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Abstract: In recent years, anion exchange membranes (AEMs) have aroused widespread interest in 
hydrogen production via water electrolysis using renewable energy sources. The two current com-
mercial low-temperature water electrolysis technologies used are alkaline water electrolysis (AWE) 
and proton exchange membrane (PEM) water electrolysis. The AWE technology exhibited the ad-
vantages of high stability and increased cost-effectiveness with low hydrogen production efficiency. 
In contrast, PEM water electrolysis exhibited high hydrogen efficiency with low stability and cost-
effectiveness, respectively. Unfortunately, the major challenges that AEMs, as well as the corre-
sponding ion transportation membranes, including alkaline hydrogen separator and proton ex-
change membranes, still face are hydrogen production efficiency, long-term stability, and cost-ef-
fectiveness under working conditions, which exhibited critical issues that need to be addressed as a 
top priority. This review comprehensively presented research progress on AEMs in recent years, 
providing a thorough understanding of academic studies and industrial applications. It focused on 
analyzing the chemical structure of polymers and the performance of AEMs and established the 
relationship between the structure and efficiency of the membranes. This review aimed to identify 
approaches for improving AEM ion conductivity and alkaline stability. Additionally, future re-
search directions for the commercialization of anion exchange membranes were discussed based on 
the analysis and assessment of the current applications of AEMs in patents. 
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1. Introduction 
The globally escalating energy demand, exponential growth in greenhouse gas emis-

sions, and the gradual depletion of fossil fuels constitute one of humanity’s most formi-
dable challenges [1]. Hydrogen, a “zero-carbon emission” renewable resource, achieves 
efficient conversion between electrical and hydrogen energy via water electrolysis tech-
nology. Simultaneously, it overcomes the instability and intermittency of solar and wind 
power generation, enabling large-scale energy conversion and storage. Therefore, the 
electrolysis of water for hydrogen production using renewable resources is attracting 
widespread interest [2–4]. Hydrogen plays a crucial role in human industrial life, contin-
uously increasing global demand for hydrogen gas, with a current production that ex-
ceeds 70 million tons per year. However, over 95% of hydrogen is produced via steam 
methane reforming (SMR), resulting in substantial carbon dioxide emissions and severe 
environmental pollution [5,6]. 
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Alkaline water electrolysis (AWE) was first commercially available in the 1970s and 
was regarded as the only established technology for hydrogen production. Nevertheless, 
PEM water electrolysis was developed rapidly and recently moved into a primary com-
mercial stage. The conventional separator used for AWE (i.e., the diaphragm) was woven 
porous polyphenylene sulfide (PPS) fabrics, governed by Toray in the market, and was 
outstanding with high resistance against highly concentrated alkaline aqueous solutions 
(e.g., 6 M KOH) at a temperature of above 110 °C for about eight years. The advantages of 
AWE water electrolysis are long-term stability and low cost for the chosen separator and 
catalyst. However, the high hydrogen production efficiency (>70%, achieving 75% with a 
25 µm thick Nafion212 membrane [7]) demands high air resistance and ionic conductivity, 
promoting the development of PEM membranes in water electrolysis. 

Proton exchange membrane (PEM) water electrolysis offers high hydrogen produc-
tion efficiency by replacing the porous separator with a nonporous PEM membrane where 
H+ is transported through the membrane via an ion exchange mechanism. The air re-
sistance of the membrane was enhanced by its nonporous structure, which served as an 
electrolyte instead of 6 M KOH in AWE and was swollen in an aqueous environment. 
However, the disadvantage of the PEM is mainly due to the membrane materials where 
only perfluorosulfonic acid (PFSA) could be used to fabricate the membrane, which is not 
economically sustainable. 

Therefore, green energy conversion devices with increased cost-effectiveness (the 
cost of nickel-based catalysts being one-thousandth and eight-thousandth of platinum 
and iridium catalyst costs, respectively [8]) and high hydrogen efficiency (>65%) [9] such 
as anion exchange membrane water electrolysis in addition to AWE and PEM devices, 
driven by renewable energy sources, have received significant attention and booming 
drastically which were reviewed comprehensively [10]. 

1.1. Water Electrolysis Technology 
Water electrolysis technology is a technique that converts water into hydrogen and 

oxygen gases using electricity at a relatively low temperature. It is an electrochemical wa-
ter-splitting technology that enables zero-emission hydrogen production [11]. The basic 
reaction of water electrolysis is represented by Equation (1). 𝐻ଶ𝑂 + 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 ሺ237.2 KJ molିଵሻ + 𝐻𝑒𝑎𝑡 ሺ48.6 KJ molିଵሻ → 𝐻ଶ + ଵଶ 𝑂ଶ  (1)

Depending on the method of electrolyte used, electrolysis cells can be classified into 
three common types: alkaline water electrolysis, PEM water electrolysis, and anion ex-
change membrane (AEM) water electrolysis [12]. 

1.2. Alkaline Water Electrolysis 
The principal layout of an AWE is shown in Figure 1A. 

 

Figure 1. Schematic diagram of electrolysis cells: (A) AWE, (B) AEM water electrolysis, and (C) PEM 
water electrolysis, respectively [13–15]. 
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Two metal-based electrodes (Ni and Fe) are immersed in the electrolyte (20–30% 
KOH solution) separated by a membrane [16]. The circulating KOH electrolyte provides 
the necessary alkaline environment. The porous membrane serves as a separator to isolate 
the cathode and anode while facilitating the conduction of OH- and preventing the gas 
crossover. 

AWE is a well-known commercialized low-temperature electrolysis technology that 
does not require platinum-based metal catalysts. In these systems, the membranes are 
typically made out of porous materials, including ceramic oxides such as asbestos and 
potassium titanate or polymers like polypropylene and polysulfide [17]. These materials 
are cost-effective, and their hydrogen can achieve up to 99% purity. However, membranes 
suffer from drawbacks such as poor gas tightness, high surface resistance, low hydrogen 
production efficiency (59–70%), and poor alkaline stability [12,18,19]. These deficiencies 
significantly reduce the performance of the electrolysis cell. Therefore, the preparation of 
AEM meets production standards, but like many other systems, it still has room for im-
provement. 

1.3. PEM Water Electrolysis 
In contrast to AWE, PEM water electrolysis has advantages such as high ion conduc-

tivity (0.1 S/cm), low ohmic losses (maximum achievable current density approximately 2 
mA/cm2), and minimal gas crossover. This technology is relatively mature and widely ap-
plied, but it is still on the way to being commercialized [18]. The basic setup of PEMWE is 
illustrated in Figure 1B, where a PEM (i.e., Nafion membrane) separates the two half-cells, 
and the electrodes are typically directly mounted on the membrane. 

However, the corrosive acidic environment provided by the proton exchange mem-
branes increases the cost of PEMWE due to the demand for precious metal catalysts made 
of iridium and platinum [14]. Additionally, the reliance of proton exchange membranes 
on fluorinated polymers leads to the emission of fluorocarbon gases during their produc-
tion, causing severe environmental impact [20]. 

1.4. AEM Water Electrolysis 
AEM water electrolysis has been extensively researched as an alternative approach 

to tackle the challenges with AWE and PEM mentioned above. They allow the use of non-
precious metal catalysts, and AEMs are cost-effective, significantly reducing production 
costs. Additionally, AEMs exhibit good gas tightness and eliminate gas crossover, result-
ing in hydrogen purity as high as 99.99%, making them a key component determining the 
performance of the electrolyzer [21]. 

Therefore, AEMWE represents a low-temperature water electrolysis technology that 
combines the advantages of both AWE and PEMWE [14,22]. The basic layout is depicted 
in Figure 1C. 

The main components of an AEMWE cell include the anion exchange membrane 
(AEM), gas diffusion layer, electrocatalysts, and current collector [23]. 

The electrolysis of water consists of two separate half-cell reactions, including the 
hydrogen evolution reaction (HER) at the cathode and the oxygen evolution reaction 
(OER) at the anode. In the HER process, the sluggish kinetics of OER is the primary factor 
limiting the overall water electrolysis performance. To reduce overpotential, besides de-
veloping highly active catalysts for both HER and OER, AEMs need to exhibit excellent 
ion conductivity [24]. 

In contrast, PEM possesses advantages such as high hydrogen production efficiency, 
high ion conductivity, excellent gas tightness, and stability. However, PEM based on per-
fluorosulfonic acid resin is costly. Therefore, PEMWE cannot be widely used for large-
scale, global hydrogen production [14]. Most importantly, PEMWE relies on fluorinated 
polymers and emits fluorocarbon gases during production, causing significant environ-
mental impact [20]. As a low-temperature water electrolysis technology that combines the 
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advantages of AWE and PEMWE, AEMWE has proven to be more efficient and can oper-
ate without noble metal catalysts in a less alkaline electrolyte environment, providing crit-
ical advantages. However, AEMWE is still an evolving technology, and efforts are needed 
to narrow the efficiency and lifespan gap compared to PEMWE before commercialization 
[24,25]. 

Due to the higher stability of PEM, PEMWE exhibits a longer lifespan (up to 5000 h), 
a hydrogen production efficiency of 57%, a high current density of 1–3 A/cm2, and a lower 
area-specific resistance (approximately 68 mΩ·cm2). The primary challenge for the current 
PEMWE is reducing production costs. Although AWE is a well-known technology with a 
hydrogen production efficiency close to 60%, it still faces challenges that cannot be over-
come at present, such as a low maximum current density (0.2–0.4 A/cm2), difficulty oper-
ating under high-pressure differentials (1–30 bar, whereas PEMWE operates at 30–76 bar), 
and slow response times [18,26–28]. 

AEMWE technology is relatively new, and to achieve widespread application, sev-
eral key issues need to be addressed, such as long-term stability and high current density 
(currently 0.2–1 A/cm2) [29]. Although many AEMs have achieved an ion conductivity of 
0.1 S/cm at 60–80 °C, the durability of AEMs at this temperature (less than 1000 h) remains 
a significant challenge [5]. Until recently, single-cell AEMWEs could operate for thou-
sands of h at 60 °C and a current density of 1 A/cm2. Currently, AEMs must meet a mini-
mum ion conductivity target of 0.1 S/cm and an area-specific resistance target of less than 
70 mΩ·cm2 [26]. 

Some challenges remain for AEMs: (1) overcoming the alkaline stability limitations 
of most AEMs; (2) reducing the area-specific resistance of AEMs; and (3) further increasing 
ion conductivity. 

Therefore, a comprehensive analysis of AEM will be conducted in this review, rang-
ing from molecular engineering to in situ performance evaluation, mainly based on the 
research directions revealed by the anatomy of currently available patents, to outline the 
future development of AEM considering the existing obstacles (Figure 2). 

 
Figure 2. Mind mapping of anion exchange membranes. 
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2. Progress in Academic Research of Anion Exchange Membrane 
AEM comprises a polymer backbone and cationic functional groups, serving as the 

core of AEMWE systems and a crucial component determining the performance and 
lifespan of AEMWE [30]. The polymer backbone’s performance dictates AEMs’ mechani-
cal and thermal stability, requiring good membrane-forming ability, excellent mechanical 
and chemical properties, and high alkaline resistance to meet preparation and usage de-
mands. Typical polymer backbones include polybenzimidazole (PBI) [31,32], polyether 
ether ketone (PEEK) [33], polysulfone (PSF) [34–36], polystyrene (PS) [37–39], polyphe-
nylene ether (PPO) [32,40–42], and polyolefins [43], as shown in Figure 3. 

O S
O

O
n

O O C
O

On n

N

N
H

R

N

H
N

Ar

PSF

PPOPEEK

PBI

H2
C

H
C

H2
C

H2
C

x yS n

PPS Polyolefin

n
PS

n

 
Figure 3. Main polymer chains commonly used in AEMs (Ar = phenyl). 

Common cationic functional groups include trimethylamine (TMA) [31,38], imidaz-
olium (TMI) [32,44], pyridinium (PYR), piperidinium (PIP) [45,46], quaternary ammo-
nium groups [47], 6-Azonia-spiro[5.5]undecane (ASU) [48–51], and quaternary phospho-
nium [52], which offer the function of anion exchange to the AEM via electrostatic inter-
action in water electrolysis,as shown in Figure 4. 

 
Figure 4. Functional cationic groups commonly used in AEMs (R = H, alkyl or phenyl). 

In a water electrolysis cell, AEM plays a role in ion conduction while preventing the 
crossover of hydrogen and oxygen. The ideal characteristics for AEM required in water 
electrolysis cells include high OH- conductivity, long-term alkaline stability, low dimen-
sional expansion, and the ability to prevent gas crossover [21]. 

Over the past decade, research has predominantly focused on other traditional water 
electrolysis technologies, such as AWE, with relatively less emphasis on AEMWE due to 
the major concern regarding the stability of the AEMs. Additionally, due to the lower OH- 
migration rate, the ion conductivity of AEM is much lower than that of PEM. Most 
AEMWE exhibits a sharp decline in performance after extended operation periods [49,53] 
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because of the degradation of AEM under alkaline conditions; even commercial AEMs fail 
to achieve long-term durability exceeding 3000 h at 1 A/cm2 [23]. 

The historically lower ion conductivity and alkaline stability of AEM have been sig-
nificant barriers to the commercialization of AEMWE. Hence, there is an urgent need to 
develop AEMs with high alkaline stability and ion conductivity for water electrolysis. Re-
searchers are exploring methods to enhance alkali stability by delving into degradation 
mechanisms. 

2.1. Degradation Mechanisms 
Cationic functional groups in AEMs have been extensively studied, with current re-

search primarily focusing on quaternary ammonium (QA) groups. QA salts, like tri-
methylalkylammonium, exhibit good ion conductivity and are easy to synthesize in 
AEMs. The degradation of QA groups in alkaline environments is mainly attributed to 
Hofmann elimination and OH- attacking N-alkyl via nucleophilic attack (SN2 substitution 
reaction), as illustrated in Figure 5 [15,54,55]. 

 
Figure 5. Mechanism of Hofmann elimination and nucleophilic substitution degradation of quater-
nary ammonium groups. 

It was systematically studied on the alkaline stability of many different QA cations 
under the same conditions (e.g., 10 M NaOH solution, 160 °C). The alkaline stability order 
obtained was ASU > N-methylpiperidinium (MPIP) ≈ N-methylpyrrolidinium (MPY) > 
TMA > TMI. Except for a few cations, most QAs exhibited good alkaline stability. Among 
them, piperidine-based ASU had the highest half-life. At the same time, imidazolium TMI 
showed the poorest alkaline stability [56], probably due to the inherent ring tension of 
pyridinium cations, which makes them exhibit high resistance under high-temperature 
and alkaline conditions. The stability is further reduced when there are heteroatoms or 
other electron-withdrawing groups. Due to the almost complete lack of spatial shielding 
or substituents with an electron-inductive effect, aromatic-based QA has the fastest de-
composition rate. This result has also been confirmed in other studies [57]. 

In addition to cationic functional groups, the structure of the polymer backbone is 
another crucial factor in assessing the alkaline stability of AEM. Among various reported 
polymer backbones, those containing aromatic ether groups (such as PPO, PSF, PEEK, 
etc.) have garnered significant attention due to their excellent overall performance, ease 
of preparation, and good mechanical properties [58–61]. 

In another study, the degradation mechanisms of anion exchange membranes based 
on PSF backbones have been investigated. It was proposed that functionalization at the 
benzyl position of polysulfone leads to the exposure of the polymer backbone to alkaline 
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solutions, resulting in the hydrolysis of quaternary carbon and ether bonds. Figure 6 il-
lustrates these two degradation mechanisms. Therefore, it is speculated that connecting 
the cationic groups to the PSF backbone using alkyl chains can enhance stability [62]. 

 
Figure 6. The hydrolysis of (A) quaternary carbon and (B) ether bonds in PSF AEMs containing 
relatively stable fixed cations [62]. 

Polymer backbones with aromatic ether groups, such as polysulfone and poly-
arylether, accelerate the degradation of the main chain due to the introduction of C-O 
bonds. However, C-O bonds allow the polymer backbone to rotate freely, ensuring excel-
lent mechanical properties and solubility. Therefore, polymers containing C-O bonds re-
main the most used polymer backbones even though there is a problem of alkaline insta-
bility. 

Due to the awareness of the susceptibility of polymer backbones containing aromatic 
ether groups to degradation in alkaline environments, many researchers shifted their fo-
cus on polymer backbones without aromatic ether, such as polyolefins, PS, or the synthe-
sis of non-aromatic ether polymer backbones via coupling [63], addition [64], acid-cata-
lyzed Friedel–Crafts hydroalkylation [65], and other reactions. 

2.2. Strategies to Improve AEM alkaline Stability 
Currently, various types of AEMs have been developed, and progress in enhancing 

alkaline stability has driven the advancement of AEMWE [66]. The attempts were focused 
on both the cationic functional groups and polymer backbones, considering the degrada-
tion mechanism, i.e., β-H elimination and SN2 substitution. 

2.2.1. Cationic Functional Groups 
Methods to improve the alkaline stability of cationic functional groups include (1) 

designing structures without β-H to inhibit Hofmann elimination [67–69]; (2) increasing 
steric hindrance around the cationic functional groups to protect AEM from attack by OH- 
[70,71]; and (3) introducing electron-donating groups near the cationic functional groups 
to prevent their vulnerability to OH- attack due to electron deficiency [72–74]. 

The Hofmann elimination is the most likely the major degradation pathway for cati-
onic functional groups [75]. Therefore, one promising method to enhance alkaline stability 
is to design structures without or with the least amount of β-H to inhibit Hofmann elimi-
nation, thereby improving the stability of cationic functional groups. A good example is 
shown in the structure in Figure 7. Due to the elimination of β-H, the polysulfone AEM 
with this structure maintains unchanged ion conductivity after soaking in a 1 M NaOH 
solution at 80 °C for 5 days, and after 10 days, the conductivity remains at 95% of the 
original level [76]. 
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Figure 7. Structure of β-H-free polysulfone AEM. 

While enhancing the alkaline stability of AEM by substituting β-H can offer some 
improvement, degradation can still occur due to other mechanisms, such as the previously 
mentioned SN2 substitution. This involves a direct nucleophilic attack by OH- on the ni-
trogen atom of the quaternary ammonium group and the degradation of the polymer 
backbone [5]. It is indicated that improving the alkaline stability of cationic functional 
groups is more beneficial for enhancing AEM alkaline stability compared to the stability 
at the C2 position [77]. Therefore, increasing the steric hindrance around cationic func-
tional groups has also become an effective approach to enhance the stability of QA. 

Taking imidazolium as an example, benzyl-protected benzimidazolium cations at the 
C2 position (structures A and B in Figure 8) exhibit excellent alkaline stability (i.e., half-
life > 5000 h). The enhanced steric hindrance at the C2 position of the benzimidazolium 
group hinders nucleophilic attack by OH-, effectively inhibiting ring-opening degradation 
[78]. The benzimidazolium protected by structure B remains stable for an extended period 
in a 1 M hydroxide solution at 80 °C but degrades more rapidly under high-temperature 
and highly corrosive conditions. After soaking in a 5 M NaOH solution at 80 °C for one 
week, a 60% degradation is observed [79]. To explore this phenomenon, the impact of 
substituent characteristics and positions on the chemical stability of imidazolium cations 
was systematically evaluated. It is found that substituent characteristics and positions sig-
nificantly influence the overall stability of cations. Specifically, imidazolium cations with 
substitutions at the C2 position can effectively inhibit ring-opening degradation, with the 
most effective being the 2,6-dimethylphenyl substitution. Methyl or phenyl substitutions 
at the C4 and C5 positions further enhance the stability of cationic groups [75,80]. 

A novel polyaromatic imidazolium compound with spatial protection (structure C in 
Figure 8) was reported recently. After soaking in 10 M KOH at 80 °C for 240 h, the imid-
azolium group maintained 97.7%, with a half-life of 8000 h, showcasing outstanding sta-
bility. The stability increases with the length of the N-alkyl chain in the molecular struc-
ture. However, due to the reduced water content, the energy barrier for ion transport in-
creases, resulting in an ion conductivity of only 12 mS/cm at 80 °C [69]. 

In summary, increasing steric hindrance can effectively enhance the alkaline stability 
of AEMs, where multiple substituents prevent nucleophilic substitution and ring-opening 
degradation. However, this concurrently reduces the ion conductivity of OH-. Since most 
studies on imidazolium substitution patterns are typically limited to commercially avail-
able imidazolium, it is necessary to develop new synthetic routes to attach alkali-stable 
novel imidazolium cations to polymers. 

 
Figure 8.  Polybenzimidazole with spatial protection (A,B), novel polyaromatic imidazolium com-
pound (C). 
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Introducing electron-donating spacer groups in the side chain can increase the elec-
tron cloud density around the benzyl carbon, exhibiting a higher energy barrier for the 
degradation of the QA group and thus enhancing the alkaline stability of the cationic func-
tional group [79]. N-spirocyclic quaternary ammonium-functionalized side chains with 
flexible ether spacers via the Williamson reaction were synthesized. The constrained-ring 
conformation of the N-spirocyclic cation and the electron-donating effect of the ether 
spacer endowed the polyaromatic imide AEM with excellent alkaline stability. After im-
mersing in 1 M KOH solution at 80 °C for 720 h, the conductivity remained at 95.6% of the 
original value, significantly improving the alkaline stability of the AEM [81]. Additionally, 
introducing flexible ether bonds in the side chain promoted the aggregation of N-spirocy-
clic cations, resulting in a high OH- ion conductivity (85.7 mS/cm at 80 °C). Furthermore, 
the alkaline stability of polyphenyl ether AEM with flexible alkyl side chains constructed 
via the Suzuki reaction was confirmed. After immersing the AEM in 1 M NaOH solution 
at 60 °C for 168 h, the OH- conductivity remained around 90% of the original conductivity 
[82]. 

It is a new approach to enhancing the alkaline stability of cationic functional groups 
that involves using cyclic cations as quaternary ammonium groups. These cyclic ammo-
nium cations still primarily degrade via nucleophilic substitution via an opening mecha-
nism under alkaline conditions. However, due to their ring tension, five-membered rings 
exhibit higher alkaline stability than six-membered and seven-membered rings. This is 
because, in general, larger rings tend to degrade via Hofmann elimination reactions, while 
smaller rings degrade only via opening substitution reactions [83]. 

It is foreseeable that the integrated application of these strategies is expected to im-
prove the stability of anion exchange membranes under alkaline conditions, thereby pro-
moting the development of electrolysis technologies. 

2.2.2. Polymer Backbones 
As discussed before, anion exchange membrane (AEM) alkaline stability is primarily 

determined by the cationic functional groups and the polymer main chain. In addition to 
the type and structure of cations, the composition of the polymer backbone is crucial, 
greatly affecting AEMs’ mechanical and chemical stability [84]. It is found via density 
functional theory (DFT) calculations and in situ degradation experiments that AEMs 
based on polyarylether exhibit lower stability compared to those without ether in the pol-
yarylene backbone [85]. Therefore, for polymer main chains, ether-free aromatic back-
bones are the preferred choice in structural design. Examples include polyarylene [63,86], 
polyfluorene [86,87], and polyolefin-type polymers [36,88], which have been extensively 
studied and demonstrate excellent chemical and thermal stability. 

Therefore, in designing durable and high-performance polymers, it is essential to 
consider the physical and chemical properties of the polymer’s main chain [89]. Friedel–
Crafts condensation is a common synthetic method used to prepare ether-free main 
chains. A polyfluorene main chain (Structure A in Figure 9) via Friedel–Crafts condensa-
tion and connected to quinuclidine ring cations using a hexyl spacer was synthesized and 
explored the effects of polymer main chain on the alkaline stability of the AEM. This AEM 
exhibits excellent alkaline stability, showing no evidence of any ring-opening degradation 
after 672 h in a 2 M NaOH solution at 80 °C, with less than 2% Hofmann elimination [90]. 

Moreover, a polyfluorene-based polymer without aromatic ethers using the Suzuki 
cross-coupling reaction was fabricated, which has pendant ammonium groups on the side 
chain and propyl spacers on the main chain, as shown in Structure B in Figure 9. Intro-
ducing propyl spacers into the main chain enhances the flexibility of the polymer and 
allows it to form ion clusters effectively. This AEM exhibits not only good alkaline stability 
(80 °C, 1 M KOH, 720 h) but also excellent ion conductivity (122 mS/cm, 80 °C) [91]. 
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Figure 9. Structures of poly (arylene ether) main chains prepared by polycondensation based on 
Friedel–Crafts (A) and Suzuki cross-coupling (B) reactions, respectively. 

Additionally, ion-solvating membranes are gaining increasing attention as another 
effective method to enhance alkaline stability in the field of water electrolysis [92–94]. An 
article published in 2023 demonstrated that ion-solvating membranes, prepared from al-
kali-stable ammonium network precursors and ion-solvating polymer matrices, exhibit 
excellent alkaline stability. Under conditions of 70 °C and 1 M KOH, the alkaline stability 
exceeds 300 h, as shown in the article. Short-term durability tests also indicate superior 
durability compared to commercial AEMs [95]. Excellent alkaline stability and ion con-
ductivity of ion-solvating membranes based on PBI polymers were also confirmed in an-
other study. After immersion in an 80 °C, 8 M KOH solution for 1000 h, the conductivity 
of the PBI anion exchange membrane remained at 89% of the initial conductivity [96]. 
Therefore, ion-solvating membranes represent one of the effective methods for preparing 
long-lasting AEMs. 

Therefore, various methods have been employed to synthesize aryl-based main 
chains without ethers to overcome the instability issue of main chains containing electron-
withdrawing groups under alkaline conditions. These methods include acid-catalyzed 
Friedel–Crafts condensation [94], Diels–Alder reaction [97], and metal-catalyzed coupling 
reactions [63], contributing significantly to the improvement in alkaline stability in AEMs. 

2.3. Ion Conductivity of AEM 
Various anion exchange membranes for water electrolysis were designed and fabri-

cated to improve the ion conductivity of the membranes. Most of these membranes are 
main-chain-type AEMs, where cationic functional groups are directly and randomly dis-
tributed along the polymer backbone. However, due to the constraints imposed by the 
polymer main chain, the movement space of ion exchange groups is limited, preventing 
the formation of an effective aggregated structure and resulting in lower ion conductivity 
[98,99]. 

AEMs’ high ion conductivity can be achieved by increasing the ion exchange capacity 
(IEC); however, a high IEC leads to elevated water uptake and swelling, consequently 
reducing the mechanical strength of the membrane. Research indicates that microphase-
separated AEMs offer a promising approach to developing AEMs with high conductivity 
and low swelling [100]. The hydrophilic regions form continuous ion transport channels, 
facilitating OH- transport, while the hydrophobic regions effectively suppress excessive 
membrane swelling [101]. 
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Currently, there are three main types of AEM structures that can self-assemble into 
well-defined microphase-separated structures: dense functional group-type AEMs, side-
chain-type AEMs, and block copolymer-type AEMs. 

For dense functional group-type AEMs, the cationic functional groups are typically 
concentrated in a specific polymer segment or structural unit, forming hydrophilic ionic 
clusters that induce the formation of hydrophilic/hydrophobic microphase separation. 
This establishes connected ion transport channels, enhancing ion conductivity [98]. To 
achieve a dense functional group arrangement, monomers containing functionalized 
groups are often polymerized and then modified to create segments or structural units 
with a high density of cationic functional groups. A monomer with six methyl groups was 
introduced into a polysulfone backbone via condensation reactions, creating an anion ex-
change membrane with pendant imidazolium groups. The locally high functional group 
density of such membranes facilitates the aggregation of groups, promoting the formation 
of microphase-separated structures. Results showed that a membrane with an ion ex-
change capacity (IEC) of 2.2 meq/g exhibited an ion conductivity of 29 mS/cm at 60 °C. 
While this represents an improvement over non-dense AEMs, the ion conductivity is still 
relatively low, and the alkaline resistance is poor, as evidenced by significant swelling and 
gel formation after 7 h in a 1 M NaOH solution at 40 °C [102]. 

It was shown that introducing flexible side chains facilitates the formation of a mi-
crophase-separated structure, enhancing ion transport efficiency while suppressing water 
swelling in AEM and strengthening its alkaline stability [81,82]. Side-chain-type PPO an-
ion exchange membranes with varying spacer lengths via a one-pot Wittig reaction were 
prepared successfully. The induced microphase separation from the spacer resulted in a 
membrane exhibiting low water swelling, high ion conductivity (99.5 mS/cm at 80 °C), 
and excellent chemical stability in an alkaline environment at 80 °C, especially at low IEC 
values [103]. This is attributed to the microphase-separated structure induced by the long 
side chains between the polymer main chain and the ion exchange groups. 

Furthermore, introducing alkyl spacer groups between the polymer main chain and 
the cationic functional groups significantly enhances OH- conductivity. When the IEC is 
equivalent, at 80 °C, the ion conductivity increases from 12 mS/cm to 64 mS/cm compared 
to AEM without spacer groups [104]. By regulating the length of the alkyl chain, it was 
found that, under similar IEC conditions, the ion conductivity is highest when the alkyl 
chain consists of 6 carbon atoms (62.7 mS/cm, 80 °C) [105]. This is because, with a shorter 
spacer, the mobility of the ion exchange groups is insufficient, making it difficult to form 
effective ion transport channels. On the other hand, when the spacer is too long, the de-
crease in hydrophilicity caused by the side chain is unfavorable for OH- transport. 

Block copolymer AEMs have received significant attention due to the fact that these 
membranes consist of two or more segments with different compositions and properties. 
The hydrophilic/hydrophobic differences between the segments facilitate the construction 
of efficient ion transport channels. Moreover, the longer the hydrophilic segment within 
the membrane, the more developed the ion transport channels formed, leading to higher 
conductivity [106]. 

Fluorine-terminated oligomers and hydroxyl-terminated oligomers were employed 
to prepare a multi-block AEM containing fluorenyl groups, and its chemical structure is 
shown in Figure 10 A. Due to its distinct microphase-separated structure, the ion conduc-
tivity of this membrane reaches up to 144 mS/cm at 80 °C (IEC = 1.93 meq/g), approxi-
mately 3.2 times higher than that of a random-type AEM with a similar IEC (IEC = 1.88 
meq/g) [107]. Despite its higher conductivity, the membrane, with quaternary ammonium 
groups located at the benzyl position, is susceptible to attack and degradation by OH-, 
resulting in poor alkaline resistance. Moreover, a poly (arylene ether sulfone) block copol-
ymer was synthesized via a series of reactions, including pre-condensation, block copoly-
merization, bromomethylation, and Menshutkin reactions (Structure B in Figure 10) and 
employed to prepare AEM. This membrane effectively avoids Hofmann elimination 
caused by β-H, thereby enhancing the stability of the membrane. It was demonstrated that 
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the AEM based on this block copolymer exhibited a well-defined microphase-separated 
morphology, with the highest ion conductivity reaching 86.3 mS/cm [106]. 

 
Figure 10. Block copolymer structure with a microphase-separated structure, fluorenyl-based 
multiblock AEM (A) and poly(arylene ether sulfone) block AEM (B). 

Although block copolymer AEMs easily form well-defined microphase-separated 
structures, constructing efficient ion transport pathways, block copolymers are inherently 
polydisperse, making it generally challenging to precisely control the microstructure of 
AEMs. Additionally, block copolymer AEMs tend to have higher water uptake, resulting 
in lower mechanical performance [108]. 

In summary, enhancing the hydrophilic/hydrophobic contrast between the polymer 
main chain and cationic side chains, coupled with the introduction of flexible side chains, 
further increases the freedom of movement and aggregation of ion exchange groups. This 
enables the construction of well-defined ion transport pathways, ultimately leading to an 
improvement in the ion conductivity of AEMs. 

2.4. Other Strategies to Enhance AEM Ion Conductivity 
Organic–inorganic hybridization provides another viable strategy for enhancing the 

performance of AEM by generating highly conductive nanoclusters within the membrane 
[109]. AEMs prepared using well-conductive inorganic nanofillers not only improve ion 
conductivity but also enhance membrane thermal stability and mechanical properties. 
This causes organic–inorganic hybrid composite membranes to have broad application 
prospects in the field of water electrolysis. 

Common inorganic nanomaterials include titanium dioxide (TiO2) [110,111], gra-
phene oxide (GO) [112–114], carbon nanotubes (CNT) [115], and metal-organic frame-
works (MOF) [116], among others. These nanomaterials are typically subjected to func-
tionalization and modification treatments before blending into films with functionalized 
or non-functionalized polymer main chains. Due to the abundant active sites on the sur-
face and internal pores of inorganic nanomaterials are conducive to functionalization, 
thereby effectively enhancing the conductivity of AEM [110]. 

It has been shown that blending core–shell nanoparticles composed of SiO2 and 
densely functionalized polystyrene (PS) (70 wt%) with a polysulfone matrix to form a film 
that results in an AEM with remarkably high ion conductivity (188.1 mS/cm, 80 °C). This 
is attributed to the spatial confinement effect of SiO2, which causes the abundant conduc-
tive groups to aggregate in the functionalized PS “shell,” forming continuous ion 
transport channels. However, due to the high filler loading, inorganic particles tend to 
agglomerate. With increasing filler content, the aggregation becomes more pronounced, 
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leading to structural defects in the membrane and a sharp decrease in mechanical strength 
[117]. 

Therefore, while organic–inorganic hybridization can effectively enhance the perfor-
mance of AEM, excessive addition of inorganic particles leads to agglomeration, disrupt-
ing the homogeneous structure of the membrane, causing the formation of pores, and in 
severe cases, resulting in the crossover of H2/O2 gases. Hence, strict optimization of the 
amount of inorganic filler is required when employing this method. 

2.5. Mechanical Properties of AEM 
Additionally, to balance the ion conductivity and dimensional stability of AEM, the 

use of crosslinking agents to create a crosslinked network structure within the polymer 
can restrain excessive swelling of AEM, effectively improving its mechanical strength. 
This method has gained attention due to its simple preparation. 

Commonly used crosslinking agents include diamines [118], piperazine [100,118–
120], dithiols [121,122], etc. A PSF anion exchange membrane crosslinked with 4,4-tri-
methylenedipiperidine (TMDP) was fabricated, and the effects of crosslinking on the sta-
bility were explored. In a comparative experiment on alkaline stability, this AEM demon-
strated excellent stability in 1 M KOH aqueous solution at 60 °C for 15 days, while the 
non-crosslinked polysulfone AEM became very brittle within 24 h. Furthermore, the cross-
linked AEM exhibited outstanding dimensional stability compared to the non-crosslinked 
PSF anion exchange membrane, with the tensile strength increasing from 22.98 MPa to 
35.07 MPa, attributed to the formation of a dense internal network structure [123]. There-
fore, crosslinking can be a viable strategy for improving polymer main chain defects, es-
pecially in terms of mechanical properties. 

In one research, poly(ethylene-co-tetrafluoroethylene) copolymers were crosslinked 
with dithiols via UV-induced thiol-ene click reactions, followed by quaternization to pre-
pare crosslinked AEMs. The results showed that the tensile strength of the crosslinked 
membrane with an IEC content of 2.68 mmol/g reached nearly 40 MPa, with a fracture 
elongation of 23% [121]. In another study, quaternized PPO-based AEMs prepared using 
the same method demonstrated chemical and dimensional stability. After soaking in 4 M 
NaOH at 80 °C for 500 h, the crosslinked membrane maintained significantly higher hy-
droxide ion conductivity compared to the uncrosslinked AEM (uncrosslinked AEM de-
creased by 73.1%, while crosslinked AEM decreased by 52%) [124]. To address the balance 
between ion conductivity and stability of AEMs, crosslinked AEMs were developed using 
poly(phenylene-co-benzimidazole) as the backbone and dithiols as crosslinking agents, 
exhibiting improved mechanical properties (tensile strength increased from 25.51 MPa to 
39.76 MPa, fracture elongation increased from 13.81% to 18.34%) and dimensional stability 
(swelling ratio < 15%) [122]. The tensile strength was measured at 48.4 MPa, with a fracture 
elongation of 50.8%. 

AEMs based on polybenzimidazole (PBI) crosslinked with polyvinylbenzyl chloride 
(PVBC) exhibited lower water uptake (48% at 80 °C) and swelling ratio (11% at 80 °C). The 
supporting effect of PBI and the crosslinking structure endowed the membrane with good 
mechanical properties (tensile strength of 37.5 MPa) [120]. Thus, crosslinking is an effec-
tive method to enhance the dimensional stability of AEMs. These data are summarized in 
Table 1. 
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Table 1. Comparison of performance of AEMs reported in the literature. 

Name Type IEC (mmol/g) 
Tensile Strength 

(MPa) 
Water Uptake 

(%) 
Swelling 
Ratio (%) Ref. 

CAPSF-5 uncrosslinked 1.92 22.98 13.04 9.42 [123] 
Neosepta AMX crosslinked 2.16 35.07 44.23 4.22 [123] 

V-2-H-1 crosslinked 2.93 ~40 MPa <60 (90 °C) <15 [121] 
X60Y30C6 crosslinked 2.38 - 93 (80 °C) 35 [124] 

PcPBI-Nb-2.33 uncrosslinked 2.37 25.51 83.0 (80 °C) 6.9 [122] 
PcPBI-Nb-C2 crosslinked 2.25 39.76 100.3 (80 °C) 5.9 [122] 

PBI-PVBC-NMPD/OH crosslinked 2.31 37.5 48 (80 °C) 11 [120] 
PTPBHIN-O19 crosslinked 1.64 64.8 133 (80 °C) 10.53 [125] 
m-TPNPiQA uncrosslinked 2.54 <20 65.2 (80 °C) 25.7 [100] 

C-IL-100 crosslinked 2.99 22.91 97.0 35.9 [100] 

In general, the poor alkaline stability and low ion conductivity of AEM are the main 
challenges for reducing energy losses and ohmic voltage drops in AEMWE. Thus, ether-
free main chains are the preferred choice for AEM structure design, and selecting suitable 
functional groups to construct ion transport channels is an effective strategy to promote 
faster ion transport and enhance ion conductivity. 

All the above discussions focus on the academic research works in the field of the 
development of AEMs. Further, exploring the perspective of already published patents on 
the most promising commercially viable AEM research directions would be equally im-
portant. 

3. Progress in Patent Research of Anion Exchange Membranes 
Anion exchange membranes have a wide range of applications, such as water purifi-

cation processes [123,126], electrodialysis [127–129], biosensor [130], and water electroly-
sis [131,132]. The first anion exchange membrane was developed by scientists at the To-
kuyama Soda Company in Japan using crosslinked divinylbenzene and trimethylamine 
quaternization of polyvinyl chloride [133]. The common method for preparing anion ex-
change membranes in patents is to introduce side chains containing cation exchange 
groups (such as ammonium, imidazolium, and quaternary ammonium groups) onto the 
polymer main chain via chemical or physical irradiation methods [134,135]. 

3.1. Composite Membranes 
Composite membranes have become one of the main research topics due to their ex-

cellent properties against pristine membranes [136–139]. Typically, functional additives 
such as ion exchange polymers, metal oxides, graphene, carbon nanotubes, etc., are coated 
or impregnated into porous substrates [140,141] or nanofiber networks [141], such as pol-
ytetrafluoroethylene, poly (vinylidene fluoride), polyethylene, etc. Composite AEMs pre-
pared by this method exhibit high ion conductivity, excellent size stability, and alkali re-
sistance [142–144]. 

As of now, composite membranes made of organic polymers and inorganic fillers 
have been widely described in journals and patents [134,142–147]. As early as 1999, a pa-
tent described the blending of ionomer solutions with silicates to form a composite mem-
brane [148]. By 2002, the first reports of organic phases being in an ionic state and compo-
site membranes obtained via covalent crosslinking had emerged. The composite mem-
brane, obtained by blending a metal salt (such as ZrOCl2) with a polymer solution con-
taining crosslinking groups, exhibited excellent mechanical and thermal stability, as well 
as good ion conductivity [149]. 

In addition to polymer blending, electrospinning technology has also been applied 
to prepare AEMs. Two polymer fibers are electrospun separately to form nanofiber mats, 
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and one of the polymer nanofiber mats is heated to fill the gaps in the other polymer nan-
ofiber mat. This method avoids multiple impregnation steps for porous fiber and can fill 
the pores, but the membrane’s durability still needs improvement [150]. In a patent pub-
lished in the same year, ion exchange polymers were impregnated into a nanofiber net-
work [151]. The ion conductivity of this composite membrane exceeded 80 mS/cm, signif-
icantly enhancing the performance of AEMs and addressing the collapse/void issues of 
porous substrates. 

To improve alkaline stability, copolymerization has become a preferred research di-
rection. For example, a triblock anion exchange membrane synthesized by copolymeriz-
ing styrene, ethylene, and propylene, followed by chloromethylation and quaternization, 
can be used in systems such as fuel cells, electrolysis, and flow batteries; the main chain 
structure is shown in Figure 11A [152]. Additionally, an AEM prepared from repeating 
units of vinylbenzyl trimethylammonium salt, styrene, and divinylbenzene exhibits good 
alkaline stability. Particularly, the addition of plasticizers, polyvinylidene fluoride, and 
other additives significantly enhances the ion exchange capacity, ion conductivity, me-
chanical properties, chemical properties, and processing performance of the anion ex-
change membrane while also offering cost reduction advantages [138]. 

 
Figure 11. Main chain structures of anion exchange membranes in the patents, co-polymerized 
AEM (A), fluorene-based AEM (B), polycyclic aromatic alkyl main chain (C), and poly-cycloolefin 
block copolymer (D). 

3.2. Ether-Free Main Chains 
Most commercially⁻ available AEMs are based on crosslinked polystyrene or copol-

ymers of styrene and divinylbenzene. However, these materials lack sufficient stability at 
high pH values. In recently reported patents [153–155], some innovators have synthesized 
polymers with specific groups, such as polyfluorene or other non-ether polymers (Figure 
11B), via condensation or super acid-catalyzed polyhydroxy alkylation reactions. Cross-
linking is used to reduce membrane swelling and enhance mechanical stability, or stability 
of the cationic functional groups is improved via conjugation and electron-donating ef-
fects. A patent published in 2014 reveals that an anion exchange membrane, obtained by 
introducing N-vinylimidazole into a non-ether polymer main chain via radiation 
polymerization and quaternizing the side chains with halogenated alkane, demonstrates 
excellent alkaline stability by preventing nucleophilic substitution and elimination reac-
tions [156]. Furthermore, the chemical stability and mechanical properties of the polyaro-
matic alkyl main chain or polyaromatic crown ether main chain have been confirmed in 
other patent studies (Figure 11C) [157]. In comparison to traditional AEMs, these non-
ether main-chain AEMs exhibit lower water uptake and swelling and demonstrate excel-
lent alkaline stability at high pH values. 
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The ideal characteristics of an AEM not only include excellent alkaline stability but 
also the presence of effective hydroxide ion transport channels. Despite significant pro-
gress in the past decade, there is still considerable room for development in the perfor-
mance of AEMs compared to PEMs [158]. 

3.3. Microphase-Separated Structure 
To promote the transport of hydroxide ions, the construction of microphase-sepa-

rated structures has become a focus in many patents as an effective method to enhance 
hydroxide ion conductivity. It has been observed that the formation of block copolymers 
aids in achieving phase separation within the polymer, facilitating the creation of high-
mobility ion transport channels within the membrane [159]. For example, a hydrophobic 
polysulfone main chain and a hydrophilic polyethylene oxide undergo simultaneous 
quaternization reactions, creating a phase-separated structure with both hydrophilic and 
hydrophobic regions within the membrane. This formation results in a double continuous 
region that constitutes ion transport channels, facilitating the transport of ions [157]. Fur-
thermore, in a patent disclosed in 2022, a block copolymer of poly-cycloolefin (Figure 11D) 
synthesized from various functionalized norbornene monomers exhibited remarkable ion 
conductivity (198 mS/cm at 80 °C) [160]. However, compared to non-block copolymers, 
the synthesis of block copolymers is more challenging and complex. 

Designing polymer materials into a comb-like structure, where pendant side chains 
are connected to cationic functional groups, facilitates the construction of a hydro-
philic/hydrophobic microphase-separated structure with a simple synthesis method. In 
the current patent [161], it has been observed that the ion conductivity of the comb-like 
PBI anion exchange membrane obtained via this method reaches 76.3 mS/cm at 80 °C. 
Although this PBI anion exchange membrane exhibits excellent conductivity, its water 
uptake is as high as 298.5%, severely impacting the size stability of the membrane. 

As discussed, besides alkaline stability and high ion conductivity, maintaining me-
chanical integrity is crucial, and mild crosslinking helps control water uptake and enhance 
mechanical stability. In several patents, AEMs crosslinked via physical or chemical means 
demonstrate exceptionally high mechanical and chemical stability. For example, covalent 
crosslinking using polyethylene glycol terminated with epoxy groups reduces swelling, 
thereby improving mechanical stability [162]. Alternatively, films of poly(acrylamide-co-
dimethylallyl chloride)-crosslinked with glutaraldehyde, about 20 µm thick, exhibit stable 
chemical and mechanical properties [163]. Interestingly, in composite AEMs composed of 
a surface layer with a crosslinked structure and an anion exchange membrane matrix, 
when the crosslinked portion carries an opposite charge to the cationic functional groups 
of the ion exchange membrane, it not only enhances the stability of the AEM but also im-
proves the membrane’s ion selectivity, attributed to the charge repulsion at the surface 
layer [164]. 

Crosslinking is considered a direct approach to improving the mechanical and phys-
icochemical properties of anion exchange membranes [162,165–168]. High mechanical sta-
bility is particularly crucial for thin (<50 µm) AEMs and AEM water electrolysis operations 
under high-pressure differentials. However, improper application of crosslinking may 
lead to deteriorating AEM performance. For instance, the use of long-chain crosslinking 
agents can induce AEM crystallization, thereby compromising various physicochemical 
properties, such as reducing hydrophilicity [169]. 

Nevertheless, AEMs still face major challenges, such as hydrogen production effi-
ciency, long-term stability, and cost-effectiveness under operating conditions. Therefore, 
non-ether main chains and suitable functional groups are the preferred choices to enhance 
stability, and constructing a microphase-separated structure to form continuous ion 
transport channels is one of the most effective strategies to improve ion conductivity. 
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4. Conclusions and Outlook 
In summary, to address the key factors limiting large-scale electrolytic hydrogen pro-

duction, such as low hydrogen production efficiency, poor long-term stability, and low 
ion conductivity of AEMs in water electrolysis, this review provides an overview of recent 
research progress in anion exchange membranes. It focuses on analyzing methods to en-
hance AEM ion conductivity and alkaline stability. Additionally, by examining patents 
and the current application status of AEMs, the review identifies challenges and potential 
solutions in practical AEM water electrolysis production, aiming to achieve efficient and 
green hydrogen production. 

Thanks to the current ideas, AEM has made significant progress and has achieved 
substantial advancements in various dimensions, ranging from molecular design to labor-
atory-scale trials. High ion conductivity exceeding 100 mS/cm and alkaline stability ex-
ceeding 1000 h have been achieved [170]. The future trends of AEM are becoming evident, 
although the development of hydrogen production at the pilot scale is still in progress. 
The main challenges for AEM currently are alkaline stability and ion conductivity. 

Several potential future trends in AEM design have emerged: 
1. Ether-free polyaromatic main chains and N-cyclic quaternary ammonium are ex-

pected to meet the stability requirements of AEM. 
2. Systematic studies of microphase separation structures at the molecular level, using 

molecular simulations to predict substance transport within the membrane, are likely 
to advance AEM development. 

3. AEM still requires sufficient ion exchange capacity to achieve high-performance 
AEMWE, and the reliability of hydrophilic/hydrophobic microphase separation 
structures remains crucial. 
Achieving high-performance AEM materials is still in the early stages, and further 

developments in pilot-scale hydrogen production are needed. Subsequent efforts will fo-
cus on advancing large-scale processing and low-cost manufacturing to meet the applica-
tions in global energy systems. 
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