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Abstract: Positively charged nanofiltration (NF) technology is considered a green and low-cost
method for mono/divalent cation separation. Nevertheless, the separation rejection mechanisms of
these NF membranes have yet to be extensively investigated. In this work, we fabricated a thin-film
composite (TFC) hollow-fiber (HF) NF membrane with a positively charged surface via modification
of the nascent interfacial polymerization layer using a branched polyethyleneimine (BPEI)/ethanol
solution. Then, we extensively investigated its selective separation mechanism for mono/divalent
cations. We proposed and proved that there exists a double-charged layer near the membrane surface,
which helps to repel the divalent cations selectively via Donnan exclusion while promoting the fast
penetration of monovalent cations. Meanwhile, the membrane skin layer is loose and hydrophilic due
to the loose BPEI structure and the abundance of amine groups, as well as the changed fabrication
conditions. In this way, we achieved very good mono/divalent cation selectivity and relatively
high water permeance for the as-prepared HF NF membrane. We also obtained good anti-fouling,
anti-scaling, and acid resistance, and long-term stability as well, which are urgently needed during
practical application. Furthermore, we successfully amplified this HF NF membrane and proved that
it has broad application prospects in mono/divalent cation separation.

Keywords: nanofiltration; hollow-fiber membrane; positively charged; interfacial polymerization;
mono/divalent cation separation

1. Introduction

Mono/divalent cation separation involves important chemical processes such as
energy conversion and storage, environmental pollution detection, clean industrial produc-
tion, and resource recovery and reuse, especially in the fields of salt-lake lithium extraction,
brine refining, high-salt wastewater recycling, and so on. For example, it has recently
become a research focus to extract lithium, the highly valuable energy metal, from salt-lake
brine, since nearly 70% of lithium resources are located in salt lakes around the world [1–3],
but there exists great difficulty due to the very high mass ratio of Mg2+/Li+ therein and
the similar hydrated ionic radii of these two kinds of ions [4]. Positively charged nanofil-
tration (NF) membranes are efficient and low-cost for mono/divalent cation separation,
as they have excellent selectivity for divalent cations over monovalent cations [5–7] via
Donnan exclusion and size sieving [8,9]. Recently, the fabrication of these membranes
has become a research hotspot, and the most commonly used methods are interfacial
polymerization [10,11] and surface modification [12,13].
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For positively charged membranes fabricated via interfacial polymerization, polyethyl
eneimine (PEI) or a mixture of PEI and piperazine (PIP) is usually used as the aqueous
phase monomer [14–17] to react with TMC in n-hexane. For example, Fang et al. [16]
successfully prepared a kind of branched PEI (BPEI)/TMC interfacial polymerization
hollow-fiber (HF) NF membrane and achieved a MgCl2 rejection of 96.7% and a moderately
high NaCl rejection of 42%, as well as a remarkably high pure-water permeability (PWP)
of 171 L m−2 h−1 MPa−1 due to the greater free volume that the branched structure of
BPEI molecules provides for water permeation, which demonstrates that the use of BPEI
as the aqueous monomer or mixed aqueous monomer could achieve a reasonably high
mono/divalent cation selectivity. Fang et al. [17] also proved that using PIP solely as an
aqueous monomer could greatly decrease NaCl rejection while keeping the high MgCl2
rejection unchanged. This gives us a good indication that PIP might be a suitable candi-
date as an aqueous monomer for increasing the rejection difference between multi- and
monovalent cations.

Apart from PEI and PIP as aqueous monomers, researchers [18,19] have also used
other chemicals as monomers during interfacial polymerization. For example, recently,
Peng et al. [18] synthesized a quaternized-spiral piperazine (QSPIP) featuring a spiral con-
formation and quaternary/secondary amines and used it as an aqueous monomer to react
with TMC via interfacial polymerization and fabricated a kind of QSPIP-TMC membrane,
which achieved an approximately five-times-improved water permeance (220 LMH/MPa)
compared with analogous polyamide membranes and a good Mg/Li selectivity of 8.7. This
work provides a new idea for mono/divalent cation separation.

However, during the interfacial polymerization process, the abundance of residual
acyl chloride groups would hydrolyze to carboxyl groups [20] and neutralize the mem-
brane surface positive charge, thereby reducing mono/divalent cation selectivity [21,22].
Many researchers [7,18,23–25] have carried out surface modification after the interfacial
polymerization to improve the surface positive charge density. For example, Peng et al. [18]
and Liu et al. [25] synthesized positively charged ionic liquid monomers to modify nascent
flat-sheet PEI/TMC polyamide TFC membranes and achieved a reasonably high PWP
of over 200 L m−2 h−1 MPa−1 and a very high MgCl2 rejection (about 95%) with a very
low LiCl rejection (34%) for their NF membrane and a satisfactory SLi/Mg of higher than
10. This is a good routine to obtain positively charged NF membranes with an excellent
selectivity as well as a high water permeance. Lu et al. [26], from another perspective, used
PEI in ethanol to modify the surface of a nascent flat-sheet PIP/TMC polyamide layer and
obtained a satisfactory SLi/Mg of higher than 12 at a mass ratio of 150 for Mg2+/Li+ with a
water permeance of nearly 90 L m−2 h−1 MPa−1. This indicates to us that using ethanol
as the modification solvent could inhibit acyl chloride hydrolysis and could increase the
difference in rejection between multi- and monovalent cations. However, until now, most
research works have focused on the surface modification of flat-sheet NF membranes.
Recently, researchers [27,28] have also carried out the surface modification of hollow-fiber
NF membranes. For example, Yin et al. [27] used aqueous tris(2-aminoethyl) amine solution
to modify the polyamide layer and achieved a very high MgCl2 rejection of 97.6% and a
reasonably high PWP of 160 L m−2 h−1 MPa−1. Their work gives us a good indication for
fabricating HF NF membranes with a positively charged surface and high divalent cation
rejection together with a high water permeance.

Nevertheless, for positively charged NF membranes, when the rejection of MgCl2 is
higher than 95%, LiCl or NaCl rejection is also usually relatively high, such as higher than
40%, thus resulting in relatively low mono/divalent cation selectivity. Elemelech et al. [29]
considered that, for desalination membranes, the critical thing is to increase selectivity. We
consider that the same is true for positively charged NF membranes. The relatively low
mono/divalent cation selectivity could be due to either the high charge density of the skin
layer or to the narrow membrane pores. From the relatively high PWP, we could deduce
that the pore diameter might not be so small. Therefore, the key factor that influences
mono/divalent cation selectivity might be the charge density of the skin layer.
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Recently, we carried out a preliminary work based on the surface modification of an
internally pressured positively charged HF NF membrane using interfacial polymerization
between PIP and TMC followed by BPEI modification in ethanol [30] and obtained a good
result for Mg/Li selectivity. However, the effect of membrane charge structure on the
mechanism of cation rejection has not yet been investigated in detail. We believe that
if the polyamide layer matrix is less positively charged, monovalent caions will more
easily penetrate the polyamide layer after diffusing through the surface modification
layer. However, until now, no extensive research has been carried out on this subject.
Therefore, in this work, we extensively analyzed the effects of surface modification with
BPEI in ethanol on the surface chemistry and the charge distribution along the vertical
direction of the polyamide layer matrix as well as on the performance of an internally
pressured positively charged HF NF membrane. Firstly, we propose a double-charged-layer
concept and extensively investigate and demonstrate the mechanism of inhibiting the
residual acyl chloride groups from hydrolyzing by using ethanol as the solvent during the
surface modification and the mechanism of the subsequent shielding of the negative charge
density on the polyamide layer surface. Then, we evaluate its surface physio-chemical
properties, separation, and stability performance, including its anti-scaling and anti-fouling
performance. Finally, we amplify the internally pressured positively charged HF NF
membrane module. Our work has great implications for the design and development of
positively charged HF NF membranes.

2. Materials and Methods
2.1. Materials

Piperazine (PIP), trimesoyl chloride (TMC), polyvinylpyrrolidone (PVP), bovine serum
albumin (BSA), branched polyvinylimide-800 (BPEI, average Mw of ~800 by Light scatter-
ing method), and polyethylene glycols (PEGs, 200, 400, 600, and 1000 Da) were obtained
from Shanghai Maclin Biochemical Technology Co., Ltd. (Shanghai, China). Polysul-
fone (PSf) power was purchased from Solvay Corp., Belgium. N,N-dimethylformamide
(DMF) and n-hexane were purchased from Tianjin Fuyu Fine Chemical Co., Ltd. (Tianjin,
China). Anhydrous ethanol (EtOH), NaCl, NaOH, NaClO, Na2SO4, LiCl, and MgCl2 were
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Fabrication of the HF Membranes

HF ultrafiltration (UF) substrates were fabricated using PSf power according to the
literature [31,32], using the specific membrane preparation parameters listed in the Sup-
plementary Materials S1. A TFC HF NF membrane with a positively charged surface was
fabricated according to our recent work [30], and was termed TFC-BPEI-x (TFC-BPEI for
short), in which x represents the BPEI concentration in the ethanol solution. The preparation
process is presented in Figure 1. The BPEI surface modification conditions are presented
in Table 1. For comparison of the surface modification effects, the membrane before BPEI
modification is termed TFC-0.
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Table 1. Modification conditions of the HF NF membranes.

Membrane Modification Solution (wt%)

TFC-BPEI-0.04 BPEI/EtOH: 0.04/99.96
TFC-BPEI-0.08 BPEI/EtOH: 0.08/99.92
TFC-BPEI-0.12 BPEI/EtOH: 0.12/99.88

2.3. Characterizations

X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic
force microscopy (AFM), water contact angle (WCA) goniometer, and Zeta potential mea-
surements were used to characterize the membrane surface’s physical–chemical properties.
The details of the characterized instruments, such as for SEM, FTIR, and AFM, are presented
in Supplementary Materials S2 and Supplementary Materials S3.

2.4. Separation Performance

The separation performance tests were performed under 0.4 MPa and 25 ◦C with
a crossflow filtration platform without specification. More than three HF NF modules
under each fabrication condition were tested to ensure reproducibility. The separation
performance is expressed in term of water permeance (P) and solute rejection (R) as in
our previous work [30]. MgCl2 and LiCl single-salt solutions with different concentrations
were used to test the concentration effect. A 2000 mg L−1 aqueous mixture with mass ratios
of 20, 50, 100, and 200 for Mg2+/Li+ was used to evaluate the membranes’ selectivity. The
ion concentrations were measured with ion chromatography (Shimadzu, Kyoto, Japan) and
the separation factor for Mg2+/Li+ is expressed as Equation (1). The separation factor for
ions measured using single-salt solutions can also be calculated using this equation.

SN/M =
1 − RN

1 − RM
(1)

where subscript N means monovalent ions in the mixed-salt solution or the single-salt
solution having monovalent cations and subscript M means divalent cations in the mixed-
salt solution or the single-salt solution having divalent cations.

The feasibility of extracting and concentrating LiCl from the MgCl2 solution with the
fabricated HF NF membranes was tested using a two-pass HF NF separation process. By
measuring the ion concentration in the permeate of the first NF process and the secondary
NF process, the separation factors for both separation processes are calculated using
Equation (1).

The ion permeation rate was evaluated using an ion diffusion experiment, for which
the operation process is presented in Supplementary Materials S4. Briefly, 0.2 mol L−1

NaCl, LiCl, and MgCl2 solutions were, respectively, pumped into the lumen of the HF NF
membrane, and DI water was pumped into the shell side. Then, ions diffuse to the shell
side by the driving force of the concentration difference. The permeation rate of the ions
(Pi) is calculated by measuring the change in the conductivity of the shell-side solution
with time using Equation (2).

Pi =
Ci·V
A·t (2)

where Ci means the cation molecular concentration in the permeate solution, V is the
volume of the permeate solution, A is the effective membrane area, and t is the diffusion
time interval.

For the fabricated HF NF membranes, the molecular weight cut-offs (MWCO) were
evaluated using 2000 mg L−1 PEG solutions of different molecular weights. The pore size
distribution of the HF NF membrane surface was evaluated according to the literature [33,34],
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using the following log-normal distribution model, Equation (3) [33], based on the PEG
rejection data.

dR
(
dp

)
ddp

=
1

dplnσp
√

2π
exp

[
−
(
lndp − lnµp

)2

2
(
lnσp

)2

]
(3)

where the average molecular Einstein–Stokes diameter (µp) and standard deviation (σp)
as well as the Einstein–Stokes diameter (ds) of the PEGs is calculated according to Prof.
Chung et al. [33].

2.5. Stability Evaluation

All the stability tests were performed using the crossflow filtration platform under the
condition of 25 ◦C and 0.4 MPa.

The scaling resistance of the membranes was investigated according to the litera-
ture [26]. First, the initial flux (J0) of the membranes was measured with an aqueous
solution consisting of 120 mM NaCl and 1 mM CaCl2 (ionic strength 0.12 M) as the feed
solution. Then, the feed solution was replaced with another aqueous mixture with the
same initial ionic strength but containing 21 mM NaCl, 19 mM Na2SO4, and 23 mM CaCl2.
Under the same test condition, the flux (Jt) of the membrane was recorded for 12 h, and
the scaling resistance of the membrane is expressed as the normalized flux (JN), which is
shown in Equation (4).

JN =
Jt

JC
(4)

After the test, the membrane modules were cleaned for 30 min. Then, their water flux
(JC) was tested again under the same conditions using a solution containing 120 mM NaCl
and 1 mM CaCl2 as feed, and the flux recovery rate of the membrane was calculated using
Equation (4).

The antifouling performance was evaluated using a 500 mg L−1 BSA solution. Firstly,
ultra-pure water was pumped into the membrane modules for 1 h. Afterward, BSA solution
was pumped into the membrane modules for 1 h. Finally, ultra-pure water was used again
as feed for 1 h. The water flux rates in the three periods were measured every 10 min and
were termed the initial water flux (J0), the water flux in the fouling solution (Jt), and the
water flux after cleaning (JC), respectively. The antifouling performance was characterized
in terms of both water flux decline rate, (FDR) as shown in Equation (5),

FDR =

(
1 − Jt

J0

)
× 100% (5)

and water flux recovery rate (FRR) (normalized flux (JN)), which is calculated using
Equation (4) using the ratio of JC and J0.

Chemical stability was evaluated by immersing the HF NF membranes in HCl solution.
At first, initial water flux (J0) and salt rejection (R0) were tested using 2000 mg L−1 MgCl2
solution. Then, the membranes were run at low pressure for 5 d with a hydrochloric
acid solution of pH = 3 as the feed solution. During the cycling period, the membranes
were rinsed with deionized water every 24 h, then water flux (Jt) and salt rejection (Rt)
were measured under the same conditions. The normalized flux (JN) was calculated from
Equation (4) and the normalized salt rejection (NSR) was calculated from Equation (6).
These data reflect the decay of the flux and rejection.

NSR =
Rt

R0
(6)

Three modules were run for 40 h. The separation performance was tested every 2 h.
The separation performance was averaged with respect to the operating time.
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3. Results and Discussion
3.1. Optimization of the Surface Modification Conditions

The conditions for fabricating the TFC-0 membrane included 0.2 wt% PIP, 0.15 wt%
TMC, and an interfacial polymerization time of 90 s, as these conditions could achieve the
optimal separation performance for the TFC-0 membrane. However, when the surface
of this membrane was modified by the BPEI ethanol solution, these optimal fabrication
conditions were not suitable for improving the separation performance of TFC-BPEI. There-
fore, the effect of interfacial polymerization time at a fixed BPEI concentration of 0.08 wt%
in ethanol was investigated at a fixed surface modification time of 2 min, as shown in
Figure 2a. The effects of BPEI concentration on the separation performance of the HF NF
membranes are shown in Figure 2b.
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Figure 2. Effects of interfacial polymerization time with a BPEI of 0.08 wt% in ethanol and a surface
modification time of 2 min (a) and of BPEI concentration (b) on membrane separation performance.
Fixed aqueous PIP concentration of 0.2 wt%, aqueous immersion time of 3 min, and organic TMC
concentration of 0.15 wt%.

With the interfacial polymerization time extended from 15 s to 30 s, the water perme-
ance gradually drops from 160.0 to 124.6 L m−2 h−1 MPa−1, accompanied by a vigorously
increased MgCl2 rejection from 67.5% up to 85.8%. Compared with the water permeance
of TFC-0 at 30 s, that of the BPEI-modified membrane increases, demonstrating that the
BPEI modification is also beneficial for water permeation. With further prolonging of
the interfacial polymerization time, MgCl2 rejection does not change significantly. This
indicates that for the BPEI-modified positively charged HF NF membrane, the polyamide
layer could achieve sufficient crosslinking at an interfacial polymerization time of 30 s.
Further extension of the interfacial polymerization time would result in a much denser
and thicker polyamide layer, which is disadvantageous for water permeation. That is, the
optimal interfacial polymerization conditions used for TFC-BPEI cannot be the same as
those of TFC-0. According to the solute diffusion model and pore flow model [35], both the
polyamide layer and the BPEI modification layer would have an effect on the water perme-
ation. The polyamide layer mainly influences the water flux, and the BPEI modification
layer mainly influences the surface positive charge and the selectivity for cations. With the
synergistic effects of the BPEI modification layer and the polyamide layer, at the shorter
interfacial polymerization time, the hydraulic resistance of the polyamide layer could
decrease significantly while not sacrificing divalent cation rejection. That is, the secondary
reaction could not only realize regulation of the charge property of the polyamide layer
and increase its separation selectivity for divalent cations, but also greatly shorten the
interfacial polymerization time, which, in turn, could result in a thinner polyamide skin
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layer. Therefore, the formed polyamide layer of TFC-BPEI is looser and thinner, and the
optimal interfacial polymerization time for TFC-BPEI was selected as 30 s.

However, as the BPEI concentration used in the above investigation was 0.08 wt%, the
BPEI-modified HF NF membrane still had relatively low rejection for divalent cations.
Therefore, the effect of BPEI concentration was further investigated, as presented in
Figure 2b. We used an aqueous PIP concentration of 0.2 wt%, aqueous contact time of
3 min, organic TMC concentration of 0.15 wt%, interfacial polymerization time of 30 s,
BPEI modification time of 2 min, and ultra-pure water flushing time of 5 s. The MgCl2
rejection increased from 29.5% to 93.8% with the BPEI concentration increasing from 0 wt%
to 0.12 wt%, which indicates that BPEI modification can bring enough positive charge for
divalent cation rejection. However, as the BPEI concentration further increased to higher
than 0.12 wt%, MgCl2 rejection and water permeance remained basically unchanged, as
the limited residual unreacted acyl chloride groups could be easily used up at BPEI con-
centrations higher than 0.12 wt%. At the same time, due to the macromolecular segment
structure and hydrophilic characteristics of BPEI, a BPEI-modified HF NF membrane must
have smooth morphology and increased hydrophilicity [3,12]. Therefore, the optimal con-
centration of BPEI is 0.12 wt%, and the optimal HF NF membrane is termed TFC-BPEI-0.12,
abbreviated as TFC-BPEI for short in the following sections.

3.2. Characterization of the Membranes’ Surface

We investigated the mechanism of selective separation in TFC-BPEI using XPS, to-
gether with the aid of ATR-FTIR, Zeta potential, hydrophilicity, as well as surface physico-
chemical property characterizations.

3.2.1. Surface Chemistry and Physico-Chemical Properties

The chemical circumferences of the membrane surfaces of the TFC-BPEI and TFC-0
membranes were extensively investigated by XPS. The wide-scan XPS spectra and the
atomic percentages for both membranes are shown in Supplementary Materials S5. The O
element has been detected on the surface of TFC-BPEI. As BPEI has no O element, the O
element must come from the acyl groups of TMC. This means that the XPS detection must
reach the poly(piperazine) amide layer, which is formed via interfacial polymerization
between PIP and TMC. That is, the BPEI layer thickness is surely less than 10 nm, as the
detection depth of XPS is usually about 10 nm. The devolution of the N1s and O1s XPS
spectra for both membranes according to the literature [36] are presented in Figure 3. From
the N1s peak fitting we can see that the peak area for the C-N groups is apparently larger
for TFC-BPEI than for TFC-0, as compared in Figure 3a,b, which qualitatively indicates the
successful grafting of the amine groups after BPEI modification. The emerging large peak of
the R-NH2 groups from the N1s peak fitting of TFC-BPEI further qualitatively demonstrates
the BPEI modification [36,37]. The O1s peak fitting also qualitatively demonstrates the
BPEI modification. It can be seen that the peak area of the -OH groups is apparently smaller
for TFC-BPEI than for TFC-0, as compared in Figure 3c,d. In the experimental conditions,
the -OH groups must belong to the carboxyl groups attributed to the hydrolyzation of the
residual unreacted -COCl groups. Therefore, this indicates that the negative charge density
is much less on the surface of TFC-BPEI than on that of TFC-0.

The quantitatively evaluated contents of the chemical groups from the devolution
of the N1s and O1s XPS spectra are listed in Table 2. This clearly shows the increased
number of -N+H3 groups and the newly emerging R-NH2 groups for the N element, which
quantitatively proves successful BPEI modification. The content of R-NH2 increases from
0% to 12.7% after modification, which indicates that the BPEI-modified membrane surface
contains a large number of amino groups [14]. Meanwhile, the content of -OH bonds of the
O element decrease from 32.1% to 16.2% and the content of -C=O bonds of the O element
increases from 67.9% to 83.9% after BPEI modification. Both of these indicate that surface
modification with a BPEI/ethanol solution effectively inhibits the acyl chloride groups from
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hydrolyzation [26] and thus helps to form more amide bonds between the -NH2 groups of
BPEI and the -COCl groups.
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Table 2. Contents of the chemical groups of TFC HF NF and TFC-BPEI membranes analyzed from
the XPS fitting.

Element Components
TFC-0 TFC-BPEI

Composition (%) Composition (%)

N
-N-C 97.6 82.9

>N+H2/-N+H3 2.4 4.4
R-NH2 0 12.7

O
-C=O 67.9 83.8
-OH 32.1 16.2

In order to illustrate more intuitively the advantages of the modification step in this
work, we plotted Figure 4a based on the data in Table 2. A much lower content of R-N+H3
and >N+H2 groups and a very high content of -OH groups are present on the TFC-0 surface.
As explained above, this clearly indicates that TFC-0 has more carboxyl groups and is
negatively charged. This has been further demonstrated by the Zeta potential measurement
results. Under the test range of pH 3–9, the TFC-0 surface is negatively charged, as shown
in Figure 4b, which is typical for PIP/TMC polyamide NF membranes. Comparatively, a
very high content of R-NH2 and >N+H2/-N+H3 groups and a much lower content of -OH
groups are detected on the surface of TFC-BPEI, as shown in Figure 4a. The total number
of R-NH2 and >N+H2/-N+H3 groups increases from 2.4% to 17.1% after BPEI modification.
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This indicates that the BPEI-modified membrane surface contains a large number of amino
groups, thereby realizing the charge reversal thereon [14]. In this way, the HF NF membrane
shows a positively charged surface, as demonstrated in Figure 4b, indicating that post-
interfacial polymerization modification using the BPEI/EtOH solution to react with local
residual unreacted -COCl groups could achieve a high amino grafting degree.
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Figure 4. Changes in the content of ammonia groups and carboxyl groups in THC-0 and TFC-BPEI
membranes (a), the Zeta potential of both TFC membranes (b), the reaction mechanism of TFC-BPEI
(c), and the WCA values of the surface of the PSf substrate and the two TFC membranes (d).
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Based on the above discussion, the surface modification mechanism of TFC-BPEI can
be deduced and is presented in Figure 4c. During post-interfacial polymerization using the
BPEI/ethanol solution, ethanol helps to inhibit the remaining -COCl groups on the pristine
TFC-0 membrane surface from hydrolyzation. Therefore, more -COCl groups on the surface
of the polyamide layer could react with the amine groups of the BPEI molecules to form
amide groups and thus complete the grafting of a vast number of amine groups from
the BPEI molecules. Only a small number of the acyl chloride groups remain unreacted
during BPEI surface modification due to the steric hindrance effect and finally hydrolyze
to carboxyl groups. At a neutral pH, the amine groups could easily absorb hydrogen
ions to form positively charged ions [38]. In this way, the membrane surface has both
negatively charged sites (-COO−) and positively charged sites (-N+H3). The number of the
positively charged sites is much higher than that of the negatively charged sites due to the
high content of amine groups on the BPEI chains. Therefore, the TFC-BPEI surface shows
positively charged properties.

As both -NH2 and -COOH are hydrophilic groups, they could increase the membrane
surface’s hydrophilicity. The contact angle measurement results in Figure 4d demonstrate
that the water contact angle of TFC-0 decreases from 64.0◦ of the PSf HF UF membrane
to 40.0◦, since there are many hydrophilic -COOH and -NH- groups generated on the
polyamide layer surface, as has been proved in Figure 3. Comparatively, the contact angle
of TFC-BPEI further decreases to 25.0◦, which indicates that its hydrophilicity is even better
than that of TFC-0. Apparently, there are more R-N+H3 and R-NH2 groups on the surface
of TFC-BPEI compared with those on TFC-0, as shown in Figure 4a, which indicates that
the enhanced hydrophilicity of TFC-BPEI is caused by the more hydrophilic groups thereon
due to the BPEI modification [39]. This, in turn, would be highly beneficial for enhancing
the water permeance of TFC-BPEI.

3.2.2. Surface Morphologies

Figure 5a–d shows that the selective layers of TFC-0 and TFC-BPEI are about 86 nm
and 65 nm respectively in thickness. This might be due to the optimization and shortening
of the interfacial polymerization time of the TFC-BPEI membrane, which greatly reduces
the number of organic phase monomers participating in interfacial polymerization, thereby
reducing the thickness of the selective layer [40,41].

The surface AFM images of both membranes are presented in Figure 5e–h. There
is a trough-like structure on the TFC-0 surface, with an average roughness of 39.9 nm.
Compared with TFC-0, TFC-BPEI has a much smoother surface, with average roughness
dropping sharply to 17.4 nm, which could be due to the deposition of BPEI to form a loose
crosslinked BPEI layer and make the membrane surface smoother [12].

3.2.3. Molecular Weight Cut-Off and Pore Size Distribution

The rejections of PEGs with different molecular weights for both TFC membranes
are shown in Figure 6a. TFC-BPEI has a higher rejection than TFC-0 despite the different
molecular weights used for PEG. According to the definition of molecular weight cut-off
(MWCO), TFC-0 and TFC-BPEI have MWCOs of 392 Da and 322 Da, respectively. TFC-BPEI
has a relatively lower MWCO, indicating that it has a more precisely selective separation
ability. This could be attributed to the fact that BPEI modification reduces the average pore
size of the polyamide skin layer.

As shown in Figure 6b, both membranes have similar geometric standard deviations
(σp), but TFC-BPEI has a smaller average pore diameter (µp) than TFC-0 and has a higher
probability density around the average pore diameter, which is highly beneficial for more
precisely selective separation.
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3.2.4. In-Depth Charge Properties

It should be pointed out that as the XPS detection depth is about 10 nm, the above
charge information in Section 3.2.1 just reflects the overall charge performance of the
10-nm-thick top skin layer. We speculate that the in-depth charge distribution will also
influence the transmission of the cation ions. To further understand the variation in the
charge properties with the depth of the skin layer, we performed XPS sputtering of the
TFC-BPEI surface to depths of 5 nm and 15 nm, respectively, and measured the local
chemical circumference; the corresponding XPS spectra are labeled TFC-BPEI-EtOH-5nm
and TFC-BPEI-EtOH-15nm, respectively. The N1s and O1s peak fitting results are shown
in Figure 7a–f and Table 3. For comparison, we also present the XPS fitting results for
TFC-BPEI-Water-5nm.

Table 3. Contents of the chemical groups in TFC-BPEI-EtOH-5nm, TFC-BPEI-EtOH-15nm, and
TFC-BPEI-Water-5nm membranes analyzed from the XPS fitting.

Element Components
TFC-BPEI-EtOH-5nm TFC-BPEI-EtOH-15nm TFC-BPEI-Water-5nm

Composition
(%)

Composition
(%)

Composition
(%)

O
-OH 19.6 23.3 32.5
-C=O 80.4 76.7 67.5

N
-N-C 82.6 86.7 86.7

>N+H2/-N+H3 2.2
17.4

1.2
13.3

7.5
13.2R-NH2 15.2 12.1 5.7

The detection of the O element means that the XPS must reach the poly(piperazine)
amide layer, as we mentioned in Section 3.2.1. Usually, during the modification process,
BPEI molecules cannot react completely with all the residual acyl chloride groups on
the nascent TFC-0 membrane surface, due to the high steric hindrance effect of the BPEI
molecules. Hence, a small number of the residual acyl chloride groups will remain un-
reacted after BPEI/ethanol modification and subsequently hydrolyze to -COOH groups.
For TFC-BPEI modified by a BPEI/ethanol solution, the percentage of -OH groups are
about 19.6% at a sputtering depth of 5 nm, and the percentage of corresponding local
-COOH groups is deduced to be about 40%, which means that 60% of the acryl groups have
conducted the interfacial polymerization reaction to form amide groups thereon. Compara-
tively, the percentage of -OH groups is about 23.3% at a sputtering depth of 15 nm, and
the corresponding percentage of local -COOH groups is deduced to be about 46%, which
means that 54% of the acyl groups have conducted the interfacial polymerization reaction
to form amide groups thereon. The increasing content of -OH groups with sputtering
depth can be well explained by the residual acyl chloride groups hydrolyzing during the
interfacial polymerization process, as the aqueous phase solution on the substrate surface
contains plenty of water. A deeper sputtering depth means that the distance is shorter to
the substrate surface, i.e., nearer to the aqueous phase, which indicates that the local acyl
chloride groups can more easily hydrolyze. That is, carboxyl content gradually increases
with the depth of the separation layer, which corresponds to the increase in the content of
-OH in the XPS results. Therefore, the negative charge density increases with the depth of
the poly(piperazine) amide layer. On the other hand, as the sputtering depth increases from
5 nm to 15 nm, the total content of -N+H3, >N+H2, and R-NH2 decreases from 17.4% to
13.3%, which indicates that the number of the positively charged sites gradually decreases.
This corresponds to a decrease in the positive charge density of the separation layer along
the depth direction.
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To demonstrate the difference between ethanol and pure water as the solvent in the
BPEI modification solution, we used 0.12 wt% BPEI/DI water to modify the inner surface of
TFC-0, and the modified membrane is termed TFC-BPEI-Water. Then, we carried out XPS
sputtering of the membrane surface to a depth of 5 nm, and the results are also shown in
Figure 7 and Table 3. Comparing the spectra of TFC-BPEI-Water-5nm and TFC-BPEI-EtOH-
5nm, we can see that the content of -C=O in the O1s spectrum of TFC-BPEI-Water-5nm
is 32.5%, which is significantly higher than that of TFC-BPEI-EtOH-5nm (19.6%). This
indicates that DI water as the BPEI modification solvent could exacerbate the hydrolyzation
of the residual acyl chloride groups after the interfacial polymerization process. In contrast,
the total content of -N+H3, >N+H2, and R-NH2 in the N1s spectrum of TFC-BPEI-Water-
5nm is 13.2%, which is lower than that of TFC-BPEI-EtOH-5nm (17.4%). Therefore, under
the same BPEI modification reaction parameters, the degree of amino grafting in TFC-BPEI-
Water-5nm is lower than that of TFC-BPEI-EtOH-5nm, which means that the density of
positive charges on the surface of TFC-BPEI-Water is also lower than that of TFC-BPEI-
EtOH. Therefore, ethanol is better than water as the solvent for BPEI modification to obtain
a more positively charged surface.

In summary, for the positively charged surface of the membrane in this work, the top-
most BPEI modification layer is loose and positively charged, and the inner poly(piperazine)
amide layer is relatively loose, very thin, and negatively charged. Thus, the charge dis-
tribution in the skin layer is just a double-charged layer, as illustrated in Figure 7h. This
configuration is highly beneficial for monovalent cation transportation after these ions
penetrate through the positively charged outer layer.

3.3. Separation Performance

Firstly, we performed the separation test for the two kinds of membranes with salt
concentrations. As shown in Figure 8a,b, TFC-BPEI has a PWP of 189.3 L m−2 h−1 MPa−1

with zero content of MgCl2 and LiCl. With increasing feed concentration, their water
permeances gradually decrease for both feed solutions. The decrease in water permeance
with MgCl2 concentration is more obvious, from 141.9 to 105 L m−2 h−1 MPa−1 as MgCl2
concentration increases from 500 to 3000 mg L−1. This phenomenon could be well explained
by the non-equilibrium thermodynamic model (Kedem–Katchalsky model) [42,43]. Both
MgCl2 and LiCl concentrations have little effect on their rejection, with the rejections of
MgCl2 and LiCl always maintained at about 94% and 16%, respectively. The rejection of
LiCl is lower than most of those in the literature indicates that TFC-BPEI is highly beneficial
for Li+ penetration.

The Mg2+/Li+ selectivity of TFC-BPEI with different Mg2+/Li+ feed mass ratios were
tested, as shown in Figure 8c. When the Mg2+/Li+ feed mass ratio increases above 50:1, the
permeate Mg2+/Li+ mass ratio increases, and the SLi/Mg shows a slightly downward trend.
The calculated SLi/Mg are 21.0, 22.7, 21.8, and 19.6 for Mg2+/Li+ feed mass ratios of 20:1,
50:1, 100:1, and 200:1, respectively, proving that TFC-BPEI has relatively stable Mg2+ and
Li+ selective performance for mixed solutions of different concentrations.

For comparison, a Mg2+/Li+ separation test of both membranes at fixed Mg2+/Li+

mass ratios of 50:1 was conducted, as shown in Figure 8d. The feed solution contains 489 mg
L−1 Mg2+ and 9.7 mg L−1 Li+. After filtration, the permeate solution of TFC-0 contains
408 mg L−1 Mg2+ and 7.8 mg L−1 Li+, and SLi/Mg is only 0.96. Comparatively, in the
permeate of TFC-BPEI, the concentration of Mg2+ sharply decreases to 29.4 mg L−1, but that
of Li+ increases to 13.2 mg L−1, which is a typical Donnan exclusion effect [22]. We consider
that the superior Mg2+/Li+ selective performance could be due to the special double-
charged-layer structure of the membrane we fabricated. The outermost PEI modification
layer is positively charged, but is a little looser due to the shortening of the interfacial
polymerization time, which has been demonstrated in Section 3.1. This means it has a
higher repellent force for divalent cations due to Donnan exclusion, but a lower repellent
force for monovalent cations. Therefore, monovalent cations could easily penetrate through
the outermost BPEI modification layer. Due to the more negatively charged carboxyl
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groups of the PIP/TFC polyamide layer, as shown in Figure 7b, once the monovalent
cations penetrate through the BPEI modification layer, there is no longer a repellent force
but an attraction force between these cations and the negatively charged carboxyl groups
inside the PIP/TFC polyamide layer. The negatively charged carboxyl groups serve as a
fixed charge to help the monovalent cations penetrate through the polyamide layer via ion
exchange, similar to cationic ion-exchange membranes [44,45]. Therefore, this is highly
beneficial for their penetration.
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Figure 8. Effects of the concentrations of MgCl2 (a) and LiCl (b) on the separation performance of
TFC-BPEI, separation factor, and Mg2+/Li+ mass ratio in the permeate of the TFC-BPEI membrane
with different Mg2+/Li+ mass ratios in the feed solution (c) and the separation performance for a
2000 mg L−1 MgCl2/LiCl mixed-salt solution at a Mg2+/Li+ mass ratio of 50:1 (d).

In order to demonstrate that the double-charged layer structure is highly beneficial
for the penetration of monovalent cations and to test the selective transport ability of
the two kinds of membranes for different valent cation ions, we further conducted an ion
permeation experiment. We used 0.2 mol L−1 NaCl, LiCl, and MgCl2 solutions, respectively,
which were circulated through the HF membrane lumens under atmospheric pressure,
and we used DI water for external circulation on the outer side of the HF membrane. We
measured the conductivity of the externally circulated DI water over time. The results
are shown in Figure 9a,b. Based on these conductivity results, the ion permeability of the
two types of membranes can be obtained, as shown in Figure 9c.
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Figure 9. Ion permeation in the concentration-driven diffusion experiment. Change in ions’ conduc-
tivity over time in the permeate side solution through TFC-0 (a) and TFC-BPEI (b); permeation rates
of ions through TFC-0 and TFC-BPEI (c); separation results (d); and the two-pass HF NF separation
process for TFC-BPEI (e).

It can be seen from Figure 9c that, for TFC-0, the permeability values for Li+ and Na+

ions are quite similar to each other and are three to four times that of Mg2+. Theoretically,
the negatively charged skin layer is beneficial for the penetration of cation ions by ionic
exchange. This is the reason that common NF membranes fabricated by interfacial poly-
merization between PIP and TMC have poor rejection for cations, regardless of whether
they are monovalent cations or divalent cations. However, Mg2+ has a higher molecular
weight than Li+ or Na+ and the diffusivity of Mg2+ is smaller than those of Li+ and Na+ [46].
Meanwhile, Mg2+ has a slightly larger molecular diameter than Li+ or Na+. Therefore, for
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TFC-0, the permeability values for Li+ and Na+ are much higher than that of Mg2+. In
comparison, from Figure 9b, we can see that, for TFC-BPEI, the permeability values for
different salts have even larger differences; the permeability values for LiCl and NaCl are
six to seven times that of MgCl2. This can be well explained by the positively charged
surface, since it exerts a very high repellent force on Mg2+ rather than on Li+ and Na+

ions, and thus inhibits the diffusion of Mg2+ and results in lower permeability. Meanwhile,
it is interesting that the permeability value for MgCl2 of TFC-BPEI is much lower than
that of TFC-0, less than half of the latter. Still, this could be well explained by the surface
charge properties of these two kinds of membranes. Nevertheless, it is interesting that the
permeability values for LiCl and NaCl of TFC-BPEI are much higher than those of TFC-0,
nearly twice that of the latter. This unusual phenomenon could be well explained by the
fact that the skin layer of TFC-BPEI is thinner, which has been demonstrated in Section 3.2.2.
Therefore, the diffusion resistance of the monovalent salt ions is smaller inside the skin layer
of TFC-BPEI than that of TFC-0, and the permeability to monovalent salts of TFC-BPEI is
greater. Meanwhile, the skin layer of TFC-BPEI is slightly looser due to the shortening of the
interfacial polymerization time, which has been demonstrated in Section 3.1. Furthermore,
the negatively charged polyamide layer beneath the loose positively charged BPEI layer is
beneficial for the penetration of cation ions by ionic exchange [47]. Therefore, TFC-BPEI is
more beneficial for the penetration of LiCl and NaCl despite its positively charged surface.

Furthermore, a secondary pass nanofiltration test on Mg2+/Li+ feed mass ratios of 50:1
was carried out. The result is shown in Figure 9d. After first-pass filtration, the permeate
Mg2+/Li+ mass ratio decreased to 2.3:1. After second-pass filtration, the permeate Mg2+/Li+

mass ratio became 1:3.0, which shows a promising enrichment of Li+ ions. The separation
factors for the two nanofiltration pass processes were 22.6 and 21.8, respectively, which
are much higher than those in many state-of-the-art works. According to the results in
Figure 8, the SLi/Mg of TFC-PEI-0.12 is as high as 19.6–22.6. Clearly, TFC-BPEI is suitable
for enriching Li+ from salt-lake brine.

3.4. Stability Performance

During the filtration process, some weakly soluble salts such as CaCO3, MgCO3,
BaSO4, etc. exceed their dissolution limit near the membrane surface and form scaling, thus
resulting in membrane fouling and greatly decreasing the water permeability. Therefore,
the scaling resistance properties of TFC-0 and TFC-BPEI were measured, as shown in
Figure 10a. Both membranes have a rapidly decreased flux within the initial 1 h, which
could be mainly due to a concentration polarization phenomenon that increases the mass
transfer resistance [48]. However, the decrease trend for TFC-BPEI is much slower, which
indicates that the concentration polarization on the TFC-BPEI surface is not severer than on
TFC-0, due to the different surface charges of these two kinds of membranes. For TFC-BPEI,
as its surface is positively charged, it exerts more repelling force towards divalent cation
ions. Therefore, the Ca2+ ion concentration near the TFC-BPEI surface is surely less than
that near the TFC-0 surface, as it is negatively charged and will surely attract more divalent
cation ions.

With the filtration time further extended to 8 h, both membranes show different trends
in normalized flux. TFC-BPEI shows only a slightly decreased normalized flux, while
TFC-0 shows a remarkably decreased flux. As the filtrate is continuously discharged from
the system during the filtration process due to the concentration polarization phenomenon
and the high rejection of divalent cations, as well as due to the large diameter of SO4

2− ions
and their low diffusion rate [12], the concentration of both Ca2+ ions and SO4

2− ions near
the membrane surface continues to increase. When the activity product of the Ca2+ ions and
SO4

2− ions exceeds the solubility product of CaSO4, crystals precipitate on the membrane
surface to form CaSO4 precipitation. Therefore, with filtration going on, a CaSO4 cake layer
is gradually formed, and membrane flux gradually decreases.
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Figure 10. Anti-scaling performance (a), anti-fouling performance (b), and acid resistance after
long-term exposure to HCl solution at pH = 3 for TFC-0 and TFC-BPEI (c,d); long-term performance
of TFC-BPEI (e); and amplification of TFC-BPEI membranes (f).

CaSO4 occurs in an induction nucleation process at this stage [49], but filter cake has
not yet formed on the membrane surface, and the CaSO4 induction period for TFC-BPEI is
longer due to its strong repelling of Ca2+. In contrast, the water flux of TFC-0 decreases
very quickly in this filtration time range, as the membrane has a strong attracting effect on
Ca2+, so that CaSO4 nucleates more on the TFC-0 surface during this induction period.

With the filtration time extended even further from 8 h to 12 h, both membranes
show an accelerated decrease in normalized flux. This indicates that CaSO4 begins to
deposit on the membrane surface and form filter cake, and thus remarkably increases
hydraulic resistance. The normalized flux of TFC-BPEI is always higher. Still, this can be
well explained by the positively charged surface of TFC-BPEI, which can effectively repulse
Ca2+, which demonstrates that it has good anti-scaling performance.
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After the scaling resistance test, we flushed the two types of membranes with ultra-
pure water, and the normalized flux of TFC-BPEI recovered to 97%, significantly higher
than that of TFC-0 (75%). This, from one perspective, demonstrates that clean water rinsing
can effectively restore the separation performance of TFC-BPEI after CaSO4 scaling. From
another perspective, it shows that the CaSO4 scale formed on the surface of TFC-BPEI is
surely much looser and can be easily eliminated. Therefore, the TFC-BPEI fabricated in this
work is promising for the applications of water softening, magnesium–lithium separation,
and in some other conditions that can form scaling on the membrane surface.

As membranes are inevitably contaminated by organic matter during practical op-
eration, and their separation performance and service life are gradually reduced [50], we
evaluated the anti-fouling resistance of TFC-0 and TFC-BPEI using 500 ppm BSA as a
feed solution, and the results are shown in Figure 10b. Both TFC membranes were first
conducted in deionized water for about 1 h, and flux increased during operation, which
might be due to the fact that the membrane pores of the HF membrane are fully opened at
a 0.4 MPa operating pressure. After that, the feed solution was changed to BSA solution
to filtrate for 1 h; the water flux of both types of membrane decreased significantly with
time, but the water flux of TFC-BPEI decreased less than that of TFC-0. The flux of the
latter decreased to 78% of the initial amount, while that of the former decreased to 89% of
its initial value, indicating that TFC-BPEI has better anti-fouling performance. The two
membranes were then flushed with deionized water, and TFC-BPEI had a flux recovery
rate of 98% while TFC-0 had a flux recovery rate of 94%, indicating that TFC-BPEI was
more easily recovered after cleaning of the fouling substance. During the second cycle of
BSA fouling testing and cleaning, the flux of TFC-BPEI decreased to 92% of its initial value
and the recovery rate after cleaning was 97%, while the flux of TFC-0 decreased to 72%
of its initial value and its recovery rate after cleaning was 91%. It should be pointed out
that the isoelectric points of BSA range 4.6–5.8 [51], and, at neutral pH, BSA is negatively
charged. In this case, the positively charged TFC-BPEI membrane had poorer anti-fouling
performance than the negatively charged TFC-0 membrane. However, it showed a reverse
result, which could be attributed to the much smoother surface of TFC-BPEI than TFC-0,
as was demonstrated by the AFM characterization in Section 3.2, since the PEI-modified
TFC-BPEI membrane is much smoother than TFC-0, making it more difficult for contami-
nants to adhere onto the membrane surface according to the literature [52]. Meanwhile,
from the XPS characterization, we can see that there are still some negatively charged
O-C=O groups on the BPEI-modified surface, which indicates that, although the nascent
membrane is modified by the BPEI/ethanol solution, there is still some hydrolyzation of
acyl groups. This might occur during the interfacial polymerization process or during
the surface modification process, which, in turn, would also repel BSA molecules to some
extent. Therefore, TFC-BPEI has better anti-fouling performance and application prospects
than TFC-0.

For Li extraction from salt-lake brine, the pH of chloride-type and magnesium-sulfate-
type salt-lake brine shows a gradual decreasing trend during evaporation and concen-
tration [23,53]. The acid resistance properties of TFC-0 and TFC-BPEI were evaluated
via periodic immersion in HCl solution at pH = 3 for 96 h, and the results are shown in
Figure 10c,d. TFC-BPEI has slightly higher normalized water permeability compared with
TFC-0. This might be due to expansion of the pores in the separation layer caused by
the strong acid, as TFC-BPEI has a lower degree of crosslinking due to its much shorter
interfacial polymerization time, as has been demonstrated in Section 3.2. However, the
MgCl2 rejection of TFC-BPEI is less affected by the acidic environment than that of TFC-0,
as shown in Figure 10d. This might be due to the formation of negatively charged carboxyl
groups after the attack of the H+ ions on the vulnerable amide bonds in the separation layer,
and, for TFC-BPEI, the short interfacial polymerization time results in fewer amide bonds
in the separation layer that are susceptible to H+ attack [54,55]. Therefore, TFC-BPEI has
excellent chemical stability under acidic conditions and thus could tolerate acidic-solution
circumstances in magnesium–lithium separation.



Membranes 2024, 14, 1 20 of 24

The extended filtration performance of TFC-BPEI is shown in Figure 10e. During
crossflow filtration of more than 40 h, MgCl2 rejection only decreases slightly, by 1.7%, and
remains above 92%, accompanied by quite stable water permeability, remaining at around
130 L m−2 h−1 MPa−1, which demonstrates its good long-term operational stability and
good application prospects.

We further carried out amplification of the TFC-BPEI module to contain 10 and
20 pieces of fiber, respectively, and the separation performance of these two kinds of
modules were tested and compared with the module containing a single pieces of fiber, as
shown in Figure 10f. The slightly decreased water permeability of the membrane module
with 20 filaments might be due to a short interfacial polymerization time that results in
uneven distribution of the organic phase solution on the inner surface of the hollow fibers.
This is similar to the magnification results in the literature [56]. However, these three
kinds of modules have about the same MgCl2 rejection, at around 94%, which indicates the
successful amplification of the positively charged HF NF membrane module.

3.5. Benchmark

We compared the separation performance of the fabricated TFC-BPEI with those of
other HF NF membranes in recent literature, as shown in Table 4. TFC-BPEI has a reasonably
high MgCl2 rejection of 94.6%, a much higher PWP of 189 L m−2 h−1 MPa−1, and a water
permeance of 126.2 L m−2 h−1 MPa−1; both are also relatively high compared with other
positively charged HF NF membranes. It can be seen that most of the membranes in the
literature are not made for Mg/Li separation, so that they did not provide LiCl rejection
data or SLi/Mg data. However, most of them provided NaCl rejection data. Therefore, we
calculated their SNaCl/MgCl2 values based on Equation (1). For TFC-BPEI, since its skin
layer is much looser and thinner, the NaCl rejection of TFC-BPEI is only 12.2%, while its
SNaCl/MgCl2 is 16.6, which is among the highest in the literature. Comparatively, many
membranes in the state-of-the-art literature have NaCl rejection values much higher than
20% or even than 40%, and they have lower SNaCl/MgCl2 values.

Table 4. Comparison of performance between TFC-BPEI and other positively charged hollow-fiber
membranes and some of the flat-sheet NF membranes in recent literature.

Membrane Type LiCl/NaCl
Rejection %

MgCl2
Rejection % SLiCl/MgCl2 /SLi/Mg/SNaCl/MgCl2

Water Permeance
(L m−2 h−1

MPa−1)
Ref.

PIP/TMC/BPEI HF 15.6/12.2 94.7 15.9/22.7/16.6 125.7
189.3 (PWP)

This
work

(PIP+BPEI)/TMC/TAEA HF —/61.6 97.6 —/—/16.0 160.0 (PWP) [27]
PEI/TMC HF —/48.0 97.0 —/—/17.3 88.3 [57]
(PIP+BPEI)/TMC HF —/53.6 96.3 —/—/12.5 182.0 (PWP) [17]
PAI/PAAm HF —/11.7 95.7 —/—/20.5 156.0 [58]
cL/TMC HF —/27.6 95.1 —/—/14.8 103.0 [11]
HBPEI/GA HF —/84.1 94.2 —/—/2.7 94.0 [59]
PVA/PQ-10/GA HF —/35.0 86.9 —/—/5.0 85.0 [60]
DAPP/TMC HF 21.8/23.0 71.4 2.7/—/2.7 26.3 [40]
SWCNT/PIP/TMC/PEI FS 46.2/— 98.5 35.8/33.4/— 74.0 [61]
PEI/TMC/DAIB FS 55.6/— 95.8 10.6/—/— 132.0 [62]
PEI/TMC/QEDTP FS 55.8/61.3 95.6 10.0/15.6/8.8 112.9 [63]
PILNH2/TMC FS 32.6/— 95.0 13.4/10.3/— 116.7 [19]
(PEI+Cyclen)/TMC FS 22.0/— 90.4 8.1/8.7/— 140.0 [15]

As most research works on Mg/Li separation use positively charged flat-sheet NF
membranes, for comparison, we also present the separation performance of some recently
reported positively charged flat-sheet NF membranes in Table 4. It can be seen that most of
them have much higher MgCl2 rejection values and reasonable water permeance compared
with positively charged hollow-fiber NF membranes. Nevertheless, most of the former have
relatively low SLi/Mg, below 15, while the SLi,Mg of TFC-BPEI is 22.7. Therefore, TFC-BPEI
has an excellent ability to separate monovalent and divalent cation ions compared with
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both hollow-fiber and flat-sheet NF membranes and shows broad industrial application
prospects in the field of magnesium–lithium separation.

4. Conclusions

A double-charged layer structure was formed by surface modification using a BPEI/
ethanol solution to react with residual -COCl groups on the pristine HF NF membrane
surface. The as-prepared HF membrane has excellent selective separation performance for
divalent cations due to the combined effect of Donnan exclusion and steric hindrance, while
it can promote more monovalent cations to penetrate through due to its relatively looser
surface and the negative charged nature of the polyamide layer beneath its outermost
positively charged BPEI layer. In this way, the BPEI-modified TFC HF NF membrane
shows a typical characteristic of positively charged membranes and achieves an excellent
selectivity (SLi/Mg) of more than 20 despite the different Mg2+/Li+ mass ratios used, which
is among the highest for HF NF membranes with positively charged surfaces in recent
literature. Further, the HF NF membrane has a much smoother morphology and greatly
increased hydrophilicity, which leads to superior anti-scaling and anti-fouling performance,
and it can be more easily recovered after cleaning of the scaling and fouling substance.
The positively charged HF NF membrane has excellent chemical stability under acidic
conditions as well. Furthermore, it has been successfully amplified and still retains good
separation performance. Therefore, the positively charged HF NF membrane is suitable for
mono/divalent cation separation, especially Li+ enrichment from salt-lake brine, as well as
water softening.
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