161], glycerol steam reforming
(GSR) reaction takes place within glycerol and steam to produce hydrogen and carbon dioxide (1):

C3H8O3 + 3H2O ⇔ 7H2 + 3CO2 ∆H̃0
R = 129.41 kJ/mol (1)

Alongside, secondary reactions such as Water Gas Shift (WGS) (2), methanation (3) and glycerol
pyrolysis (4) can occur:

CO + H2O ⇔ CO2 + H2 ∆H̃0
R = −41.40 kJ/mol (2)

CO + H2 ⇔ CH4 + H2O ∆H̃0
R = −247.50 kJ/mol (3)

C3H8O3 ⇔ 4H2 + CO ∆H̃0
R = 253.50 kJ/mol (4)

The GSR reaction (1) evolves towards the products with an increment of moles number and, hence,
it is favoured at low pressure and, due to its endothermic nature, it is promoted at higher temperature.

All the aforementioned four reactions are limited by the thermodynamic equilibrium; therefore,
the differential equation to the Gibbs free energy for single phase applies:

d(nG) = (nV)dP− (nS)dT + ∑
i

µidni (5)

In equilibrium closed system, at constant temperature and pressure, Equation (5) can be reduced
to (6):

∑
i

µidni = 0 (6)

and if manipulated, it becomes:

ln ∏
i=1

(
f̂i
f o
i

)νi

=
−∑i νiGo

i
RT

= ln(K) (7)

Equations (6) and (7) can be written for each one of the aforementioned reaction. As a consequence,
the thermodynamic data, can be used to show the influence of temperature and pressure on the reaction
performance in terms of H2 yield and selectivity for i-compound, as shown in Figure 10, where H2

yield and selectivity are defined as follows:

H2yield =
H2moles produced

7 moles glycerol in feed
× 100 = [%] (8)

Si =
moles of i− compound

CH4 + CO + CO2
= [−] (9)

The process endothermicity is clearly depicted in Figure 10a,b, since the best yields were obtained
at high temperature. Figure 10b shows that, when the pressure increases the methane production
improves (undesired reaction (3)). Furthermore, focusing on carbon dioxide yield at 5 bar, it can be
seen that the maximum yield is obtained between 550 and 700 ◦C, indicating that Equation (2) is
favoured among the other reactions. Varying the water/glycerol molar ratio (WGMR) between 3 and
9, the higher the WGMR the higher the hydrogen yield (Figure 10c).
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Figure 10. Thermodynamic analysis about GSR reaction performance in terms of hydrogen yield and
selectivity: effect of pressure, temperature and water/glycerol molar ratio (WGMR). (a) temperature
and pressure effects on hydrogen yield; (b) temperature and pressure effects on hydrogen selectivity;
(c) temperature and WGSMR effects on hydrogen yield; (d) temperature and WGSMR effects
on selectivity.

2.2. Kinetics and Catalysts Used to Perform GSR Reaction

In the specialized literature about GSR reaction, the heterogeneous catalysts used to perform this
process are similar to those used in steam reforming of methane (SRM), such as Ni, Ru, Co, etc. It is
worth noting that interesting critical reviews in this field have been already published, highlighting
most of the mono and bimetallic catalysts useful for GSR reaction [155–158].

Table 5 details a brief overview of GSR reaction catalysts, pointing out the values of activation
energy, reaction rate and the reaction order for glycerol and water.



Membranes 2017, 7, 17 14 of 31

Table 5. Typical catalysts for GSR reaction.

Catalyst Type α * β ** Ea (kJ/mol) Ref.

Pt/C 1 – – [93]
Co/Al2O3 0.10 0.4 67.2 [94]
Ni/Al2O3 0.48 0.34 60.0 [95]

Co-Ni/Al2O3 0.25 0.36 63.3 [96]
Ni/CeO2 0.233 – 103.4 [97]

Ni-ZrO2/CeO2 0.3 – 43.4 [98]
NiO-MgO/Al2O3 45.1-24.1/30.8 0.895 – 131.6 [99]
NiO-MgO/Al2O3 34.4-18.5/47.1 0.936 – 74.6 [100]
NiO-MgO/Al2O3 24.1-26.1/49.8 0.977 – 37.8 [100]

* reaction order for glycerol, ** reaction order for water.

A critical issue about GSR reaction is represented by coke deposition and subsequent catalysts
deactivation. In the following subparagraph, this task is discussed in brief, but deeper information can
be found in Gallo et al. [159], who proposed some catalyst modifications able to reduce catalysts coking,
or in Bossola et al. [160], who pointed out a different approach involving a pyrolytic pretreatment step
before reformers.

2.2.1. Nichel catalyst in GSR reaction

Ni-based catalysts are studied widely for several reaction processes. Specifically, Cheng et al. [95]
proposed a reaction mechanism for the GSR reaction in the presence of Ni on alumina catalyst using
kinetics expression of Langmuir-Hinsherwood. The mechanism is described as follows:

C3H8O3 + X1 ⇔ C3H8O3X1

H2O + 2X2 ⇔ OHX2 + HX2

C3H8O3X1 + HX2 ⇒ CH2OHCHOHX1 + CHOHX2 + H2

CHOHX2 ⇒ COX2 + H2

CH2OHCHOHX1 + HX2 ⇒ CH2OHX1 + CH3OX2

CH2OHX1 + X2 ⇒ CH2X1 + OHX2

CH2X1 + HX2 ⇒ CH3X1 + X2

CH3X1 + HX2 ⇒ CH4 + X1 + X2

CH3OX1 + X2 ⇒ CH2OX1 + HX2

CH2OX1 + X2 ⇒ HCOX1 + HX2

HCOX1 + X2 ⇒ COX1 + HX2

COX1 ⇔ CO + X1

COX1 + OHX2 ⇔ CO2 + HX2 + X1

HX2 + HX2 ⇔ H2 + 2X2

Glycerol is absorbed on a catalytic site and it is dissociated into hydrogen and hydroxyl. After
that, the absorbed glycerol reacts with the hydrogen absorbed to dissociate into simpler molecules
to produce hydrogen and carbon dioxide, which is desorbed at the end of the process. Furthermore,
they proposed two kinetic equation models, of which, one of them is based on the reaction mechanism
previously illustrated:

r =
krxnPG

√
PW

(1 + KGPG)
(
1 +
√

KW PW
) (10)

where krxn, KG and KW are equal to 1.33 × 10−7 mol·m−2s−1kPa−1, 5.60 × 10−4 kPa−1 and
0.043 kPa−1, respectively.

Wang et al. [14] studied a GSR catalyst based on NiO 24.1 wt %, MgO 26.1 wt % and Al2O3

49.8 wt %. At 650 ◦C, the catalyst exhibits a H2 selectivity of 78.5% and glycerol conversion of 88.0%.
Dieuzeide et al. [101,102] investigated the influence of Mg presence in Ni-Mg/Al2O3 catalyst, varying
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its weight percentage in the range 0%–10%. At 500 ◦C and WGMR = 3.5/1, they observed the best result
in terms of low carbon formation by using the catalyst loaded with 3 wt % of Mg, probably because it
favours a better Ni dispersion. Seung-hoon et al. [103] added alkaline metals (K, Ca, Sr) as promoters
in Ni/Al2O3 catalyst. A very low carbon coke formation was obtained by using Sr-Ni/Al2O3, probably
as a consequence of a basicity increment of the whole catalyst. Huang et al. [104] prepared a Ni-based
catalysts using commercial Ca-containing Linde-type 5A zeolite (LTA) as support, in presence of
Mo–La oxides and CaO to demonstrate that an increase on basic property of Ni/LTA catalysts helps
to improving glycerol conversion to syngas and inhibits water–gas shift reaction and methanation
during GSR. Gallegos-Suárez et al. [105] tested a NiO (between 5 and 30 wt %) catalysts supported
on MgO and CeO2 for GSR reaction at different temperature from 250 to 550 ◦C, weight hourly space
velocity (WHSV) = 5.3 h−1, WGMR = 16/1, in a fixed-bed reactor. They reached 80% as a maximum
glycerol conversion at 550 ◦C using a 15% NiO catalyst, while glycerol conversion (~15%) decreased
due to an increment of carbon coke formation. Shao et al. [106] tested a Ni/CeZr catalyst with
different weight percentage of supports to improve the catalytic stability and minimize the carbon coke
formation. Kousi et al. [107] investigated the effects of B2O3 and La2O3 on Ni/Al2O3 catalyst during
GSR reaction, observing an increment of the hydrogen yield in presence of La2O3, while by adding
B2O3 the authors noted an inverse result, more pronounced at lower temperatures (~400 ◦C). Bobadilla
et al. [108] studied a Ni-Sn bimetallic catalyst supported over Al2O3 modified with different promoter
(Mg and/or Ce). GSR reaction was then performed at 650 ◦C, 1 bar and WGMR = 12, observing that
the addition of MgO and CeO2 made a synergetic effect possible, able to decrease the coke formation
by suppression of Lewis acids centres and favouring the WGS reaction. Go et al. [109] studied three
different Ni-based catalysts: Ni-Fe-Ce/Al2O3, Ni-Fe-La/Al2O3 and Ni-Fe-Cr/Al2O3. During GSR
reaction, Ni-Fe-Ce/Al2O3 shows low carbon coke formation at high temperature.

Ni and Ni-Pd catalysts supported on Al2O3-ZrO2, Al2O3-ZrO2-La2O3 and on Olivine have been
compared by Yurdakul et al. [110] studying the influence of the support with the temperature. In the
temperature range between 600 and 800 ◦C and at WGMR = 5/1 they reached the maximum H2 yield,
about 74%, using the Ni-Pd/Al2O3-ZrO2 catalyst. Meanwhile, the presence of La2O3 decreased the
CO2 selectivity, resulting unfavourable for the GSR reaction.

2.2.2. Ruthenium Catalyst in GSR Reaction

The reaction mechanism of the GSR reaction in presence of Ru-based catalyst has been proposed
by Sundari et al. [111] as follows:

C3H8O3 + X
k1;k−1⇔ C3H8O3X

C3H8O3X + H2O
k2⇒ C3H8O3XH2O

C3H8O3XH2O
k3⇒ Intermediates

k4⇒ 3CO2 + 7H2

The glycerol (A) is absorbed on the catalyst surface with water (B) creating a complex that,
successively, reacts to form CO2 and H2. In this case, the reaction rate is:

r =
k1k2 pA pB

k−1 + k1 pA + k2 pB + k1k2 pA pB/k3
(11)

At high WGMR, the water partial pressure can be assumed constant (pB = pB0), so the reaction
rate can be rewritten as:

r =
kR pA

1 + bpA
(12)

where kR and b coefficient can be defined as:

kR =
k1k2 pB0

k−1 + k2 pB0
; b =

k1 + (k1k2 pB0/k3)

k−1 + k2 pB0
(13)
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As a consequence, for low glycerol partial pressure bpA << 1, the kinetic rate results to be of the
first order (see Equation [13]).

Hirai et al. [112] studied GSR reaction by using Ru catalyst and analysing the effect of different
kind of supports (Y2O3, ZrO2, CeO2, SiO2, MgO and Al2O3), pointing out that Ru/Y2O3 made the
best performance possible with H2 yield about 90% at 600 ◦C.

2.2.3. Cobalt Catalyst in GSR Reaction

Even though cobalt catalysts do not represent the best solution to carry out GSR reaction,
Sanchez et al. [113] studied a bimetallic catalyst, Ni(4 wt %)-Co(4, and 12 wt %), supported on γ-Al2O3.
However, in this study, the authors evidenced that cobalt acts as a precursor, while the catalytic activity
is mainly given by Ni. These catalysts favoured the production of H2 as the main product, with
CO2, CO and CH4 found in smaller concentrations. In particular, the presence of Co promoted H2

production and reduced CO2 formation by decreasing the reaction temperature with a depletion of
CH4 formation. The low Co loading produced the largest H2 and CO2 amounts at relatively low
temperature, with low CO and CH4. In contrast, high Co loading maximised the H2 production,
depleting CO2 formation, at relatively low temperature.

Also, Araque et al. [114] used a bimetallic Co-based catalyst (Co-Rh) for the production of
hydrogen from GSR reaction. In this case, the cobalt catalyst allowed the selective production of H2,
where the presence of Rh favoured the stability of the catalyst.

2.2.4. Platinum Catalyst in GSR Reaction

Regarding the utilization of Pt-based catalyst in GSR reaction, Pompeo et al. [115] described
an interesting mechanism, represented schematically in Figure 11. The mechanism involves two
paths: the first pathway (I) consists of a dehydrogenation of glycerol with subsequent dehydration to
form acetol; a second dehydrogenation, with a first breaking of C–C bond and subsequent formation
of acetic acid (caused by a dehydrogenation and cleavage of the C–C bond). Then, the acetic acid
decomposes into CO2 and H2. The second pathway [II] does not involve dehydration reactions, but
mainly cleavage of C–C bonds and dehydrogenations, producing H2 and CO. The same mechanism
has been proposed for Ni-based catalyst [116].Membranes 2017, 7, 17  17 of 30 
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Pastor-Pérez et al. [117] prepared some bimetallic PtSn/C catalysts whit different Sn/Pt atomic
ratios (0.2, 0.3, 0.5, and 0.7) for improving the catalytic activity, selectivity and/or stability. They
reached the maximum H2 yield (about 36%) for GSR at 1 bar, 350 ◦C and WGMR = 9/1 and 0.2 as
Sn/Pt atomic ratio.

Sad et al. [118] optimized the Pt-based catalyst used for GSR reaction, chaining different type of
supports such as SiO2, MgO, Al2O3 and TiO2 between 300 and 350 ◦C. The most important result is
the total glycerol conversion, with higher H2 yield in case of Pt/SiO2 utilization.

2.2.5. Perovskites in GSR Reaction

Surendar et al. [119] doped cobalt based perovskites (LaCo0.99X0.01O3) with X = Au, Ag, Cu and
Pt to study GSR reaction between 400 and 700 ◦C, achieving the best performance in terms of hydrogen
yield (~78%) and glycerol conversion (~96%). Furthermore, they demonstrated that the carbon coke
formation varies depending on the type of metal dopant as in the following scale: LaCoO3 > Au > Ag
> Cu ~ Pt.

Ramesh et al. [120] used perovskite catalysts for this reaction at low temperature, specifically
LaNiXCuYO3 (X between 0.5 and 1 and Y between 0 and 0.5). The goal of the authors was given
by the utilization of Ni as reformer catalyst, LaO3 to decrease the reaction temperature and Cu to
improve the stability of the catalyst and favour a low carbon coke formation. They achieved interesting
performance utilizing LaNi0.9Cu0.1O3 at 650 ◦C in terms of glycerol conversion and H2 selectivity
(73.0% and 67.3%, respectively).

Mitran et al. [121] used molybdena-alumina based catalysts at 400–500 ◦C whit WGMR between
9:1 and 20:1 and feed flow rate 0.04–0.08 mL/min. They obtained the best results at maximum
percentage of molibdena, WGMR, temperature and lowest feed flow rate, with CH4 selectivity less
than 5%.

3. Innovative Technologies for Producing H2 from Steam Reforming of Glycerol

3.1. Membranes and Membrane Reactors

Among the various alternative technologies to the conventional systems for producing hydrogen
by a green process, membrane reactor (MR) technology plays an important role in terms of Process
Intensification Strategy because it involves a unique operation unit to perform both the chemical
reaction and the hydrogen separation/purification process [122,123]. Thus, using MRs the plants
are more compact with lower investment costs and cost-effective process [124]. The presence of the
membrane, in an equilibrium restricted reaction, makes possible to overcome the thermodynamic
equilibrium conversion of the equivalent conventional reactor: This is due to the selective removal
of a product from the reaction system, acting a shift effect on the reaction itself, which proceeds with
a higher products formation (with consequent conversion improvement).

Another functionality of the MRs is represented by the control of reactants addition for permeation
through the membrane, avoiding the disadvantage of secondary reactions and increasing the
overall reaction.

The membrane can be classified according to its nature, geometry and the type of transport
mechanism [125] as follows:

• macroporous membranes, with a pore size greater than 50 nm;
• mesoporous membranes, with a pore size between 2 and 50 nm;
• microporous membranes, with smaller pore size of 2 nm;
• dense membranes, with pore size <0.5 nm.

For dense membranes, the transport mechanism is represented by solution-diffusion, while in
porous membranes different types of transport mechanisms often compete with each other to control
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the process [126,127]. In the following section, we report some of the most common mechanism used
for describing a gas permeation process through porous membranes:

• Poiseuille mechanism. It takes place when the average pore diameter is much larger than the
mean free path of the molecules; therefore, the collisions within the various molecules are more
frequent than those within molecules and porous walls:

Ji = −
ε× d2

pore

32× R× T × η × τ
p∇p (14)

where ε = membrane void fraction, d2
pore = pore diameter, R = universal constant, T = temperature,

p = pressure, τ = tortuosity, ∇p = pressure gradient and η = viscosity.
• Knudsen diffusion mechanism. When the pores diameters are comparable or less than the mean

free path, the quantum momentum is transferred by the collisions between the molecules and the
wall of the pores. Applying the kinetic theory of gases to a single straight and cylindrical pore,
the Knudsen diffusion coefficient can be defined as:

Di,K =
ε× dpore

3× τ

√
8× R× T
π ×MWi

(15)

where ε = membrane void fraction, dpore = pore diameter, R = universal constant, τ = tortuosity, η

= viscosity and MW = molecular weight.

As a special field of interest, metallic membranes are particularly involved in hydrogen
separation/purification field due to the characteristics of hydrogen perm-selectivity of dense metallic
layers [128]. As useful material for membrane fabrication, Pd and its alloys have been extensively
studied [129]. However, as high the hydrogen perm-selectivity over all of the other gases as low the
permeability (and vice versa), while the cost of the membranes strictly depends on the thickness of
membrane material (Pd, Pd-alloy). In the last two decades, composite Pd-based membranes consisting
of thin metal films coated over porous supports have been particularly studied because exhibiting high
hydrogen permeability and selectivity values depending on the Pd-alloy layer covering the porous
support [130,131].

MR technology has been and is particularly used in hydrogen production from the reforming
of hydrocarbons and/or alcohols. As a consequence, the utilisation of self-supported and composite
Pd-based membranes showing full hydrogen perm-selectivity and high permeability allows for both
high-grade hydrogen stream and hydrogen recovery as well.

Pd-Based Membrane Reactors for H2 Production

In the last 50 years, several companies as Johnson Mattey moved from the commercialization of
unsupported dense Pd-based membranes to composite thin Pd-layer supported on porous substrates,
matching the objective of producing more mechanical resistant and cost effective Pd-membranes for
potential industrial applications [132]. The transport mechanism of the hydrogen permeation through
a dense layer of palladium or its alloy (Figure 12) is represented by the solution-diffusion, which takes
place specifically in six steps as resumed below:

1. H2 molecules adsorption from the membrane side at higher H2 partial pressure;
2. Dissociation of H2 molecules on the surface;
3. Reversible dissociative chemisorption of atomic H2;
4. Reversible dissolution of atomic H2 in the metal lattice of the membrane;
5. Diffusion into the metal of atomic H2 proceeds from the side of the membrane at a higher H2

pressure to the side at lower pressure;
6. Desorption of re-combined atomic H2 into molecular form.
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From a theoretical point of view, the solution-diffusion mechanism evolves in three main types
of fluxes:

J1 = k1 pH2,1 − k2 p2
H2,1 (16)

J2 = k2 pH2,2 − k1 pH2,2 (17)

J3 = D(C2 − C1) (18)

Equation (16) represents H2 adsorption on the membrane side at higher partial pressure;
Equation (17) denotes the dissociation into atomic H2, reversible dissociative chemisorption of atomic
H2 and Equation (18) is the final desorption of recombined H2 molecules.

At steady state conditions, the aforementioned fluxes are equal (JH2 = J1 = J2 = J3) and, by adding
J1 and J2:

2JH2 = k1
(

pH2,1 − pH2,2
)
− k2(p2

H2,1 − p2
H2,2) (19)

By taking also into account the average dissolved H2 concentration, the H2 flux can be
expressed as:

JH2 =
1

1
αdi f f
− 2

k1

(
pH2,1 − pH2,2

)
(20)

where αdiff is a diffusion coefficient describing the relationship between the resistance of H2 transport
on the membrane surface and the H2 dissociation into the metal lattice,

αdi f f =
Dr2(k1/k2)

2 δ CAv
(21)

Consequently, the H2 permeating flux can be expressed by the following general equation:

JH2 = PeH2

(
pn

H2,ret
− pn

H2,perm

)
δ

(22)

where PeH2 is the H2 permeability through the membrane, pH2,ret and pH2,perm the hydrogen partial
pressure in the retentate and permeate sides, respectively, and n the exponent expressing the
dependence of H2 flux to the H2 partial pressure (variable between 0.5 and 1) and δ the thickness of
the palladium layer.
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When n = 0.5, the transport resistance is represented by the H2 dissociation into the Pd-layer, then
Equation (22) becomes the Sieverts-Fick law (see Equation (23)):

JH2 = PeH2

(p0,5
H2,ret − p0,5

H2,perm)

δ
(23)

Concerning the temperature influence on the H2 permeability, the relationship between the
hydrogen permeation rate and the temperature can be described by the Arrhenius law:

PeH2 = Peo
H2

exp
(
− Ea

RT

)
(24)

where Peo
H2 and Ea, are the pre-exponential factor, and the apparent activation energy, respectively.

Steward et al. [133] demonstrated that, when the metals have a body centered cubic (BCC) as
a crystal structure (i.e., V, Nb and Ta), they show higher H2 permeability than the face centered cubic
(FCC) metals such as Pd and Ni. Figure 13 reports the H2 permeability through different dense metals
versus temperature. As shown in the graph, the H2 permeability is inversely proportional to the
temperature for V, Nb and Ta, whereas it is directly proportional to the temperature in Pd and Ni.
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3.2. Glycerol Steam Reforming in Conventional and Membrane Reactors

Most of the literature regarding the glycerol steam reforming reaction for producing hydrogen
regards conventional reactors, both in aqueous or gas phase. When performed in gas phase, the process
needs atmospheric pressure even though a consistent catalyst deactivation represents the most critical
issue. Metals such as Ni and Ru exhibit good catalytic activity but lead to alkanes formation. In contrast,
Ir, Co, Cu, Ag, Au and Fe show low catalytic activity. In literature, the catalytic activity scale for
gas phase GSR reaction can be represented as in the following: Ru ≈ Rh > Ni > Ir > Co > Pt > Pd >
Fe [134]. Among the most active catalysts for this reaction, Rh results to be more effective to steam
reforming of hydrocarbons and less susceptible to carbon formation, but Rh-based catalysts are not
common in industrial applications owing to their high cost. Zhang et al. [135] performed both steam
reforming reaction of ethanol and glycerol over Ir, Co and Ni-based catalysts, determining that Ir-based
catalyst is significantly more active and selective toward hydrogen production. Iriondo et al. [136]
used alumina-supported Ni-based catalysts, modified with Ce, Mg, Zr and La, pointing out that the
differences in catalytic activity are due to the geometric effects caused by the Ni and La or to the
close interaction between Ni and Zr. Furthermore, they found that the catalyst deactivation takes
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place owing to the oxidation of the active catalyst metallic phase. The effect of the supports such
as yttria, ceria-zirconia and γ-alumina on catalysts based on Ru and Ru-Me (with Me = Fe, Co, Ni,
and Mo) was studied at high temperatures during glycerol steam reforming reaction [137]. It was
found that the catalytic properties are notably affected by the nature of the support, resulting in
a significant enhancement of H2 production turnover rate and product selectivity on the reducible
yttria and ceria-zirconia via facilitation of the water-gas shift reaction. The production of pure hydrogen
from crude glycerol in a one-stage sorption enhanced steam reforming process (integrating steam
reforming of oxygenates and hydrocarbons, WGS and carbonation reactions) was also studied by
Fermoso et al. [138]. In a CR packed with a mixture of Ni/Co catalyst derived from hydrotalcite-like
material and dolomite as CO2 sorbent, they reached an H2 yield up to 88% and a hydrogen purity =
99.7 vol % at atmospheric pressure, temperature between 550 and 600 ◦C and WGMR = 3/1. Other
interesting results are reported in a small overview on the most representative literature data about GSR
reaction in CRs, in which the performance in terms of glycerol conversion are summarized in function
on the reaction temperature and catalyst type used during the reaction (Table 6). As a qualitative
comparison, Ru and Ni catalysts seem to have the best catalytic activity towards the reaction, favouring
higher glycerol conversion.

Table 6. Glycerol conversion during GSR reaction in conventional and membrane reactors at various
temperatures and catalysts.

Type of Reactor Catalyst T (◦C) Conversion (%) Ref.

CR Ni/Al2O3 635 100 Demsash & Mohan [139]
CR Ni/ZrO2 600 100 Iriondo et al. [136]
CR Ni/Al2O3 920 95 Adikari et al. [141]
CR Ni/CrO2 400 100 Chen et al. [143]
CR Ni/CeO2/Al2O3 600 92 Buffoni et al. [142]
CR Rh/CeO2/Al2O3 920 78 Adikari et al. [141]
CR Pt/CeZrO2/Y2O3 600 81 Cui et al. [143]
CR Co/Al2O3 550 65 Cheng et al. [94]
CR Rh/Al2O3 630 85 Chiodo et al. [146]
CR Ru/Al2O3 720 100 Byrd et al. [147]
CR Ni/CeO2/Al2O3 800 96 Lin et al. [148]
CR Ni/Cu/Al 650 91 Wang et al. [149]
CR Co/Al2O3 400 40 Iulianelli et al. [150]
CR Ru/Al2O3 400 45 Iulianelli et al. [151]

Pd-Ag/PSS MR Ni/CeO2/Al2O3 450 27 Lin et al. [148]
Pd-Ag MR Co/Al2O3 400 94 Iulianelli et al. [150]
Pd-Ag MR Ru/Al2O3 400 57 Iulianelli et al. [151]

Pd-Ag/PSS MR Ni/CeO2/Al2O3 400 24 Chang et al. [153]
Pd-Ag/PSS MR Ni/CeO2/Al2O3 450 95 Lin et al. [154]

As an alternative technology, a few authors investigated GSR reaction in membrane reactors and
some results are also reported in Table 6. In particular, the main indication given by this table is that
Pd-based MRs can operate at lower temperature than the CRs, meanwhile reaching comparable or
better glycerol conversions. This represents an important goal because lower operating temperatures
mean higher energy saving and, consequently, cheaper solution for performing the GSR reaction
than the conventional processes, with the further advantage of collecting high grade hydrogen. As a
special extension of the results related to MRs, Table 7 summarizes other performance in terms of both
hydrogen recovery and yield besides other information regarding the operation conditions and the
thickness of the dense Pd or Pd-alloy layer.
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Table 7. Experimental data from literature about glycerol reforming in membrane reactors.

Type of Reactor Pd or Pd-Alloy Layer T (◦C) p (bar) H2 Recovery (a) H2 Yield (b) Ref.

Pd-Ag/PSS 33 450 – – 35 Lin et al. [148]
Pd-Ag MR 50 400 1.0 63 39 Iulianelli et al. [150]
Pd-Ag MR 50 400 5.0 56 28 Iulianelli et al. [151]
Pd-Ag/PSS 25 450 3 40 80 Chang et al. [153]
Pd-Ag/PSS 27 4 1 – 44 Lin et al. [154]
(a) H2 Recovery = Molar ratio between the COx-free hydrogen permeated stream and the total hydrogen really
produced. (b) H2 Yield = Molar ratio between the hydrogen stream in the permeate side and the total hydrogen
theoretically producible from the stoichiometry of reaction.

Lin et al. [148] studied the autothermal glycerol reforming over a Ni/CeO2/Al2O3 catalyst in
a MR housing a Pd-Ag/PSS (thickness of the Pd-Ag layer = 33 µm). At 450 ◦C and WGMR = 5/1, they
reached a hydrogen yield of around 35%. In another work, Lin et al. [153] evaluated also the effect of
the oxygen addition on the hydrogen yield, reaching a value of around 44%. Chang et al. [153] used
a supported porous stainless steel with a Pd-Ag layer deposited via electroless plating (25 µm of dense
layer). This membrane was allocated in a MR, which was operated at 450 ◦C, getting 40% of hydrogen
recovery and around 80% of hydrogen yield. Iulianelli et al. [150] allocated a dense and self-supported
Pd-Ag membrane (50 µm thick) in a MR module and GSR reaction was carried out over a 0.5 wt %
Ru/Al2O3 catalyst. The experiments were performed at 400 ◦C, WGMR = 6/1, reaction pressure
between 1 and 5 bar and WHSV from 0.1 to 1.0 h−1. At 5 bar, around 40% of glycerol conversion was
reached with an H2 recovery a bit less than 60%. Furthermore, Iulianelli et al. [151] studied the reaction
over a Co/Al2O3 commercial catalyst at 400 ◦C, WGMR = 6/1, reaction pressure between 1 and 4 bar,
producing a maximum glycerol conversion around 94% and an H2 recovery a bit higher than 60%.

4. Conclusions

Glycerol production can come from different processes and feedstocks, such as by propylene
synthesis via several pathways or hydrolisis of fatty acids triglycerides or by transesterification of
fatty acids/oils. Furthermore, glycerol can be also produced via fermentation. However, among other
renewable and bio-derived sources, glycerol has become an attracting candidate since it constitutes
a relevant and alternative solution to produce hydrogen through reforming reactions, performed both
in conventional and innovative reactors. In this section, we described the most common processes
for obtaining glycerol. Also the role of the catalysts in the reforming reactions of glycerol to produce
hydrogen has been considered because demonstrated that the steam reforming performances are much
affected by the nature and composition of the catalysts used in the process. Furthermore, as a special
case, we illustrated the main benefits of the utilization of an alternative and innovative technology as
the membrane reactors in the field of hydrogen production. Indeed, we highlighted that Pd-based MR
technology can show superior performance over the conventional reactors, or—in contrast—the same
performances but operating at milder conditions, with a consequent advantage in terms of energy
saving coupled to the recovery of an high-grade hydrogen stream. In summary, the future perspectives
on performing the glycerol reforming in inorganic MRs are listed below:

• The scaling-up of glycerol reforming MRs is one of the most important issues. Developing
low-cost, durable and defect-free membranes could represent a viable solution for realistic
application of MRs at industrial scale.

• Great attention should be paid to evaluating the effective balance between benefits and drawbacks
of applying MR technology to produce hydrogen from glycerol reforming reaction over the
conventional processes.

• More wider researches on the lifetime of MRs utilized for carrying out glycerol reforming processes
should be undertaken in order to validate them as a potential and alternative solution to the
conventional systems at larger scales.
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List of Acronyms and Symbol

BCC Body centered cubic
dpore Pore diameter
Ea Activation energy
f o
i Fugacity for i-component

FCC Face centered cubic
FFA Free fatty acid
G Free Gibbs energy
GOSR Glycerol oxidative steam reforming
GSR Glycerol steam reforming
JH2 Hydrogen flux through the membrane
K Equilibrium constant
ki Kinetic constant for i-reaction
LTA Linde-type 5A zeolite
MONG Matter organic non-glycerol
MR Membrane reactor
MW Molecular weight
OGMR Oxygen glycerol molar ratio
P Pressure
pH2,ret Hydrogen partial pressure in the retentate side
pH2,perm Hydrogen partial pressure in the permeate side
PeH2 Hydrogen permeability through the membrane
Peo

H2
Pre-exponential factor

R Universal ideal gas constant
S Entropy
SRM Steam reforming of methane
T Temperature
TR Traditional reactor
WGS Water gas shift
WGMR Water glycerol molar ratio
WHSV Weight hourly space velocity
δ Palladium thickness
ε Membrane void fraction
τ Tortuosity
∇p Pressure gradient
η Viscosity
νi Stoichiometric coefficient for i-component
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