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Abstract: We present a modeling approach to determine the permeability-selectivity tradeoff for
microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using
the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution
on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is
developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in
the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of
membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane
performance while increasing the width of pore size distribution deteriorates the performance. It was
also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly
affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift
in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the
case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed.

Keywords: permeability-selectivity; membrane stretching

1. Introduction

Microfiltration and ultrafiltration are widely used techniques in applications ranging from
wastewater treatment to biomedical applications and the food industry. In water desalination, for
example, the use of ultrafiltration membranes instead of conventional pre-treatment improves the
Reverse Osmosis (RO) feed quality and provide stable permeability.

Microfiltration and ultrafiltration membranes are generally made using organic polymers, such
as polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), polyvinylidene fluoride (PVDF),
polypropylene (PP), polyethylene (PE), polysulfone (PS), and polyether sulfone (PES) and are prepared
by techniques, such as track-etching, stretching, and phase inversion. The microstructures of
phase-inversion and track-etched membranes are shown in Figure 1.
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Figure 1. Microstructure of an (a) phase-inversion PES membrane and (b) track-etched membrane [1]. 
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high permeability and high rejection rate. Practically, this is not the case as permeability and rejection 

rate cannot both be increased at the same time [2]. 
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membranes, several efforts have been made to formulate models for the membrane performance 

under the influence of fouling [3–6], pore size distribution [2,7], and pore shape [8,9]. Variation in 

pore sizes has been found to affect membrane performance significantly. Effect of pore size 

distribution in track-etched membranes on the permeability-selectivity characteristics of 
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experimental and numerical studies to study the effect of uniaxial stretching on the pore geometry 

and performance of PET track-etched membranes and phase-inversion PES and PVDF membranes, 

respectively. Both found that an increase in the pore aspect ratio resulted in improved permeate flux, 

but no definite trend in the rejection rate of the solutes was observed as the uniaxial strain applied to 

the membrane was increased. 

Although models of membrane performance that take into account pore size distribution have 

been published for various pore geometries, they are not applicable to real membranes. As is evident 

from Figure 1, conventional membrane preparation methods do not result in well-defined pore 

shapes. For example, the track-etched membrane in Figure 1b, not only has a pore size distribution 

but also a pore aspect ratio distribution. Similarly, the process of membrane stretching will also 

introduce an aspect ratio distribution in the membrane. Currently, no model is available that can 

predict the permeability-selectivity characteristics of microfiltration and ultrafiltration membranes 

taking into account the pore size, as well as pore aspect ratio distributions. 

In the current work, three major tasks are carried out. First, a model to study permeability-
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Figure 1. Microstructure of an (a) phase-inversion PES membrane and (b) track-etched membrane [1].

Microfiltration and ultrafiltration are pressure driven processes that work by removing particles
larger than the pore size of the membrane through a sieving mechanism. The quality of separation is
normally expressed by the rejection factor or the separation factor of the membrane for a given solute.
The rejection factor is defined as 1´ cperm/cfeed while the separation factor is defined as cfeed/cperm (where
cperm = permeate concentration and cfeed = feed concentration). Ideally, a membrane should combine
high permeability and high rejection rate. Practically, this is not the case as permeability and rejection
rate cannot both be increased at the same time [2].

In order to understand and predict the performance of microfiltration and ultrafiltration
membranes, several efforts have been made to formulate models for the membrane performance
under the influence of fouling [3–6], pore size distribution [2,7], and pore shape [8,9]. Variation in pore
sizes has been found to affect membrane performance significantly. Effect of pore size distribution in
track-etched membranes on the permeability-selectivity characteristics of ultrafiltration membranes
was studied by Mehta and Zydney [2] for circular pores and by Kanani et al. [9] for slot-shaped
pores. Kanani et al. also found that using slot-shaped pores (very high aspect ratio) resulted in higher
permeate flux compared to circular pores for same rejection ratios. Increased aspect ratio has also been
linked to reduced fouling rates in membranes [10].

To take advantage of improved membrane performance when pore aspect ratio is high, studies
have also been conducted to see the effect of artificially increasing pore aspect ratio by uniaxial
stretching of the membranes [11–13]. Morehouse et al. [11,12] and Worrel [13] carried out experimental
and numerical studies to study the effect of uniaxial stretching on the pore geometry and performance
of PET track-etched membranes and phase-inversion PES and PVDF membranes, respectively.
Both found that an increase in the pore aspect ratio resulted in improved permeate flux, but no
definite trend in the rejection rate of the solutes was observed as the uniaxial strain applied to the
membrane was increased.

Although models of membrane performance that take into account pore size distribution have
been published for various pore geometries, they are not applicable to real membranes. As is evident
from Figure 1, conventional membrane preparation methods do not result in well-defined pore shapes.
For example, the track-etched membrane in Figure 1b, not only has a pore size distribution but also
a pore aspect ratio distribution. Similarly, the process of membrane stretching will also introduce
an aspect ratio distribution in the membrane. Currently, no model is available that can predict the
permeability-selectivity characteristics of microfiltration and ultrafiltration membranes taking into
account the pore size, as well as pore aspect ratio distributions.

In the current work, three major tasks are carried out. First, a model to study permeability-selectivity
trade-off of membranes with pore size and aspect ratio distributions is formulated and is used to study
the effect of aspect ratio and size distribution on the permeability-selectivity trade-off of the membrane.
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Second, a finite element model for porous membranes is developed and is used to study the effect of
membrane stretching on pore size and aspect ratio distributions and on the permeability-selectivity
trade-off. Finally, the effect of porosity dispersion uniformity on the performance of stretched membrane
is studied.

2. Permeability-Selectivity Analysis

A methodology to carry out permeability-selectivity analysis of ultrafiltration and microfiltration
membranes has been presented by Mehta and Zydney [2] for membranes with circular pores of variable
sizes and later extended by Kanani et al. [9] for slot pores. The following development for membranes
with circular pores was done by Mehta and Zydney [2] to determine the permeability of the solvent
through a membrane with circular pores and is presented here for the sake of completeness with
some additional intermediate steps. The methodology is then extended to include the effect of pore
shape distribution.

2.1. Circular Pores with Size Distribution

Under the assumption of a convection dominated process, the velocity of all impurities in the
feed is the same as the solvent and the separation coefficient of the membrane for the large solute to be
filtered is defined as:

α “
Ssmall
Slarge

(1)

where Slarge is the selectivity of the larger solute that needs to be separated and Ssmall is the selectivity
of the small solutes that pass through the membrane without any hindrance.

The selectivity of the larger solute that needs to be filtered can be determined using the expression
developed by Zeman and Wales [14]:

Sa prq “ p1´ λq2
´

2´ p1´ λq2
¯

exp
´

´0.7146λ2
¯

(2)

where λ “ rs{r, r, and rs are the pore and solute radii.
The permeability of the solvent through the membrane can be determined by assuming that the

pores are perfect cylinders. Under this condition, the Hagen–Poiseuille equation is valid. The volumetric
flow rate of the solvent through the membrane is:

Q “
∆P

8µδm
Npπr4 (3)

where Q is the flow rate (m3/s), ∆P is the pressure drop (Pa) across the membrane, µ is the viscosity
(Pa¨s) of the solvent, δm is the membrane thickness (m), and Np is the number of pores in the membrane.
The volumetric flux through the membrane becomes:

Jv “ Q{Amem (4)

where Amem is the membrane area defined by:

Amem “
Npπr2

ϕ
(5)

and ϕ is the porosity fraction in the membrane.
Using Equations (3)–(5), the permeability of the solvent through the membrane can be

defined using:

Lp “
Jv

∆P
“

ϕr2

8µδm
(6)
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Equations (2) and (6) can be used to generate the permeability-selectivity curves for membranes.
The effect of variation in the pore radius can also be included in the equations for permeability and
selectivity. This is done by averaging the permeability and selectivity over the entire range of pore radii.
Mochizuki and Zydney [7] carried out a theoretical analysis to determine the average permeability
and selectivity of membranes. The average permeability and selectivity are given by Equations (7)
and (8), respectively:

Lp “
ϕ

8µδm

r8
0 n prq r4dr

r8
0 n prq r2dr

(7)

Sa “

r8
0 Sa prq n prq r4dr

r8
0 n prq r4dr

(8)

where n(r) is the probability density function of pore radii.

2.2. Elliptical Pores with Size and Aspect Ratio Distribution

Using a similar approach to Mehta and Zydney [2], the permeability of a solvent through a
membrane with elliptical pores was derived. The solution of the Hagen–Poiseuille equation for
elliptical cross-section leads to the following equation for solvent flow rate:

Q “
Np∆P
4µδm

πa3b3

a2 ` b2 (9)

where a and b are the major and minor axes half lengths of the elliptical cross section of the pore.
The permeability of the solvent through the membrane is, therefore:

Lp “
ϕ

4µδm

a2b2

a2 ` b2 (10)

To take into account the variation in the pore sizes in the membrane, the area weighted average of
Equation (10) is taken. The average permeability through the membrane is given by Equation (11):

Lp “
ϕ

4µδm

r8
0

r8
0 n paq n pbq a3b3

a2`b2 dadb
r8

0
r8

0 n paq n pbq ab dadb
(11)

where n(a) and n(b) are the probability density functions of the major and minor axes’ half lengths of
the pores.

To determine the average selectivity of the membrane, it is noted that the selectivity will depend
on the minor axis length of the pore cross section. Setting λ “ rs{b and assuming Equation (2) is still
valid for determining selectivity, the average selectivity of membranes with elliptical pores of variable
sizes can be determined using:

Sa “

r8
0 Sa pbq n pbq b2db

r8
0 n pbq b2db

(12)

3. Effect of Pore Geometry on Membrane Performance

In order to study the effect of pore aspect ratio on the permeability-selectivity performance of
microfiltration and ultrafiltration membranes, a study was conducted in which the aspect ratio of
the pores was changed while keeping the pore cross-section area constant. The parameters used in
the model were solute radius ra = 3.65 nm for bovine serum albumin protein, membrane porosity
fraction ϕ = 0.3, membrane thickness δ = 0.3 µm and solvent viscosity µ = 0.001 Pa¨s. The log-normal
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probability distribution function, given by Equation (13) was used to describe the pore size variation
within the membrane [7].

n pxq “
n0

x
?

2π

”

ln
´

1` pσ{xq2
¯ı´1{2

exp

$

’

’

’

&

’

’

’

%

´

ˆ

ln px{xq
”

1` pσ{xq2
ı1{2

˙

2ln
”

1` pσ{xq2
ı

2,
/

/

/

.

/

/

/

-

(13)

where σ is the standard deviation of x, x is the mean value of x, and n0 is the maximum possible value
of n(x). The two parameters that control the distribution are mean x and the normalized standard
deviation σ{x.

Two studies were conducted; first, to see the effect of average aspect ratio on permeability-selectivity
trade-off for different normalized standard deviations of pore sizes a and b, and second, to see the
effect of normalized standard deviations of pore sizes a and b on the performance for different aspect
ratios. The results are shown in Figures 2 and 3. Each point in the figures was generated by selecting an
average pore radius r, calculating the average major and minor axes half lengths under the condition
that the pore area remains the same for all aspect ratios and calculating permeability and selectivity
using Equations (11) and (12), respectively.
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Figure 2. Effect of pore aspect ratio on permeability-selectivity trade-off.
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Figure 3. Effect of pore size distribution on permeability-selectivity trade-off.

As can be seen from Figure 2, increasing the average aspect ratio improves the performance
of microfiltration and ultrafiltration membranes for all size distributions. In other words, for the
same separation factor, a higher permeate flux can be obtained if the pore aspect ratio is increased.
This result agrees with the experimental findings of Worrel [13] and Morehouse et al. [11,12] who
found the same effect of increasing aspect ratio of permeate flux. This strengthens confidence in the
theoretical development carried out in the current work.

The effect of pore size distribution on the membrane performance is shown in Figure 3. The figure
shows the detrimental effect of non-uniform pore size on the permeability-selectivity trade-off curve.
Having a larger standard deviation of pore sizes results in a lower separation factor for all aspect
ratios. In order to achieve the same separation factor, the pore size needs to be reduced, which reduces
the permeability.

4. Membrane Stretching

Previous studies show that membrane stretching can have a positive effect on membrane
permeability [11–13]. On the other hand, the effect of stretching on the separation factor could
not be properly identified as experiments showed that there were cases in which the separation factor
increased, remained unchanged, or even reduced [13].

In the current work, a finite element model of a microfiltration membrane was developed to
analyze the effect of membrane stretching on the size and shape distributions of pores in the stretched
membrane. Using the results of the finite element model, the effect of membrane stretching on the
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permeability-selectivity trade-off curve was also analyzed. This section presents the development
of the finite element model and the resulting pore sizes due to membrane stretching. The effect of
membrane stretching on its performance is analyzed in the next section.

4.1. Finite Element Model for Membrane Stretching

The membrane stretching problem consists of a finite element model of the representative volume
element (RVE) of the porous membrane. The constitutive behavior of the membrane material is defined
explicitly as viscoelastic-rate-independent plastic. The geometry of a 30% porous membrane with an
average pore size of 0.1 µm was generated using an in-house code and is shown in Figure 4 along with
the finite element mesh. The microscale model is defined by Equations (14)–(17).

´∇ ¨ p1`∇uq S “ FV (14)

S “ C : εel ` Sq (15)

εel “ ε´ εpl (16)

ε “
1
2

”

p∇uqT `∇u` p∇uqT ∇u
ı

(17)

where u is the displacement field, S is the second Piola-Kirchhoff stress, Fv is the body load, C is the
elasticity tensor, Sq is the relaxation stress due to viscoelasticity, and ε, εel and εpl are the total, elastic,
and plastic strain tensors.
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For viscoelasticity, the bulk modulus was assumed to be constant while the shear modulus was
assumed to be defined by the generalized Maxwell model. The model consists of several spring-damper
branches in parallel each of which is defined by a shear modulus and a relaxation time. Considering m
parallel branches, the viscoelasticity model can be described using Equations (18) and (19):

Sq “
ÿ

m
2Gvm

`

eel,dev ´ εvm
˘

(18)

τvm
.
εvm ` εvm “ εel,dev (19)

where Gvm is the shear modulus in branch m, τvm is the relaxation time of branch m, εvm is the
viscoplastic strain of branch m, and εel,dev is the deviatoric part of the elastic strain tensor.



Membranes 2016, 6, 40 8 of 14

The rate-independent plasticity of the membrane material was modeled using the bilinear
isotropic hardening model. The model is described by Equations (20)–(23):

.
εp “

.
εp,e f f

BF
BS

(20)

F “ σmises ´ σys (21)

σys “ σy0 `
ET,iso

1´ ET,iso
E

εp,e f f (22)

.
εp,e f f ě 0, F

`

σ,σys
˘

ď 0,
.
εp,e f f F “ 0 (23)

where εp is the plastic strain tensor, εp,e f f is the von Mises effective plastic strain, σmises is the von
Mises stress, σy0 and σy are the initial and current yield stress, and E and ET are the elastic and
tangential moduli.

Since the finite element model represents a part of a larger membrane, periodic boundary
conditions are applied to the model using constraint equations. For a two-dimensional model, shown
in Figure 5, the constraint equations are given as Equations (24)–(28). Uniaxial stretching is applied to
the membrane by controlling the displacement of reference node 1.

Ñ
u 2 ´

Ñ
u 1 ´

Ñ
u re f1 “ 0 (24)

Ñ
u 4 ´

Ñ
u 1 ´

Ñ
u re f2 “ 0 (25)

Ñ
u 3 ´

Ñ
u 1 ´

Ñ
u re f1 ´

Ñ
u re f2 “ 0 (26)

Ñ
u right,no edges ´

Ñ
u le f t,no edges ´

Ñ
u re f1 “ 0 (27)

Ñ
u top,no edges ´

Ñ
u bottom,no edges ´

Ñ
u re f2 “ 0 (28)
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In the current work, the membrane material was assumed to be PET. The properties used in the
current work were determined by Hanks et al. [15] who experimentally determined the stress-strain
response and the viscoelastic material properties of dense PET. The properties used in the finite element
model are listed in Table 1.
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Table 1. Material properties of dense PET used in finite element model.

Property Value

Bulk modulus, K 0.162 GPa
Initial Shear modulus, Ginit 0.075 GPa

Tangent modulus, ET 5.95 MPa

Viscoelasticity [15]

Branch Shear Modulus Ratio, Gvm/Ginit Relaxation Time (s)

1 0.0402 10´5

2 0.0468 10´4

3 0.0572 10´3

4 0.1805 10´2

5 0.0487 10´1

6 0.0988 100

7 0.0205 101

8 0.1394 102

9 0.0000 103

10 0.1283 104

11 0.0470 105

12 0.1005 106

The stretching process was carried out at 160 ˝C by applying the total strain over a period of
5 min. This was followed by a holding time of 10 min to allow stress relaxation followed by cooling
the membrane to room temperature over a period of five minutes. Finally, the applied strain load was
released to remove any elastic strains within the membrane. The membrane temperature and applied
strain load are shown in Figure 6.
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4.2. Finite Element Modeling Results

For the membrane geometry presented in Figure 4, the cases of 15%, 30%, 40%, and 50% uniaxial
stretch were solved and analyzed. A summary of pore sizes after membrane stretching is presented in
Table 2, while Figure 7 shows the distribution of major and minor axes sizes. The deformed geometries
for two of the solved cases (15% and 30% stretch) are shown in Figure 8.
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Table 2. Size distribution parameters for stretched membranes.

Stretch Avg. Major Axis
Size, aavg (µm)

Avg. Minor Axis
Size, bavg (µm)

Major Axis Size
Distribution, σ/aavg

Major Axis Size
Distribution, σ/bavg

Average Pore
Aspect Ratio

Unstretched 0.097 0.097 0.060 0.060 1
15% 0.129 0.095 0.142 0.094 1.374
30% 0.162 0.087 0.191 0.156 1.866
40% 0.180 0.084 0.194 0.196 2.256
50% 0.199 0.079 0.201 0.256 2.732
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As expected, increasing the uniaxial strain applied to the membrane increases the pore aspect
ratios. The average pore aspect ratio increases from 1.374 for 15% stretch to 2.732 for 50% stretch.
The stretching process also affects the distribution of pore sizes as increasing stretching strains result in
larger standard deviations in pore sizes. The maximum normalized standard deviation was observed
for the 50% stretch case with values of 0.201 and 0.256 for major and minor axes sizes. As was
shown in Figures 2 and 3, increasing the aspect ratio improves the membrane performance while a
wider distribution of pore sizes results in a degradation of membrane performance. Since membrane
stretching results in an increase in pore aspect ratios, as well as the width of the distribution of sizes,
stretching will not necessarily result in an improved permeability-selectivity trade-off.
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5. Effect of Stretching on Membrane Performance

Using the finite element model results of Section 4 and the permeability and selectivity models
formulated in Section 2, the effect of membrane stretching on its permeability-selectivity trade-off was
analyzed. As was discussed in Section 4.2 and shown in Figure 7, there are two competing effects of
stretching that modify the membrane performance. First, stretching causes the pore aspect ratios to
increase, which improves performance. Second, the width of pore size distribution is also increased,
which degrades membrane performance. Their combined effect on membrane performance for the
stretching cases considered in Section 4.2 is shown in Figure 9. Each point in the figure is generated
by taking an initial pore radius r and applying the average major and minor axes stretches to it.
The normalized standard deviation was assumed to be independent of the average pore size. The figure
shows that the cases of 15% and 30% stretches show a positive effect of the permeability-selectivity
trade-off curve. The performance starts to degrade at higher stretch magnitudes. This is easily
observable at high selectivity values. The degradation of performance can be associated with the large
width of pore size distribution which is numerically represented as the normalized standard deviation
in Table 2.
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Effect of Porosity Dispersion Quality on Membrane Performance

The results in Figure 9 show that at higher stretch levels, the effect of size distribution dominates
the effect of pore aspect ratio. This results in a worse performance than the case of a lower stretch.
In this section, a study is presented to examine the hypothesis that the pore size distribution after
stretching is related to the uniformity of pore dispersion.

To start, four porous membrane RVEs were generated with different pore dispersion uniformities.
The dispersion quality for each microstructure was quantified by first calculating the nearest-neighbor
distances d (calculated from center to center) for all pores and representing them as the normalized
average nearest-neighbor distance davg/ravg and its standard deviation σ/ravg. A higher average
nearest-neighbor distance and a lower standard deviation represent better dispersion. The four
membrane RVEs, along with the dispersion quality parameters, are shown in Figure 10, in which case
(b) is the one studied in previous sections. The dispersion quality is increasing from case (a) to (d).
The distributions of normalized nearest neighbor distances in the four RVEs are shown in Figure 11.
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Using the four RVEs, the cases for 30% and 50% stretches were solved using finite element
analysis and the permeability-selectivity trade-off curves were generated which are shown in Figure 12.
The figure shows the significant effect that porosity dispersion quality can have on the performance
of stretched membrane. As dispersion quality is improved, the selectivity of stretched membranes
improves for the same permeability.
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The results presented in this section are significant as they can help explain why previous
experimental studies with stretched membranes showed that the separation factor increased, stayed
the same, or even reduced for stretched membranes [13].

6. Conclusions

Permeability-selectivity tradeoff analysis provides a simple tool for the analysis and comparison
of the performance of microfiltration and ultrafiltration membranes. In the current work, a model to
carry out permeability-selectivity analysis is formulated that takes into consideration the distribution
of pore sizes and aspect ratios. Using the formulated model, the effect of pore aspect ratio and size
distribution on membrane performance was studied. It was found that increasing the pore aspect ratio
improves membrane performance while increasing the width of the pore size distribution deteriorates
the performance.

The effect of uniaxial stretching on membrane performance was also studied using a finite element
model of a porous membrane in conjunction with the permeability-selectivity model. For the porous
membrane modeled, improvement was observed in 15% and 30% uniaxial stretching cases. Further
stretching deteriorated the membrane performance. The key factor in the deterioration of performance
was found to be the width of the pore size distribution which became larger with stretch. Porosity
dispersion was found to play a key role in pore size distribution of stretched membranes. Using the
finite element model, it was determined that membranes with well-dispersed pores had less size
distribution around the average value. This minimized the negative effect of pore size distribution on
membrane performance. As a result, membranes with well-dispersed porosity had better performance
improvement after stretching.
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