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Abstract: Transport systems play a pivotal role in bacterial physiology and represent potential
targets for medical and biotechnological applications. However, even in well-studied organisms like
Escherichia coli, a notable proportion of transporters, exceeding as many as 30%, remain classified as
orphans due to their lack of known substrates. This study leveraged high-resolution LC-MS-based
untargeted metabolomics to identify candidate substrates for these orphan transporters. Human
serum, including a diverse array of biologically relevant molecules, served as an unbiased source for
substrate exposure. The analysis encompassed 26 paired transporter mutant contrasts (i.e., knockout
vs. overexpression), compared with the wild type, revealing distinct patterns of substrate uptake and
excretion across various mutants. The convergence of candidate substrates across mutant scenarios
provided robust validation, shedding light on novel transporter-substrate relationships, including
those involving yeaV, hsrA, ydjE, and yddA. Furthermore, several substrates were contingent upon the
specific mutants employed. This investigation underscores the utility of untargeted metabolomics for
substrate identification in the absence of prior knowledge and lays the groundwork for subsequent
validation experiments, holding significant implications for both medical and biotechnological
advancements.
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1. Introduction

Transport systems, which selectively move substrates across cell membranes, consti-
tute an important component of bacterial physiology. The ability to manipulate bacterial
transporters both genetically and chemically has applications in both medicine (as a major
component of antibiotic resistance due to evolved adaptations in efflux transporters [1–4])
and microbial cell factories (as a reliable way to increase product yield and tolerance of toxic
products to increase efflux from the intracellular space into the extracellular medium [5–12]).
Transporters are similarly required to maximize substrate uptake [13–16].

Escherichia coli is a model organism and has been intensively studied, with the full
genome first published in 1997 [17]. Of the 4146 genes in the E. coli K-12 MG1655 chromo-
some, some 598 (around 15%) encode established or predicted membrane transporters [18].
Despite intensive research on E. coli, more than a quarter of these transporters (currently
160 to our best approximation) are considered y-genes or orphans (see also [19]), in that
they have no assigned substrate. Even in the cases of those for which a substrate has been
identified, it may be far from the best or main natural substrate (see, for example, [20]).

Finding substrates and elucidating the structure activity relationship of orphan bac-
terial transporters is a challenging proposition. Many nutrient importers have numerous
transporters of different affinities and specificities (for example tryptophan and tyrosine
can enter E. coli cells via several different transporters [21–26]) and given this redundancy,
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perturbation of a single transporter may not abolish import of the substrate, as well as the in-
evitability of inducing pleiotropic effects [27,28]. Furthermore, many efflux proteins export
numerous xenobiotics, with substrates overlapping between transporters [29]. While there
are techniques to allow measurement of transport directly on isolated transporters [30,31],
this is only practically feasible when one has at least some idea of substrate selectivity. Given
there are still many E. coli transporters with no assigned substrate (and that the annotation
of transporters in other industrially relevant microorganisms is similarly lacking [32,33]),
there is a need for a methodology that can in an unbiased way identify candidate substrates
for orphan transporters.

Human serum is effectively a mix of many thousands of biologically relevant molecules [34,35],
that provides a cheap and unbiased means of providing them to cells, in concentrations that
plausibly reflect natural exposure [36]. Previously, incubation of human cells in serum followed
by LC-MS has been used to identify substrates being imported and excreted into different cell
lines using both low-resolution [20] and more recently high-resolution [37] methods.

In the present study, we sought to apply these high-resolution methods to E. coli cells,
utilizing single gene transporter overexpression cells derived from the ASKA collection [38]
and single gene transporter knockouts from the KEIO collection [39]. Cells were incubated
in human serum, and we measured changes in extracellular compound levels (the exo-
metabolome [40] or metabolic footprint [41]) over a period of up to 30 min. We were
able to detect a total of around 5000 compounds, many of which were identified with
reasonably high confidence. We used automated analysis to screen time-course curves
of wild type (WT) E. coli, with which we compared 26 transporter mutant pairs. Using
this method, we observed clear differential uptake and excretion of diverse compounds.
In addition, metabolite variations converged across mutant contrasts, as well as mutant-
dependent associations, were systematically assessed for probing candidate substrates of
putative transporters utilized in this study and aligned with their respective affiliation in
the Transporter Classification Database [42].

2. Materials and Methods
2.1. Bacterial Strains and Cultures

The reference strain (the wild type) E. coli BW25113 utilized in this study was initially
streaked on LB Agar. A selection of 26 transporters, as detailed in Table 1, was chosen for the
experimental investigation. Each specific E. coli strain with a gene knockout corresponding
to the selected transporters was obtained from the KEIO collection [39] and subsequently
streaked onto LB Agar containing 25 µg/mL kanamycin for selection. Additionally, for
each transporter gene of interest, independent overexpression vectors were obtained from
the single gene overexpression (ASKA) collection [38]. Transformants were streaked on LB
Agar supplemented with 25 µg/mL chloramphenicol for selection. For the preparation of
overnight cultures, individual colonies were carefully picked and inoculated into 50 mL
of LB medium, which was appropriately supplemented with the corresponding antibiotic.
These cultures were incubated overnight at 37 ◦C with agitation at 300 rpm.

Table 1. A list of transporters selected for evaluation. Family and substrate information is de-
rived from the Transporter Classification Database [42] (accessible at http://tcdb.org, accessed on
26 February 2024).

Transporter/TC# a Family Previously Identified Substrates

yddG/ 2.A.7.17.2 Aromatic Amino Acid/Paraquat Exporter (ArAA/P-E) Aromatic amino acids

Mtr/ 2.A.42.1.2 The Hydroxy/Aromatic Amino Acid Permease (HAAAP) Tryptophan

ybbW/ 2.A.39.3.8 Nucleobase:Cation Symporter-1 (NCS1) Allantoin

ynfM/ 2.A.1.36.1 Acriflavin-sensitivity (YnfM) Family Arabinose

http://tcdb.org
2.A.7.17.2
2.A.42.1.2
2.A.39.3.8
2.A.1.36.1
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Table 1. Cont.

Transporter/TC# a Family Previously Identified Substrates

uraA/ 2.A.40.1.1 Nucleobase/Ascorbate Transporter (NAT) or
Nucleobase:Cation Symporter-2 (NCS2) Uracil

sapF/ 3.A.1.5.42 Peptide/Opine/Nickel Uptake Transporter (PepT) Putrescine

yeeE(tsuA)/ 9.B.102.1.2 The YedE/YeeE (YeeE) Thiosulfate

yifK/ 2.A.3.1.15 Amino Acid Transporter (AAT) Serine and threonine

mdtJ/ 2.A.7.1.9 Small multidrug resistance (SMR) Spermidine, SDS b, deoxycholate

yojI/ 3.A.1.113.3 The Peptide-3 Exporter (Pep3E) Microcin

ydfJ/ 2.A.1.6.9 Metabolite:H+ Symporter (MHS) K+ *

ydhK/ 2.A.85.1.6 The Aromatic Acid Exporter (ArAE) Uncharacterized

yeaV/ 2.A.15.2.3 The Betaine/Carnitine/Choline Transporter (BCCT) Family Uncharacterized

yfdV/ 2.A.69.3.5 Auxin Efflux Carrier (AEC) Uncharacterized

yfdC/ 1.A.16.4.1 Formate-Nitrite Transporter (FNT) Uncharacterized

rarD/ 2.A.7.7.2 Chloramphenicol-Sensitivity Protein Uncharacterized

hsrA/ 2.A.1.3.51 Drug:H+ Antiporter-2 (14 Spanner) (DHA2) Uncharacterized

yfcJ/ 2.A.1.46.6 Uncharacterized Major Facilitator-5 (UMF5) Uncharacterized

ydjX/ 9.B.27.1.1 Death Effector Domain A (DedA) Uncharacterized

dcuD/ 2.A.61.1.2 The C4-dicarboxylate Uptake C (DcuC) Family Uncharacterized

mdlA/ 3.A.1.106.13 Lipid Exporter (LipidE) Family Uncharacterized

ydjE/ 2.A.1.1.92 Sugar Porter (SP) Uncharacterized

yddA/ 3.A.1.203.11 The Peroxysomal Fatty Acyl CoA Transporter (P-FAT) Uncharacterized

ygiS/ 3.A.1.5.41 The ATP-binding cassette superfamily Uncharacterized

yiaV/ 8.A.1.1.4 The Membrane Fusion Protein (MFP) Family Uncharacterized

yidE/ 2.A.81.1.5 Aspartate:Alanine Exchanger (AAEx) Family Uncharacterized
a Transporter Classification Database accession number, b sodium dodecyl sulfate, * Functions as an ion channel.

2.2. Serum Incubation Experiments

Overnight cultures were pelleted with centrifugation and then washed twice in 30 mL
of glucose solution. OD was measured following the second resuspension in glucose to
determine cell density. Cells were pelleted a final time and resuspended to a density of
6 × 109 cells. A volume of 500 µL of the washed cells was dispensed in 96 deep well plates
such that each recipient well contained 3 × 109 cells. The plate was then centrifuged to
pellet cells and the glucose solution removed. The runs were configured for both mutant
contrasts alongside with the wild type E. coli BW25113 as a control in each run. For each
cell type, three technical replicates were considered for each specified time point (0, 5, 15,
and 30 min).

Cell pellets were resuspended in 200 µL of pre-warmed human serum (Pooled gender,
purchased from BioIVT-West Sussex, Burgess Hill, United Kingdom) and incubated at 37 ◦C
for the indicated time (30, 15, or 5 min). For the zero-time point, cells were resuspended
in serum immediately before centrifugation. To control for breakdown or appearance of
compounds over time within the serum, triplicate control wells of serum alone with no
cells were included for all time points. Following incubation plates were centrifuged at
4000 rpm for 10 min at 4 ◦C and 150 µL of spent serum supernatant was transferred to a
fresh plate and stored at −80 ◦C until purification. Pooled serum samples were prepared
by mixing the remaining spent serum from all wells.

2.A.40.1.1
3.A.1.5.42
9.B.102.1.2
2.A.3.1.15
2.A.7.1.9
3.A.1.113.3
2.A.1.6.9
2.A.85.1.6
2.A.15.2.3
2.A.69.3.5
1.A.16.4.1
2.A.7.7.2
2.A.1.3.51
2.A.1.46.6
9.B.27.1.1
2.A.61.1.2
3.A.1.106.13
2.A.1.1.92
3.A.1.203.11
3.A.1.5.41
8.A.1.1.4
2.A.81.1.5
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2.3. Preparation for Metabolomics Analysis

Samples were thawed and 100 µL of each sample was mixed with 350 µL of acetonitrile.
From this mixture 250 µL was added to an Ostro Protein Precipitation and Phospholipid
Removal Plate (Waters, Taastrup, Denmark) and filtered with positive pressure. Filtered
samples were dried in a vacuum centrifuge and re-suspended in 100 µL of LCMS grade water.

2.4. LC-MS(MS) Analysis

The LC-MS(MS) analysis was performed using a Vanquish Duo UHPLC binary sys-
tem (Thermo Fisher Scientific, Waltham, MA, USA) coupled to an Orbitrap IDX Tribrid
Mass Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). The chromatographic
separation was achieved using a Waters ACQUITY BEH C18 (10 cm × 2.1 mm, 1.7 µm)
column equipped with an ACQUITY BEH C18 guard column kept at 40 ◦C. The mobile
phases consisted of MilliQ© water + 0.1% formic acid (A) and acetonitrile + 0.1% formic
acid (B). The initial composition was 2%B, held for 0.8 min, followed by a linear gradient
till 5% in 3.3 min, and afterward, 100%B was reached in 10 min and held for 1 min before
going back to initial conditions. Re-equilibration time was 2.7 min. Flow rate was kept
constant at 0.35 mL/min and injection volume was 1 µL. The MS measurements were
performed in positive- and negative-heated electrospray ionization (HESI) mode with a
voltage of 3500 and 2500 V, respectively, acquiring in full scan MS spectra in profiling mode
using a resolution of 120,000 in the mass range of 70–1000 Da. The AcquireX workflow for
automated generation of a background exclusion list from a blank sample was used during
the data-dependent acquisition (DDA). The DDA acquisition settings were the following:
automatic gain control (AGC) target value set at 4 × 105 for the full MS and 5 × 104 for
the MS/MS spectral acquisition, the mass resolution was set to 120,000 for full scan MS
and 60,000 for MS/MS events. Precursor ions were fragmented with stepped High-energy
collision dissociation (HCD) using collision energies of 20, 40, and 60. The DDA spectra
were acquired only on QC pooled samples.

2.5. Data Preprocessing and Analysis

Data processing was performed using Compound Discoverer 3.1, essentially as de-
scribed in [24]. Briefly, raw instrument data (.RAW) were imported to Compound Discov-
erer (CD version 3.1) and analyzed using the workflow described in Wright et al. [37]. Peak
areas were exported, and a QC based LOESS signal correction was performed in R (ver-
sion 4.2.3) as previously described [35] using the loess.as function of the fANCOVA package.
The confidence level system utilized in the study aligns with established metabolomics
reporting standards (see reference), ensuring a robust compound identification process. Cri-
teria for confidence level assignment are based on matching scores exceeding 70 in mzVault
and mzCloud databases (levels 1 and 2, respectively), a “Full match” in the Annotation
Source (level 3), the presence of a molecular formula (level 4), and a confirmed molecular
weight (level 5).

Compounds being imported and exported were identified by automated analysis in
R. Within this analysis package, basic univariate statistical analyses were conducted on
log2 transformed data using a paired t-test. Volcano plots were then generated using these
data, with a significance threshold of p < 0.05 and an absolute log2 fold change > 0.5 set to
determine a significant alteration in compound abundance across time points. Following
this, a Principal Components Analysis was employed to visualize trends in the differentially
transported molecules.

Compounds were defined as being imported or exported if they: 1. could be fit to a
linear regression with an adjusted R2 value greater than 0.7; 2. could be fit to an exponential
regression with an adjusted R2 value greater than 0.7; or if 3. the compound showed greater
than a 3-fold change over the first 15 min and a greater than 5-fold change over the 30 min
of incubation. For identification of differences in transport for mutants, two criteria were
explored. First, compounds which showed a 2-fold or higher change in peak area at the
5, 15, or 30 min time point compared to the WT strain, and without any overlap between
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the WT and mutant values at a given time point were selected. Second, strains where a
significant difference between the WT and mutant values (p < 0.01) were also selected.
Time-course graphs were generated to compare WT and each transporter mutant for all
compounds that met these criteria and manually inspected for transport differences. These
graphs underwent meticulous manual review to discern distinct transport discrepancies
and deselect highly noisy data, and the finally selected molecules per a transporter mutant
were exported in the form of tables. Comparisons were performed in R, and graphs were
generated using ggplot2 package. All code used for data analysis is available along with
the raw data at github.com.

3. Results and Discussion
3.1. Metabolite Profiling of Strains and Compound Identification

The experimental design involved the examination of transporter mutants alongside
with the WT, and a serum-only control, with samples taken at 0, 5, 15, and 30 min. The
selection of transporters, as detailed in Table 1, predominantly focused on transporters
that have not been associated with specific substrates in previous research (i.e., uncharac-
terized, or putative), aiming to uncover potential new substrate-transporter relationships.
Additionally, a selection of transporters with (at least some) known substrates was also
included in the study. This dual approach aimed to confirm the method’s accuracy in
replicating known or similar interactions while simultaneously investigating potential
candidate substrates for uncharacterized transporters.

For compound identification, MS/MS analysis was performed exclusively on pooled
QC samples and processing was carried out simultaneously in Compound Discoverer
(CD V3.1, see methods). The study adhered to the confidence level system of Schymanski
et al. [43] with an overview provided in Table 2. In the positive Electrospray Ionisation
mode (ESI+), 9406 compounds were detected, of which 3671 (39%) were unique (based on
exact mass, retention time, and a maximum QC CV of 30%). MS/MS data were obtained for
5607 (60%) of these compounds, with 5305 (56%) showing the preferred ion. Identification
confidence levels included 16 level 1 matches (0.2%) to reference standards, and 1363 level
5 identifications (14%) based on mass. In the negative Electrospray Ionisation mode (ESI-),
4092 compounds were identified, with 1632 (40%) unique and 3287 (80%) providing MS/MS
data, including a higher proportion of level 1 identifications at 67 compounds (2%). A
significant portion of the annotations are considered putative, with 75% in ESI+ and 62% in
ESI- categorized as level 3 of identification. Compounds with confidence levels 1 through
3 were predominantly included, and their corresponding levels were indicated in figure
legends in the following sections. Efforts are underway to develop more comprehensive
in-house spectral libraries, which are expected to be integrated into subsequent analyses.
The LC-MS/MS method demonstrates a high-capacity for identifying diverse metabolites
reliably and accurately, benefiting from the synergistic use of both ESI+ and ESI- modes in
metabolomic analysis.

Table 2. Overview of LC-MS/MS results of serum QC samples obtained following preprocessing
using CD3.1.

ESI+ % All Compounds ESI− % All Compounds

Features
Compounds

Unique Compounds

531,376 135,776
9406 4092
3671 39% 1632 40%

MS2
No MS2

5607 60% 3287 80%
3779 40% 805 20%

MS2 Preferred Ion 5305 56% 3213 79%
MS2 Other Ion 302 3% 74 2%

Level 1 (Match to reference standard) * 16 0.2% 67 2%

 https://github.com/Mohammadradi/LCMS_DifferentialTransportEColi 
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Table 2. Cont.

ESI+ % All Compounds ESI− % All Compounds

Level 2 (Probable structure, mzCloud > 70%) *

Level 3 (Tentative Candidate, match to
predicted composition) *

461 5% 70 2%

7062 75% 2520 62%

Level 4 (Molecular formula) * 504 5% 251 6%
Level 5 (Mass) * 1363 14% 1184 29%

* Identification levels are based on criteria described by Schymanski et al. [43].

3.2. The Differential Transport of Metabolites

To evaluate the differential uptake and excretion of serum components following
incubation at different time points, a simple univariate analysis was performed using the
data obtained at the start and the end of the incubation period (i.e., at time points 0 and
30 min). The WT cells and all transporter mutants utilized in this study showed apparent
differences in the number and magnitude of metabolites being taken up or excreted,
similarly to what has been observed previously with different eukaryotic cell lines [37].
Examples of volcano plots showing this differential analysis are shown in Supplementary
Figure S1. In addition, principal component analysis (PCA) showed a clear difference
in metabolite transport in response to transporter modulation and captured an apparent
time-dependency in metabolite transport kinetics. Examples of PCA scores plots of some
representative mutants are shown in Supplementary Figure S2.

At the level of single molecules, several data filtration criteria were set to perform
the initial evaluation of their transport profiles and interpret their potential transport
direction based on the respective genetic perturbations (see methods for details). Briefly,
time course data were examined to select molecules that demonstrated significant changes
in concentration over time. Filtration criteria were applied to identify molecules that
exhibited differential transport dynamics between the WT and each transporter mutant.
Statistical analysis confirmed the significance of these differences. Eventually, time-course
graphs were generated to visualize variations between WT and each transporter mutant for
the selected molecules. Examples of time-course graphs illustrating the transport profiles
of example metabolites are shown in Figure 1. The observed trends in peak area changes
provide insights into the dynamics of metabolite uptake (depletion) or excretion (increase
or export) over time. By comparing the trends in peak area changes of a molecule between
the wild type cells and either the knockout mutant or the overexpression mutant, it is
possible to infer a tentative direction of transport. Detailed findings on a broader array of
putative transporter mutants are presented in the next section.

3.3. Probing Candidate Substrates of Putative Transporters

The intricate interplay between putative transporters and their cargo was explored
based on a systematic comparison of metabolite dynamics in paired knockout and overex-
pression mutants (referred to as mutant contrasts). First, the convergence of metabolites
between mutant contrasts was assessed to enhance the confidence in the selected candidate
substrates. Additionally, the mutually interpreted transport directions of these candidates
in mutant contrasts provided a dual validation approach that further reinforces the under-
standing of the transporter-substrate relationships. Secondly, mutant-dependent metabolite
variations (i.e., diverged occurrences that were encountered where a range of metabolites
exhibited unique associations with either the overexpression or knockout mutants) were
also considered. The identified instances in this study demonstrated that the extent of this
convergence or divergence varied across mutants. Examples of some pairs of mutants
are shown in Figure 2 to illustrate this. Eventually, all findings were aligned with the
respective transporter affiliation in the Transporter Classification Database [42]. In this
context, a selection of representative putative transporters from various transporter families
are provided as illustrative examples. Comprehensive data for all the tested transporters
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can be found in the Supplementary Material and Supplementary Data S1, which includes a
set of fully tabulated data.
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shows an impaired export of N-acetylputrescine. Conversely, the trend of the peak area in yifK mu-
tant versus the WT implies an impaired import function of S-methylglutathione. Serum controls are 
represented in yellow, WT in blue, and transporter mutants in red. Confidence levels for compound 
identification are indicated in brackets. Error bars denote standard errors, n = 3. 

3.3. Probing Candidate Substrates of Putative Transporters 
The intricate interplay between putative transporters and their cargo was explored 

based on a systematic comparison of metabolite dynamics in paired knockout and over-
expression mutants (referred to as mutant contrasts). First, the convergence of metabolites 
between mutant contrasts was assessed to enhance the confidence in the selected candi-
date substrates. Additionally, the mutually interpreted transport directions of these can-
didates in mutant contrasts provided a dual validation approach that further reinforces 

Figure 1. Examples of time-course analysis of transport dynamics in the wild type and trans-
porter mutants. Panel (A,B) showcase an export of aspartic acid, and an import of proline, re-
spectively, in the WT. Panel (C,D) outline the transport profiles of mevalonic acid and 2-Hydroxy-
4-(methylthio)butanoic acid in mtr and mdtJ overexpression mutants, respectively. The dynamic
alteration, characterized by an enhanced depletion (uptake) of mevalonic acid in mtr mutants com-
pared to the wild type, suggests an increased uptake associated with the enhanced expression of
mtr permease. However, the observed trend in peak area between the mdtJ mutant and the wild
type suggests an enhanced export of 2-Hydroxy-4-(methylthio)butanoic acid under overexpression
of mdtJ. Panel (E,F) delineate the transport profiles of N-acetylputrescine and S-methylglutathione in
sapF and yifK knockout mutants, respectively. Compared to the wild type, the observed trend in
sapF mutant shows an impaired export of N-acetylputrescine. Conversely, the trend of the peak area
in yifK mutant versus the WT implies an impaired import function of S-methylglutathione. Serum
controls are represented in yellow, WT in blue, and transporter mutants in red. Confidence levels for
compound identification are indicated in brackets. Error bars denote standard errors, n = 3.
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Figure 2. UpsetR [44] plot showing metabolites that are shared and unique across different examples
of mutant pairs. (A) shows hsrA and yeaV, and (B) shows yddA and ydjE mutant pairs. Each horizontal
bar represents a specific set of metabolites identified in each respective mutant, while the vertical
bars show the size of intersections between mutant pairs (i.e., the number of metabolites that are
common to both mutants being compared). Depicted is the possible convergence and divergence of
metabolites that showed differential transport relevant to the parental strain. Despite the presence of
converged instances between mutant contrasts, mutant-dependent metabolite variations were more
prevalent. OE abbreviates overexpression mutants and KO abbreviates knockout mutants.

3.4. Candidate Substrates of yeaV

Within this dataset, yeaV emerged as a noteworthy putative transporter that showed
associations with a diverse array of metabolite alterations in mutant contrasts. Examples
of these metabolites are pantothenic acid and kynurenic acid. As shown in Figure 3, yeaV
overexpression mutants displayed a greater reduction in the extracellular levels of both
metabolites when compared to the WT, indicating an enhanced uptake activity for these
molecules. Conversely, the WT exhibited a more substantial depletion of both metabolites
over time compared to yeaV knockout mutants, suggesting an impaired uptake mechanism
due to the loss of yeaV function. In addition, a similar metabolite shift suggested a decent
uptake of ureidosuccinic acid, aspartic acid, and gallic acid (see Figure S3). Complemen-
tarily, there was a discernible depletion of several amino acids (or their acetylated forms),
such as carnitine, serine, glutamic acid, N-acetyl-aspartic acid concomitant with yeaV over-
expression (see Figure S4). In TCD, yeaV is listed as an uncharacterized putative member of
the Betaine/Carnitine/Choline Transporter (BCCT) family [42]. Transport proteins within
the BCCT family are recognized for their role in shuttling quaternary ammonium com-
pounds, including betaine, carnitine, and choline, which are pivotal in cellular processes
like osmoprotection, metabolism, and stress responses. The observations reported here are
in line with the BCCT established functions and endorses a potential versatility of yeaV to
transport a broad array of substrates.
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Figure 3. Temporal Transport Dynamics of pantothenic acid and kynurenic acid in yeaV mutant
contrasts. Panel (A,B) illustrate a pronounced depletion of both metabolites in yeaV overexpression
mutants in comparison to the WT. In contrast, the wild type displayed a more substantial depletion of
both metabolites in comparison to yeaV knockout mutants as shown in panel (C,D). Serum controls are
represented in yellow, WT in blue, and transporter mutants in red. Confidence levels for compound
identification are indicated in brackets. Error bars denote standard errors, n = 3.

3.5. Candidate Substrates of hsrA

In the investigation of hsrA, an uncharacterized member of the Drug:H+ Antiporter-2
(DHA2) Family of transporters [42], a diverse array of metabolite variations emerged. Given
the pivotal role of antiporters in cellular metabolite transport, the two mutant scenarios
employed in this study displayed an overlapping pattern in line with this function. As
shown in Figure 4, hsrA overexpression mutant showed an enhanced excretion of serine
compared to the WT, whereas hsrA knockout mutant showed a clear impairment in the
excretion of this molecule in comparison to the WT. These findings suggest a potential
involvement of hsrA in the export of serine under the experimental conditions used here.
On the other hand, hsrA overexpression mutants exhibited a near depletion of extracellular
hydroxyglutaric acid. In contrast, hsrA knockout mutant showed an impaired uptake of
hydroxyglutaric acid compared to the parental strain. Similarly, consistent uptake trends
were observed in both mutant scenarios for metabolites such as orotic acid, ureidosuccinic
acid, and aspartic acid (Supplementary Data S1). Furthermore, there were additional
independent instances in either knockout or overexpression mutants that suggest hsrA’s
involvement in the transport of a variety of molecules including organic acids, phenolic
compounds, and amino acids. Notably, among these molecules, methionine, and 5′-S-
Methyl-5′-thioadenosine contain sulfur, aligning with previous findings of accumulating
sulfur containing amino acids like homocysteine under hsrA overexpression. However,
further investigations are required to fully elucidate these observations. Overall, these
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results align with the established functions of the DHA2 family and suggest a potential
versatility of hsrA in transporting a wide range of substrates.
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Figure 4. Time course illustrations of changes in serine and hydroxyglutaric acid in hsrA mutant
comparisons. Compared to the WT, hsrA overexpression mutants displayed an enhanced extrusion
of serine compared to the WT, as shown in panel (A). However, hsrA knockout mutants showed
an impaired excretion of serine, as shown in panel (C). Panel (B) demonstrates a near depletion
of hydroxyglutaric acid in hsrA overexpression mutants in comparison to the WT, while panel
(D) displays the impaired uptake of this molecule in hsrA knockout mutants. Serum controls are
represented in yellow, WT in blue, and transporter mutants in red. Confidence levels for compound
identification are indicated in brackets. Error bars denote standard errors, n = 3.

3.6. Candidate Substrates of ydjE

The experiments conducted on ydjE transporter mutants demonstrated correlations
with a broad spectrum of metabolites. Notably, two overlapping associations emerged in
both mutant contrasts, strongly suggesting an export activity for both acetophenone and
3-phenyllactic acid. As illustrated in Figure 5, ydjE overexpression mutants demonstrated
a consistent increase in the peak area throughout the incubation period, surpassing the
WT, which implies (modulo pleiotropic effects), an enhanced export capacity, for these
metabolites. Conversely, ydjE knockout mutants exhibited a clear impairment in the export
of these metabolites when compared to the WT. Additionally, several associations were
reported explicitly with either knockout mutants or overexpression mutants, showing the
export of several molecules tentatively identified as amino acids (or their acetylated forms)
and carboxylic acids (refer to Supplementary Data S1). Despite the affiliation of ydjE within
the sugar porter (SP) family [42], a classification that was predicted based on sequence
homology alone, the results showed here have revealed associations with metabolites that
are not typically related to sugars. While the primary function of transporters in the SP
family is sugar transport, it is not uncommon for transporters to exhibit promiscuity and
transport other substrates as well in certain cellular contexts [45,46]. Nevertheless, the
specific substrate preferences and regulatory mechanisms of ydjE are still unknown, and
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further research is needed to confirm the complete range of substrates transported by ydjE
and the physiological significance of these transport activities in E. coli.
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Figure 5. Time-course illustrations of changes in acetophenone and 3-phenyllactic acid by the
ydjE mutant contrasts. Compared to the WT, ydjE overexpression mutants displayed an enhanced
extrusion of acetophenone and 3-phenyllactic acid, as shown in panel (A,B), respectively. However,
ydjE knockout mutants showed an impaired excretion of acetophenone and 3-phenyllactic acid in
comparison to the WT, as shown in panel (C,D), respectively. Serum controls are represented in
yellow, WT in blue, and transporter mutants in red. Confidence levels for compound identification
are indicated in brackets. Error bars denote standard errors, n = 3.

3.7. Candidate Substrates of yddA

In the investigation of yddA, a putative transporter of the ABC transporter family [42],
mutant-dependent metabolite variations were more evident. Notably, yddA overexpres-
sion was linked to various metabolites, with amino acids and their derivatives being the
most prevalent, including proline, glutamic acid, amino butyric acid, glutamyl-leucine,
and phenylacetylglutamine. Figure 6 illustrate the enhanced depletion of these molecules
over time in comparison to the WT. Of note, proline was the only molecule that showed
convergence between mutant contrasts with an impaired uptake in yddA knockout mu-
tants, highlighting the uptake pattern of this amino acid (see Figure 6A,B). In addition to
amino acids, the analysis revealed similar uptake trends of organic acids (e.g., benzoic
acid, ibotenic acid), aromatic compounds (e.g., 4-hydroxybenzaldehyde, coumarin), and
essential primary metabolites like N(2)-succinyl-glutamic acid, in comparison to the WT.
Previous studies have suggested that yddA is part of a three-gene cluster (yddA-yddB-
ppqL) which may represent a 3-component iron-uptake system [47]. It has been found
that overexpression of cloned yddA in the drug-supersensitive strain E. coli strain did not
alter its resistance phenotype against many different drug and toxic compounds [28,29,48].
Moreover, previous investigations into fluorophore accumulation did not reveal substantial
changes in mutants lacking yddA [28,29,48]. These prior findings, combined with our
observations, support the potential role of yddA in the uptake of metabolites with biological
significance such as amino acids. However, this would require further investigations.
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Figure 6. Time course illustrations of changes in several metabolites associated with yddA expression.
Panel (A,B) represents the uptake pattern of proline in yddA overexpression and knockout mutants,
respectively, in comparison to the WT. Panels (C–F) represent metabolite variations explicitly as-
sociated with yddA overexpression mutants, and depict a more efficient depletion patterns of the
respective metabolites in comparison to the WT. Serum controls are represented in yellow, WT in
blue, and transporter mutants in red. Confidence levels for compound identification are indicated in
brackets. Error bars denote standard errors, n = 3.

3.8. Remaining Transporters

The experiments performed here on 52 mutant strains, alongside with their parental
strain, showed a relatively high capacity of the LC-MS method used here to operate at
a reasonably high throughput. The cases represented earlier were illustrative examples;
however, the remaining transporters and their respective candidate substrates are compre-
hensively listed in the Supplementary Data S1. The majority of the candidate substrates
associated with the remaining transporters exhibited discernible metabolic alterations
that were contingent upon the specific mutants employed. This observation underscores
the intricate nature of transporter-substrate interactions, where the transport dynamics
are influenced by specific genetic perturbations plus an unknown extent of pleiotropic
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effects. However, grouping of the candidate substrates based on their chemical properties
or functional groups can provide insights on the preferred versus broader activity of a
given putative membrane transporters. On the other hand, there was a moderate overlap
between metabolites being imported or exported across mutants. Among these molecules
were pantothenic acid, carnitine, adenine, uracil, organic acids, and some dipeptides. This
convergence aligns with the notion of their essentiality to E. coli and their role in various
cellular processes, and is likely best understood in the context of functional promiscuity of
most membrane transporters [45,49,50].

4. Conclusions

Identifying substrates of microbial membrane transporters is of major relevance to
medicine and industrial biotechnology. However, as with other genes in E. coli, more than
30% of the reported membrane transporter families remain insufficiently characterized or
lack proper functional annotation [19,42]. Assigning a functional role to individual trans-
porters based on the concept of “having a substrate, seeking a transporter” were solved
using many suitable assays [5,28,30,31,51–53]. However, solving the inverse problem, “hav-
ing a transporter, seeking substrate(s)”, is more challenging. In this study, a high-resolution
untargeted metabolomics approach was harnessed to decipher candidate substrates of
orphan transporters in E. coli illuminating dynamic uptake and excretion profiles exhibited
by 26 transporter mutant pairs in comparison to their parental strain. Overall, the results
presented here demonstrated: (1) the utility of untargeted metabolomics approach, coupled
with the use of human serum, as a method to decipher candidate substrates of known
and orphan transporters, obviating the need for prior knowledge. (2) The convergence of
candidate substrates with a mutual metabolite shifts in mutant pairs provide a dual valida-
tion approach that further reinforces our findings. This convergence clearly underpinned
the candidate substrates of many transporters such as yeaV, hsrA, ydjE, and yddA, all of
which are novel assignments. (3) The use of intact E. coli cells provides a physiologically
relevant environment for studying transporter-substrate interactions. This ensures that the
observed transport activities are occurring in a structurally and functionally maintained
integrity, while isolating the effect of specific transporters when deleted or overexpressed.

Complex transporter networks and the tentative annotation of most of the identi-
fied compounds represent major challenges to the methodology introduced here. More
specifically, the presence of functionally redundant transporters with broader substrates
specificity may obscure the activity of the transport of interest. However, we have previ-
ously introduced an evolutionary selection-based approach that successfully addressed this
challenge by combing both chemical and genetic perturbations to reveal such redundant
mechanisms [46]. Despite the presence of many interesting cases where compounds’ anno-
tations were tentative, the availability of computational tools capable of highly accurate
molecular structure predictions from fragmentation data, as exemplified by Shirvastava
et al. [54], offers a pathway for subsequent validation experiments. In addition, computa-
tional studies on transcriptomic data, such as weighted-gene correlation network analysis
(WGCNA) and inference methods like independent component analysis (ICA), could infer
a hypothesis about functions of putative transporters [19,55]. A synergetic combination of
these computational inferences and the data obtained from this study can provide a good
starting point to drive subsequent validation experiments in extended studies. Overall, the
approach introduced in this study pave the way for the discovery of transporter functions
and their biotechnological and medical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes14030070/s1, the dataset supporting the results of
this article is included in the article (and its Supplementary files). Two files were attached sepa-
rately: (1) Supplementary File containing all supplementary figures. (2) Supplementary Data S1
File: Spreadsheet containing all selected candidate substrates for each transporter mutant. Figure S1:
Differential uptake and excretion of serum metabolites by the wild type (E. coli) and examples of
different transporter mutants over a period of 30 min. Figure S2: PCA Scores plots of spent serum
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after incubation for 0 and 30 min with different transporter mutants. Figure S3: Temporal Transport
Dynamics of uredosuccinic acid, aspartic acid, and gallic acid in yeaV mutant contrasts. Figure S4:
Temporal Transport Dynamics of four molecules under the overexpression of yeaV.
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