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Abstract: Membrane proteins are embedded in a lipid bilayer and interact with the lipid molecules
in subtle ways. This can be studied experimentally by examining the effect of different lipid bilayers
on the function of membrane proteins. Understanding the causes of the functional effects of lipids
is difficult to dissect experimentally but more amenable to a computational approach. Here we
perform molecular dynamics simulations and free energy calculations to study the effect of two
lipid types (POPC and NODS) on the conductance of the gramicidin A (gA) channel. A larger
energy barrier is found for the K+ potential of mean force in gA embedded in POPC compared to
that in NODS, which is consistent with the enhanced experimental conductance of cations in gA
embedded in NODS. Further analysis of the contributions to the potential energy of K+ reveals that
gA and water molecules in gA make similar contributions in both bilayers but there are significant
differences between the two bilayers when the lipid molecules and interfacial waters are considered.
It is shown that the stronger dipole moments of the POPC head groups create a thicker layer
of interfacial waters with better orientation, which ultimately is responsible for the larger energy
barrier in the K+ PMF in POPC.

Keywords: gramicidin A; ion permeation; molecular dynamics; potential of mean force; ceramides

1. Introduction

Gramicidin A (gA) is an antibiotic peptide that disrupts bacteria by allowing unimpeded
flow of cations into the plasma membrane. This small hydrophobic peptide is composed of
two identical helical subunits with 16 residues on each. The two subunits form a stable
compound only inside a lipid bilayer environment. When stable, the gA dimer forms a narrow
cylindrical hole across the bilayer, through which water and monovalent cations can permeate
near diffusion rates. The channel structure was determined using solution [1] and solid-state
NMR [2], and consists of a single-stranded, right-handed β-helical dimer. Each subunit is made up
of formyl-VGALAVVVWLWLWLW-ethanolamine (underlined residues indicate D-amino acids and
L-amino acids otherwise) [3]. The alternating L-D amino acid sequence allows the peptide to fold
into a helix with the side chains aligned on the exterior of the helix [4]. There are two high-resolution
structures available, PDB:1MAG [5] and PDB:1JNO [6]. These two structures have been used in a
large number of computational studies, investigating the ion permeation properties of gA [7–11].
Due to its simple structure, gA has often been used as a model for membrane proteins. For example,
it was used as a prototype ion channel model long before the first potassium ion channel protein
was crystallized [12,13]. It has also been used as a testing model for developing and validating
computational methods from continuum theories to ab initio molecular dynamics (MD) [14–18].

Biological membranes play an important role in cell biology. They consist of lipid molecules
organized in a bilayer formation, leaving a ∼ 30 Å hydrophobic layer between the intracellular and
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extracellular environment of cells [19]. Membrane proteins embedded in lipid bilayers may have their
functions modulated by the surrounding environment as shown in some studies [20–23]. Because gA
is a small protein, the effects of lipids on its function is expected to be greater than those of larger
membrane proteins. Hence, gA is a good candidate to investigate the effects of lipid environment on
protein function.

The effect of membrane environment on gA function have been investigated in several studies
previously [24–28]. Of particular interest is the work of Cukierman and co-workers, where gA
is embedded in four different lipid environments; monoglycerides, ceramides, sphingolipids and
phospholipids [24]. The experiments showed a markedly decreased ion conductance for gA in a
phospholipid environment compared to ceramides. On the other hand, the proton conductance
exhibits the opposite behavior with phospholipids enhancing conductance [25]. Enhancement in
proton transport is attributed to the orientation of water molecules at the membrane-water interface
due to the polar phosphate head groups [26]. Proton transport involves jumps between hydronium
and water molecules connected through hydrogen-bonds [27]. Alignment of water molecules at the
interface, due to the membrane dipole potential [28], reduces entropy thereby decreasing the energy
barrier for proton transport. Ion transport, however, proceeds through hydrodynamic diffusion.
The role of the phosphate head groups and the aligned water molecules at the lipid interface in ion
transport across gA is still not clear.

In this article, we attempt to explain the origin of the effects of lipid environment on ion
conductance of gA channel. We test two different lipid molecules, comparing phospholipids (POPC)
and ceramides (NODS) (Figure 1). This is accomplished using MD simulations and free energy
calculations. Our results show that ion conductance is indeed enhanced by ceramide lipids consistent
with the experimental observations. The reduction in conductance for phospholipids comes from two
sources, the phosphate head groups and the orientation of water molecules in the interface layer.

Figure 1. Molecular structure of phospholipids (POPC) (left) and ceramides (NODS) (right) lipid
molecules. Hydrogen atoms are not shown for clarity.
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2. Results and Discussion

2.1. Membrane Bilayer

Before investigating ion conductance in gA we studied the behavior of the lipid bilayers with
POPC and NODS. The molecular structures of POPC and NODS are shown in Figure 1. For the
purpose of investigating pure bilayers, we used a simulation system consisting of 64 lipid molecules
per leaflet. To compare the thickness, we calculated the mass density of the head groups for each lipid
type and plotted the densities in Figure 2. For POPC, we chose the phosphorus atom as the reference,
and the oxygen on the hydroxyl group in NODS. From 4 ns of MD simulations, we sampled the
location of the head groups along the bilayer normal (z-axis). From the maximums, it can be seen
that the oxygen atoms are located slightly further away from the bilayer center compared to the
phosphorus atoms (21.0 Å and 20.3 Å, respectively). Thus, the average bilayer thickness is about 41 Å
and 42 Å for POPC and NODS, respectively, in agreement with experiments and simulations [29,30].
It has been shown that the asymmetric hydrocarbon chains of ceramide results in a thicker bilayer
formation [31]. We observed a larger difference in the horizontal densities (i.e., area per lipid) of
POPC and NODS lipids. For POPC we found an area of ~60 Å2 per lipid in good agreement with
the experimental values [32]. For NODS bilayer, the area per lipid we obtained is ~46 Å2, again very
similar to the experimental value [33]. These give confidence to the force field parameters used in
the simulations. The large difference between POPC and NODS densities is simply due to the larger
head group in POPC. We also plotted the water density along the bilayer normal in Figure 2. The
water density profiles show a thicker layer of water molecules at the interface for POPC than NODS.
This behavior is a direct result of the tighter packing of NODS molecules in the bilayer formation.
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Figure 2. Analysis of the pure bilayer systems: (a) mass density of head groups; (b) water number
density; and (c) average orientation of water molecules with respect to the bilayer plane (the angle
between the dipole vector and the x-y plane). Black and red lines represent systems with POPC and
NODS lipids, respectively. Densities are calculated using the density profile extension in VMD [34].

To further analyze the previous observation, we plotted the average orientation of water
molecules as a function of the bilayer normal. The orientation is defined as the angle between
the dipole moment of water molecules and the bilayer plane. The angles are averaged over a
2 ns trajectory collected in 0.5 Å bins. The peak of the profiles shown in Figure 2 is roughly 20◦

and 10◦ for POPC and NODS, respectively. Qin et al. obtained a peak close to 30◦ for a DiPhPC
bilayer [26]. The difference between our results and ref. [26] for the PC head groups can be attributed
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to polarization effects that is included semi-empirically in the multistate empirical valence bond
model [35]. However, even without polarization, our results clearly show that the PC head groups
orient water molecules over a wider range than for ceramide. Thus the larger head groups in POPC
not only increases the area per lipid but also results in a greater dipole potential. It is interesting
to compare the water orientation with GMO bilayers [26], where water molecules exhibit close to
random orientation on average at the interface. Experimental measurements of cesium conductance
through gA embedded in GMO bilayers show very similar behavior to NODS at concentrations
greater than 250 mM [24]. The orientation of water molecules at the interface may not be the only
factor contributing to the enhanced conductance.

2.2. gA Embedded in Membrane Bilayer

After embedding the gA in bilayers we have simulated the equilibrated system for 10 ns with
only water molecules inside. The resulting RMSD, calculated by excluding the ethanolamine groups,
is shown in Figure 3. The RMSD fluctuates around 0.5–0.8 Å and there are some slight changes
in RMSD over the trajectory, but there are no perceptible differences between the RMSDs of gA
embedded in POPC and NODS. When we include ethanolamine in the calculations, the RMSD time
series fluctuates closer to 1 Å. To show this effect quantitatively, we plot the average RMSD per
residue including the ethanolamine, which is also shown in Figure 3. For POPC, all the residues
have RMSD values less than 0.75 Å. In NODS, however, the residues near the entrance of the
channel fluctuate more than POPC because the gA side chains have much weaker interactions
with the NODS head groups compared to those of POPC. In particular, the ethanolamine group
swings instantaneously and this is also observed in MD simulations for gA with other bilayers [36].
The swing motion perturbs the neighboring residues thereby explaining the slight turns in the
RMSD time series even without ethanolamine. The swing motion of ethanolamine is due to loss
of hydrogen-bonds [37], and we circumvent this problem by sampling the systems longer. Despite
these minor differences, gA is essentially stable inside the hydrophobic environment of both lipids.
With gA embedded inside the membrane, we find that the bilayer thickness of the lipid molecules in
the first shell decreases appreciably as observed by Kim et al. previously [36]. The bilayer thickness
is recovered in the second lipid shell and hence only lipids in the first shell are affected. Because we
have embedded gA in 20 lipid molecules per leaflet configured in a hexagonal cell, we report only the
first shell results here. The bilayer thickness, as defined in the previous subsection, decreases from
41 to 31 Å for POPC, and from 42 to 37 Å for NODS. The larger decrease in the thickness of a POPC
bilayer is again related to the much stronger coupling of the POPC head groups with the gA side
chains compared to those of NODS.
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Figure 3. RMSD of gA embedded in POPC and NODS lipids: (a) total and (b) average per residue.
Error bars are not shown for RMSD per residue for clarity.
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In the previous trajectory of the gA system with water molecules, we have replaced a water
molecule near the center of gA with a K+ ion. We have applied a harmonic restraint to keep the
K+ ion at the center and sampled the systems for a further 4 ns (the ethanolamine group is stable
at this point). To gain further insights into the potential contributors to the ion conductance, we
have analyzed the behavior of water molecules inside the channel. When the K+ ion is positioned
at the center of gA, there are three water molecules aligned on either side of the ion inside the
channel. Similar to the results in Figure 2, we have calculated the average orientation of the six
water molecules in gA with respect to the bilayer plane (Figure 4). As expected, the alignment of the
water dipoles with the channel axis, and hence the strength of the interaction between the ion and
water molecules, decreases as a function of the distance from the ion. We note that the water dipoles
are not aligned closer to 90◦ with the plane because they make hydrogen-bonds with the carbonyl
groups of gA. Taking into account the statistical fluctuations, the interaction between the K+ ion and
water molecules inside the channel are very similar for the POPC and NODS bilayers.
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Figure 4. Water molecules inside the channel with K+ located at the center of gA. (a) Structure
showing K+ positioned in the center of gA with aligned water molecules (lipids not shown); and
(b) average orientation of water molecules. The orientation is defined as the angle between the dipole
vector and the x-y-plane. Labels for water molecules are shown on the diagram.

2.3. Potential of Mean Force of K+ in gA

We have performed umbrella sampling simulations to determine the PMFs of a K+ ion along
the central axis of gA embedded in the POPC and NODS bilayers. Details of the umbrella sampling
simulations are described in the Methods section. Each umbrella window is simulated for 3 ns. Using
the stability of the ethanolamine group and the convergence of the PMFs as criteria, the first 1 ns of
data are discarded for equilibration and the PMFs are constructed from the final 2 ns of production
data. The PMFs obtained with the POPC and NODS bilayers are shown in Figure 5. The PMFs exhibit
similar behavior from the bulk region up to ∼7.5 Å inside the channel but start diverging from there
to the center of gA. There is also some difference in the binding free energies at the binding pocket
(∼11.3 Å). For the POPC bilayer, we obtain a well depth of 2.5 kcal/mol at the binding site with
respect to bulk. In previous PMF calculations for a K+ ion, well depths in the range of 2–3 kcal/mol
were obtained for PC bilayers [8–11]. As the accuracy of the PMF calculations is about 1 kcal/mol,
the present result for the well depth is consistent with those earlier results. In the case of NODS, the
well depth at the binding site is 3.7 kcal/mol, which is 1.2 kcal/mol deeper compared to the POPC
bilayer. Thus we predict an eight-fold difference between the binding constants of K+ ions for gA in
POPC vs NODS bilayers, which can be easily distinguished in experiments.
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Figure 5. Potential of mean force (PMF) profiles of a K+ ion along the gA channel axis, z.

The two PMFs start diverging around 7.5 Å, and the difference becomes quite substantial near
the center of gA. The energy barrier measured from the binding site to the peak in the PMF is
10.9 kcal/mol for POPC and 8.2 kcal/mol for NODS. The barrier value for POPC is again in agreement
with the previous PMF calculations in gA [8–11]. The lower energy barrier observed in the NODS
bilayer compared to that in the POPC bilayer is consistent with the experimental data which shows
a four-fold increase in cation conductance of gA embedded in NODS compared to POPC [24]. We
stress that polarization plays a significant role in ion permeation across the gA channel, hence MD
simulations with a non-polarizable force field provide only qualitative results.

It is of interest to find out how the change in the lipid bilayer affects the ion PMFs. To determine
the cause for this difference in the PMFs, we calculate the average potential energy acting on the K+

ion from four different components of the system individually. The potential energy is calculated
from the umbrella sampling trajectory data at 0.5 Å intervals. The four components we chose to
calculate are the protein, the lipid molecules, and the water molecules inside the channel and at the
lipid interface. As shown in Figures 2 and 4, these water molecules exhibit alignment with the channel
axis or the bilayer normal, hence will contribute to the potential energy of the ion. The channel water
molecules are defined as the water molecules inside the region [−10, 10] Å and interfacial water
is defined by the range of molecules oriented by the lipid head groups as shown in Figure 2. The
K+ potential energies due to these four components are plotted as a function of gA channel axis
in Figure 6. We note that the potential energy does not include entropy effects, hence we focus on
qualitative rather than quantitative results.

We first consider the potential energy of the K+ ion due to gA. As expected, this potential energy
approaches zero as the ion moves further into the bulk region. As the ion moves closer to the binding
site the potential energy decreases to a minimum and then slowly increases as it reaches the center.
This trend is consistent with Allen et al. [8], but the values we calculate are of a different scale
because we consider the potential energy rather than integrating the mean force. For both POPC and
NODS the potential energy profiles are very similar as evident from Figure 6. This result indicates
that the lipid environment does not directly affect the interaction between gA and the ion inside
the channel. Kim et al. investigated behavior of gA in different phospholipid environments and
observed variations in the dynamics of gA [36]. From our results we conjecture that although the
lipid environment can perturb gA dynamics due to hydrophobic mismatch, these perturbations may
not be significant enough to change the nature of the interaction between gA and K+.

Considering next the potential energy of the K+ ion due to the lipid molecules, we see a
noticeable difference between the POPC and NODS bilayers Figure 6. The potential energy due to
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NODS remains close to zero throughout, with a slight change from negative near the binding site to
positive as the ion moves towards the bulk. This is mainly due to the interaction between K+ and
the NODS head groups, which have small dipole moments and a short range. For POPC, however,
the potential energy is quite substantial, which is the result of the strong dipole potential of the PC
head groups. The potential energy remains negative within gA and approaches zero as the ion moves
towards the bulk as expected. On average, the difference in energy between the two lipid bilayers
is ∼20 kcal/mol within gA, and it favors POPC relative to NODS. This is clearly in the opposite
direction to the PMF profiles, where the NODS PMF is lower than the POPC PMF (Figure 5). Thus
other contributions to the K+ potential energy are needed to explain the difference in the PMFs.
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Figure 6. Potential energy acting on K+ ion as a function ion positions in the gA channel. Interactions
calculated include protein, lipid molecules, channel water and interfacial water. Red and black line
represents POPC and NODS lipid molecules.

The other components that could influence the potential energy of the K+ ion in gA are water
molecules. Water molecules can be separated into three groups based on their orientation in the
system. Firstly, water molecules with random orientation are located in the bulk region, where
interactions with protein and membrane are negligible. Next, as discussed earlier, a layer of water
molecules tend to orient away from the bilayer due to membrane dipole potential. Finally, the
single-file water molecules inside the channel align their dipole moments with the electric field of
the ion, which is modulated by the formation of hydrogen-bonds with the carbonyl oxygens of gA.
Here we are interested only in water molecules with specific orientation, and hence consider only the
potential energy due the channel and interfacial water molecules.

We start with the interaction of the channel waters with the K+ ion. We have stated earlier that
the behavior of the dipole moments of water molecules in gA, in the presence of a K+ ion at the
center, is approximately the same in the NODS and POPC bilayers (Figure 3). This behavior is seen to
be maintained for other positions of the K+ ion in gA—the potential energies of the K+ ion due to the
channel waters are seen to overlap well for the two lipid molecules (Figure 6). The small differences
observed when the ion is outside gA is likely arise from the flipping of the dipole moments of water
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molecules. This verifies that the water molecules inside the channel do not directly contribute to
the attenuation and enhancement of ion conductance in gA embedded in POPC and NODS bilayers,
respectively. It is interesting to note the trend of the interaction inside the channel. There are three
different stages in the range [0, 20] Å where the interaction changes. Starting from 20 Å, the potential
energy is on average close to zero as expected. As the ion is moved closer to the binding site, the
potential decreases to −30 kcal/mol. This sudden change in potential is the result of one water
molecule being pushed out of the channel on the other side to accommodate the K+ ion. From the
binding site to 7.5 Å, the potential energy remains steady. However, as the ion is pushed further to the
center, there is a second dip in the potential energy, bringing it down to about −50 kcal/mol. We have
observed that this results from the reorientation of water molecules inside the channel. The potential
energy comes to a minimum at the center with −60 kcal/mol, where the dipole moments of three
water molecules are aligned in the direction of the ion’s electric field on either side of the channel in a
symmetric configuration. The potential energy profile demonstrates the stages that take place as the
ion moves through gA, which cannot be traced from the PMF alone.

Lastly, we consider the interaction of K+ with the interfacial water molecules, which exhibits a
significant difference in the potential energy of K+ with the NODS and POPC bilayers. For NODS,
the potential energy is zero at the center and decreases to about −10 kcal/mol at the binding site.
For POPC on the other hand, the potential energy is around +25 kcal/mol in gA and only starts to
decrease around the binding site. As the ion is moved further away from gA, the potential energy
of both systems converge to the same level. We note that the potential due to the interfacial waters
will be strongly screened by bulk water and the free energy of K+ will vanish in bulk as seen in the
K+ PMF (Figure 5). To understand the difference between the POPC and NODS results, we refer to
Figure 2 which shows that there is a thicker layer of water molecules in POPC, better oriented by the
PC head groups with larger dipole moments. This results in a much stronger dipole potential due to
the interfacial waters when gA embedded in a POPC bilayer compared to that of NODS. Comparing
the lipid contribution to the potential energy of K+ with that of the interfacial waters (Figure 6), it is
seen that the latter contribution more than compensates the former in POPC, resulting in a positive
potential energy in gA. In contrast, the sum of the two contributions remain near zero but slightly
negative in NODS. Thus our results indicate that the larger energy barrier in the POPC PMF relative
to the NODS PMF is most likely due to the better orientation of the interfacial water molecules by the
stronger dipole potential of the POPC head groups.

3. Materials and Methods

3.1. Model System

The two lipid molecules considered are 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine
(POPC) and N-oleoyl- D-erythrosphingosine or ceramide C18 (NODS). The structure of both
molecules are generated using the Avogadro software [38]. For POPC, we use the standard
topology and parameters available in CHARMM36 [39]. The topology for NODS is generated
from the ParamChem server [40,41] and is derived from sphingomyelin parameters available in
CHARMM36 [42]. One dihedral parameter with a penalty higher than 10 is optimized using the
force-field toolkit (FFTK) [43] available in VMD [44]. The target data for optimization are generated
using Gaussian 09 [45].

The 1NJO structure [6] is used for the gA dimer embedded in a lipid bilayer. The gA dimer is
placed in a hexagonal cell with 20 lipid molecules placed around the peptide per layer. We solvate
the gA–membrane complex with TIP3P water molecules and neutralize the system with 0.15 mol/L
of KCl. The system is equilibrated in two stages to ensure the stability of the peptide-membrane
complex. First, the gA atoms are fixed and the cell is allowed to fluctuate isotropically until the correct
lipid and water densities are obtained. The cell in the x-y plane is then fixed and only fluctuations
in the z direction are allowed. In the second stage, the gA atoms are gradually relaxed over 3 ns of
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equilibration. The system is further equilibrated without any restraints for 10 ns. We have performed
the production runs without any restraints on the gA atoms because the flexibility of the protein
affects ion permeation as demonstrated in a previous work [16]. To keep the protein stable inside
the bilayer, we apply harmonic restraints on the orientation and position of the center of mass of
the protein. The restraint on the center of mass does not affect the internal degrees of freedom of
the protein.

3.2. PMF Calculations

We calculate the potential of mean force (PMF) of potassium ion along the gA channel using the
equilibrium umbrella sampling simulations [46] with the weighted histogram analysis method [47].
We use the same protocols as in an earlier work [11] for configuring the calculations, which are
briefly described here. The reaction coordinate for the ion is its distance from the gA center along the
channel axis. We perform the PMF calculations in the range [0, 20] Å, assuming symmetric behavior
between the two monomers. For umbrella sampling calculations, we use a total of 41 windows at
0.5 Å intervals. The umbrella windows are generated via steered MD simulations, starting from the
equilibrated system with the K+ ion at the center of gA. We apply a harmonic potential with a force
constant of 10 kcal/mol, which is reduced to 7 kcal/mol outside the pore (z > 15 Å) to improve
sampling between windows. In the bulk region, a harmonic potential of 1 kcal/mol is applied in the
radial direction to prevent the ion drifting away from the central axis. Each window is run for 3 ns
with 1 ns for equilibration, giving a total simulation time of 123 ns.

3.3. MD Simulations

All MD simulations in this work are performed with the NAMD package (version 2.10) [48] with
the CHARMM force field [39]. We employ the NPT ensemble and kept the simulation temperature
constant at 300 K using the Langevin thermostat with a damping factor of 1 ps−1. The pressure is kept
constant at 1 atm using the Langevin piston method with a damping factor of 50 ps−1 [49]. Periodic
boundary conditions are used and electrostatic interactions are calculated using the particle-mesh
Ewald method [50] without truncation. Non-bonded interactions are truncated at 12 Å and replaced
with a smooth switching function starting from 10 Å. In all simulations a time step of 2 fs is employed
for the integrator.

4. Conclusions

Our objective in this work is to understand the cause of the enhancement of ion conductance in
gA embedded in a NODS bilayer compared to that of POPC. For pure bilayer systems, we have
observed different lipid–water interactions with the result that water molecules tend to be more
structured in phospholipids than ceramide. This behavior was also demonstrated in comparisons
of phospholipids with monoglycerides [26]. Our simulations of the gA system show that the peptide
behaves in a similar fashion when it is embedded in both lipid environments. However, the PMF
of a K+ ion in gA embedded in POPC results in a distinctly larger energy barrier compared to that
of NODS, which is consistent with the observed enhancement of the conductance in NODS [24].
To understand the origin of this enhancement, we have analyzed the different contributions to the
potential energy of the K+ ion from gA, lipid molecules and water molecules within gA and at
the lipid interface. We find that the interaction of gA and water molecules inside gA with K+ are
virtually identical for both lipid molecules. But there are substantial differences between the POPC
and NODS bilayers when we consider the interaction of lipid molecules and interfacial waters with
K+. In NODS, the weak dipole moments of the head groups result in a loosely structured interfacial
waters, and the contribution from either group to the ion’s potential energy is very small. In POPC,
the strong dipole moments of the head groups give rise to a thicker layer of interfacial waters with
better orientation. Thus, both groups make substantial contribution to the ion’s potential energy,
but the positive contribution from the interfacial waters overcomes the negative one from lipids.
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This difference is consistent with the higher energy barrier found in the K+ PMF in POPC compared
to the K+ PMF in NODS.
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