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Abstract: Several chromatographic approaches have been established over the last decades for the
production of pharmaceutically relevant viruses. Due to the large size of these products compared
to other biopharmaceuticals, e.g., proteins, convective flow media have proven to be superior to
bead-based resins in terms of process productivity and column capacity. One representative of such
convective flow materials is membranes, which can be modified to suit the particular operating
principle and are also suitable for economical single-use applications. Among the different membrane
variants, affinity surfaces allow for the most selective separation of the target molecule from other
components in the feed solution, especially from host cell-derived DNA and proteins. A successful
membrane affinity chromatography, however, requires the identification and implementation of
ligands, which can be applied economically while at the same time being stable during the pro-
cess and non-toxic in the case of any leaching. This review summarizes the current evaluation of
membrane-based affinity purifications for viruses and virus-like particles, including traditional resin
and monolith approaches and the advantages of membrane applications. An overview of potential
affinity ligands is given, as well as considerations of suitable affinity platform technologies, e.g., for
different virus serotypes, including a description of processes using pseudo-affinity matrices, such as
sulfated cellulose membrane adsorbers.

Keywords: virus purification; virus-like particles; sulfated cellulose; affinity ligands; glycosamino-
glycans; convective-flow media; downstream processing

1. Introduction

The production of viruses and virus-like particles (VLPs) for biopharmaceutical uses,
such as vaccines or viral vector applications, requires an extensive product purification
to reduce safety risks for patients. Depending on the production system of the particular
product, the composition of contaminants in the starting material can vary [1,2]. In general,
these contaminants include cell debris from the production host cells, including host
cell-derived DNA and proteins, as well as additives supplemented during the actual
production process, e.g., surfactants, antibiotics, or serum proteins. In addition, defective
product particles and other non-product particles, such as exosomes or extracellular vesicles,
may occur. Due to this complexity, the downstream purification process (DSP) that is
employed must be highly versatile. While many different purification techniques can be
used, chromatography is an important unit operation for virus processing, along with
filtration-based applications (Figure 1) [3].

When focusing on chromatographic approaches, a variety of techniques are avail-
able that allow for a tailored method development depending on the characteristics of
the target product. Possible approaches include charge- and pH-driven principles using
ion exchange chromatography [4–11], hydrophobic interaction chromatography [12–15],
size-dependent separation principles such as size exclusion [16–19] or steric exclusion chro-
matography [20–23], and affinity applications [24,25]. In addition, combined approaches
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using mixed-mode resins have recently been described, with restricted access media (mixed-
mode size exclusion chromatography) resins as the most promising option for separating
large virus particles from smaller DNA and protein contaminants [6,26–28]. These methods
differ in their specificity and selectivity for separating product viruses or VLPs from process-
related contaminants, namely host cell-derived proteins and DNA or from other particles
produced alongside with the products, e.g., extracellular vesicles [29,30]. Particularly the
latter requires a sufficient selectivity of the method, as these particulate contaminants
share similar characteristics with the product [31–33]. Hence, size- or charge-dependent
approaches are usually not sufficient and sometimes only the highly specific affinity in-
teraction is able to achieve a chromatographic separation [34]. Additionally, the choice
of one or the other method depends not only on the physicochemical properties of the
product but also on its position in the downstream purification scheme. For example, size-
exclusion chromatography typically requires a small sample-to-column volume ratio (about
5%) and is, therefore, ideally performed at a later stage in the process with concentrated
feed material [35]. On the other hand, well-adapted ion exchange applications, and even
more so affinity matrices, are capable of isolating a specific target from a complex feed
suspension and can, therefore, be used earlier in the process as a capture step (Figure 1).
There are several publications that focus on general purification schemes for viruses and
VLPs [3,36–43], on chromatographic approaches in general [44], or more specifically on
selected chromatographic separation principles such a as steric exclusion chromatogra-
phy [23], ion exchange chromatography, or affinity techniques [24,25,45]. However, the
latter is often performed using resin-based columns with porous particle beads. The su-
periority of convective flow materials, such as monoliths [46–48] and membranes [49,50],
over traditional particle resins has been widely discussed and will not be considered in
detail here. In short, the advantages of convective flow columns are particularly evident in
the purification of larger products such as viruses and VLPs and include higher binding
capacities, higher possible flow rates, and thus an increased productivity [51]. With regard
to convective flow materials, the use of monoliths is often associated with higher costs for
the chromatographic units and more cumbersome handling, due to their size and their
cleaning and regeneration limitations [52,53]. A major drawback often described for mem-
brane chromatography applications is a lower resolution and the reduced dynamic and
equilibrium binding capacity, which might limit their application for capture purifications.
However, these limitations are most distinct for small target molecules, e.g., proteins, and
become negligible for larger products, such as viruses and VLPs [49,51,54–56]. Additionally,
membranes are particularly suitable for single-use applications that completely eliminate
the need for rigorous regeneration procedures. For affinity chromatography, however, the
cost-driving factor is usually the immobilized affinity ligand, depending on its source or
structure, making single-use approaches uneconomical for most chromatographic methods
where proteins or nucleic acids are applied as ligands.

Here, we summarize the modern membrane-based affinity and pseudo-affinity pu-
rifications of viruses and VLPs while also briefly covering the history of bead-based resin
affinity purifications for these products in general. We also provide a brief overview of the
methods, which are used to identify affinity ligands as well as the relevant decision criteria
for their selection. In addition, we indicate which types of ligands are suitable for use with
membranes and give a brief outlook on the future prospects of affinity chromatography
using membranes.
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Figure 1. Typical process for the purification of cell culture-derived biological nanoplexes, such as
viruses. Essential steps are initial clarification followed by purification using at least two orthogonal
techniques, which form the basic backbone of the process (blue). Additional unit operations are
optional (green) and depend on the actual product, e.g., whether the viral product should be active
or inactivated, whether a buffer exchange or concentration of the product is desired at a certain point
in the process, or whether an additional degradation of the contained DNA is required (usually the
case). These optional procedures can be integrated flexibly, and typical positions are indicated by the
dashed arrows. Affinity chromatography is often an integral part of purification and is performed as
a primary or secondary purification (bold framed).

2. Development of Affinity Purifications for Viruses and VLPs and Currently
Established Applications

Originally, affinity purifications were established for biopharmaceutical proteins,
especially for antibodies, and were based on a classical antibody–antigen interaction, where
the antigen is immobilized on a stationary phase. A technology that has been established
as a platform purification approach for various antibody purifications are the Protein A,
G, or L affinity resins, which represent the most widely used affinity matrix materials
on the market, taking into account several modifications and optimizations of the ligand
composition over the years [45]. For viral products, the identification of a comparable
ligand that is able to bind to a broad portfolio of different viruses or VLPs is not trivial.
These biological nanoplexes are composed of a complex surface composition, including
different glycoproteins and attached lipids. Due to this heterogeneity, not only antibodies
and antibody fragments but also other binding proteins, carbohydrates, lectins, or aptamers
can be considered as ligands (Figure 2). Unfortunately, the identification of suitable binding
interaction targets is not trivial. Applicable ligands can be revealed either by experimental
screening, by an evaluation of ligand libraries with surface plasmon resonance or biolayer
interferometry applications [57,58], or theoretically by molecular modeling [59] and also
by considering the available literature. For the selection of optimal ligands, a number of
different aspects need to be considered. One of these aspects is related to differences in the
surface structure of the viruses in changing subtypes, such as in influenza [60–62]. In this
case, the composition of the vaccine is subject to recurring annual adjustments. Another
challenge is the variation in the composition of different subtypes of adeno-associated
viruses (AAV) [63,64]. Hence, ligands must be specific for the virus to be produced, but in
order to ensure a robust process control for the different subtypes, a conserved region in a
common protein over a wide range of subtypes needs to be targeted. Another requirement
for potential affinity ligands is the avoidance of ligand-related toxic effects. One example
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is the use of lectins as ligands (Figure 2) [65], which are highly dependent on the selected
production host cell, and thus allow a specific affinity interaction [66–68]. However, several
lectins are described to cause severe toxic effects in humans [69], rendering their application
in biopharmaceutical production processes inconvenient. The use of other carbohydrates
for affinity interactions, such as glycans, can avoid these issues [70], hence a careful ligand
selection preceding the process set-up is essential. An overview of suitable potential affinity
ligands for virus purifications is depicted in Figure 2.
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Figure 2. Types of affinity ligands suitable for virus purification. The virus is shown schematically,
and is not based on an actual native virus, to illustrate possible surface structures. (Created in
Biorender.com, agreement number: KB25MV2G5L).

For various viruses, individual ligands have been identified and immobilized onto a
stationary phase backbone, often consisting of resin particle beads of silica, cellulose, or dex-
tran. Reports of various applications have been reviewed in previous publications [24,25].
A recent example is the generation of an agarose-based affinity column for the selective
retention of lentiviral vectors, which were pseudotyped with a vesicular stomatitis virus
glycoprotein (VSV-G) envelope [71]. In this study, the group performed a ligand screening,
using surface plasmon resonance sensors to generate a scalable affinity column afterwards.

As variations in the composition of the product (virus, VLP) can alter its binding
interaction with the column, it is desirable to use ligands that are suitable for a wider range
of targets. With this in mind, it is possible to select viral surface structures that are present
on all viruses of the same class regardless of the viral genotype, such as the gp64 protein
found on many different baculoviruses [72], or the use of antibody fragments suitable
for various AAV subtypes, as applied in the AVB Sepharose, or POROS CaptureSelect
columns [64,73,74]. However, if a different virus were to be used, method development and
ligand screening would have to start anew. The basis for an evaluation of suitable ligands
can be an assessment of virus–cell interactions occurring during a virus infection [75–80].
These are often similar between various viral subtypes and also for different viruses. An
attachment of viruses to their respective host cells precedes the actual infection and is
usually mediated by virus–receptor interactions, cellular glycosaminoglycans (GAGs), or
sialic acid containing carbohydrates, e.g., glycans [78,81,82]. A current platform technol-
ogy that has been found to be suitable for various viruses and some VLPs is based on
glycosaminoglycans (GAGs), such as heparin and heparan sulfate, respectively [83–85]. As
many viruses have a natural affinity for the highly sulfated linear polysaccharide chain of
these GAGs [86,87], a selective product retention is possible while avoiding a co-purification
of the major contaminant DNA and protein. Several reports have described the success-
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ful purification performance of heparin columns, e.g., for baculoviruses [88], retroviral
vectors [89], foot-and-mouth disease virus [90], modified vaccinia ankara MVA virus [91],
as well as for the separation of VLPs and extracellular vesicles [92,93], to name only a
few. However, heparin as a ligand is of animal origin, making it expensive to implement,
limited in availability, and questionable for a use in purification processes under good
manufacturing practice (GMP) conditions for the production of human pharmaceuticals.
Recently, the recombinant generation of bioengineered heparin has been described using
Pichia pastoris as a production host. [94]. While this avoids the problems associated with
animal-derived heparin, such as contamination, impurities, and regulatory issues, the
application of heparin remains cost-intensive. Another issue is the high diversity of the
individual heparin ligands. These may vary in the degree of sulfation and in the molecular
weight of the individual heparin chains. This particularly accounts for resins obtained from
different vendors, but batch-to-batch variations are also observable for different lots of the
same manufacturer. For these reasons, affinity columns are often replaced by orthogonal
purification techniques such as ion exchange chromatography in large-scale production.
Therefore, although heparin affinity purification is widely used, it is highly unlikely to
be adapted for membrane processes, as disposable membrane columns would make DSP
uneconomical.

Another approach to avoid heparin and to, nevertheless, use an affinity platform pu-
rification approach is to use ligands that mimic the properties of heparin, namely the highly
sulfated polysaccharide chain [95]. For resin-based chromatography, dextran sulfate and
sulfated cellulose matrices have become an established alternative, with several commercial
products available on the market [45]. As these matrices are chemically sulfated, making
the backbone of the stationary chromatographic phase to the actual ligand, the ligand
distribution on the surface of the stationary phase can be adjusted homogenously, and a
modification of the actual ligand density is relatively straightforward. The purification
performance of these heparin analogues, i.e., dextran sulfate or sulfated cellulose, has
been shown to be effective for viruses with heparin affinity and has been described for
the purification of the MVA virus [91,96], the influenza virus [97], and the AAV [98,99].
For the influenza virus, the use of sulfated cellulose beads has been estimated to signifi-
cantly reduce the overall matrix cost compared to specific ligands purified from natural
sources such as heparin or lectins, although the authors did not provide detailed cost
calculations [65,100].

In addition to bead-based particle resins, monolithic backbones are often used for an
affinity and pseudo-affinity purification of viruses. Examples from recent years include the
preparation of monolithic hydrogel columns with heparin ligands for the DSP of the en-
terovirus 71 [101], the purification of the cowpea chlorotic mottle virus with custom-made
monoliths using peptide aptamers as ligands [102], or the separation of empty capsids
from AAV preparations employing metal affinity [103]. Earlier examples of these applica-
tions have been summarized in previous reviews [24,25]. Although the use of monolithic
columns avoids some of the disadvantages of resin particles, by providing convective
flow properties and improved utilization of the available binding capacity, the fabrication
of a monolithic column is costly, making it unattractive for single-use applications. In
addition, the cleaning and regeneration of these monoliths can be a major challenge, as
described previously [15,52]. Finally, the handling of monolithic columns is cumbersome,
especially for large-scale applications and when aseptic handling and additional steriliza-
tion procedures are required, considering the size and weight of commercially available
process-scale (4–8 L) monoliths. Recent improvements in this area include the development
of monolith-like particle stationary phases. These combine the handling properties of
bead-based resins with the convective flow of monoliths. An example of such a stationary
phase is the preparation of cellulose monolith-like particles, modified with dextran sulfate,
for a pseudo-affinity purification of influenza viruses [104]. In this study, the dynamic
binding capacity was increased 5–11 times compared to commercial bead-based resins,
and the column could be reused, if desired, for at least 10 cycles, including an appropriate
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cleaning procedure. The use of monolith-like particles indicates an improvement of some
of the abovementioned drawbacks affecting the use of monoliths, but their production
remains cumbersome, particularly for the larger scales, compared to the manufacturing of
membranes.

3. Affinity and Pseudo-Affinity Membranes

The advantages of membrane processes over classical bead-based resins and also as
an alternative to monolithic columns for the chromatographic purification of biological
nanoplexes have been widely discussed in previous reviews [3,44]. In summary, the use of
membrane-based stationary phases is able to avoid most of the disadvantages of particle
resins and monoliths described in the previous section. In return, suitable membrane
materials have been developed for many different chromatographic separation principles
and are commercially available and widely used for virus and VLP purification, e.g., anion
exchange [6,28,93,105–107], cation exchange [108,109], or hydrophobic interaction [14,108].
Affinity purifications, on the other hand, are typically highly customized applications that
require tailor-made stationary phases. As a result, these materials have a limited range of
applications, and their production for large-scale applications is currently only economi-
cally viable for seasonal viral vaccines, common viral vectors, and established oncolytic
viruses. Consequently, affinity chromatography for other viral targets that require GMP
process-scale purifications are only considered to a limited extent. Thus, it is questionable
whether it makes sense to push the development of such matrices on a small scale for other
applications. Nevertheless, many membrane-based affinity purifications of viruses are
performed with custom-made stationary phases, resulting in promising product recoveries
and impurity depletions by immobilizing metal ions [110,111], lectins [112], heparin [91,96],
or by sulfating the cellulose membrane backbone for pseudo-affinity purifications [96,113]
(Table 1). While at least four GMP-compliant products are available for bead-based resins
that are suitable for a pseudo-affinity platform purification [45] (see Section 2), only the
sulfated cellulose membrane adsorber is commercially available, but it is not GMP-suitable
for this kind of application. Sulfated cellulose membranes mimic heparin affinity, as de-
scribed above, and bind all types of viruses with a heparin affinity [114]. Although this
membrane adsorber is theoretically capable of purifying a wide variety of viruses, the
membrane properties, such as the ligand density and the pore size distribution, were
initially optimized for the purification of influenza viruses [42,115]. In return, the product
yields highly varied for the purification of different viruses and VLPs using this method
(Table 1).

An overview of previous studies, focusing on affinity purifications using membranes
as stationary phases, is shown in Table 1. The available data suggest that research ef-
forts are currently limited to comparatively few different ligands, mainly focusing on
laboratory-scale (<200 mL) purifications. Further research and product development would
be desirable, especially considering the continuously increasing pharmaceutical importance
of virus-based treatments [116]. Within the scope of the purification methods here, and
with reference to membrane-based chromatography affinity with its high specificity and
high binding capacities by membrane adsorbers, it generally allows relatively high virus
recoveries of up to 100%, while at the same time providing an efficient impurity removal.
In terms of this impurity removal, the separation of the product from contaminating DNA
is particularly important. In several reports, more than 90%, and occasionally up to 99.9%,
of the DNA was removed. For non-affinity chromatographic applications, a similar purifi-
cation performance cannot be achieved due to co-elution of contaminating DNA, especially
in ion exchange processes [4,108], but to a limited extent also for other applications, such as
steric exclusion chromatography [117]. This makes affinity chromatography, and especially
the use of scalable disposable materials with convective flow, a valuable tool for the DSP of
larger biological nanoplexes.

While sulfated cellulose membrane adsorbers have been rigorously evaluated, a
further expansion of the membranes’ product portfolio, in terms of pore size distribution
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and ligand densities, would increase the attractiveness of this pseudo-affinity method for
the purification of a diversity of viruses on varying scales. A different approach to broad
platform applications could be a focus on individual viruses that are currently of high
pharmaceutical relevance, such as the adeno viruses and AAV, retroviruses, herpes simplex
viruses, or hepatitis viruses, to name a few. It would be highly desirable to promote the
development of scalable affinity membranes for these viruses as has been done recently
for lentiviral vectors using a bead-based resin [71]. A comparable approach was made
for resin column systems for the purification of AAV [45,98] and could be feasible for
membranes as well. Further developments could overcome the limitations of currently
used affinity membranes, which are usually custom-made and not suitable for commercial
or GMP processes.

Table 1. Overview of affinity membrane applications for virus and VLP purification processes.

Target Ligand/Membrane
Material

Commercially
Available

Processed Feed
Volume (Scale) Yield/Recovery Impurity Depletion Reference

[Yes or No] [mL] [%] Protein [%] 1 DNA

Adenovirus Zn2+/cellulose Yes (Sartorius) 200 87 <25 pg mL−1 <0.3 ng mL−1 [110]

Hepatitis C virus Sulfated
cellulose/cellulose Yes (Sartorius) 10 50 Not determined 78% [21] 2

Influenza A
virus

Euonymus eu-
ropaeusLectin/cellulose No 20 108 69% 99% [112]

Zn2+/cellulose Yes (Sartorius) 50 64 93% 74% [111] 3

Sulfated
cellulose/cellulose Yes (Sartorius) 10 73–94 57–84% 68–99% [113] 4

Sulfated
cellulose/cellulose Yes (Sartorius) 70 80 71% 97.5% [107]

Sulfated
cellulose/cellulose Yes (Sartorius) <10 57

1.2 ± 6 0.02 ngprot

HAU−1
5.1 ± 0.2 pgDNA

HAU−1 [115] 5

Sulfated
cellulose/cellulose Yes (Sartorius) <10 64 0.013 mgprot µgHA-1

0.0038 µgDNA
µgHA

−1 [42]

Sulfated
cellulose/cellulose Yes (Sartorius) 10 per cycle 6 67.4 67.4 99.8 [118]

Influenza VLPs Sulfated
cellulose/cellulose Yes (Sartorius) <10 80 89% 80% [42]

Orf virus Sulfated
cellulose/cellulose Yes (Sartorius) 10 34–54 >99% 20–95% [108] 7

Vaccinia
virus/Modified
Vaccinia Ankara

virus

Heparin/cellulose No <10 56 99% 76% [91]

Sulfated
cellulose/cellulose Yes (Sartorius) 20 65 99% 90% [91]

Heparin/cellulose No <10 68 99.9% 80% [96]
Sulfated

cellulose/cellulose Yes (Sartorius) <10 75 99.9% 95% [96]

1 If no relative values for depletion were stated, the final impurity concentration after the purification is given.
2 The pseudo-affinity purification was performed as a secondary/final purification step. 3 Prior to optimizing
the method for Zn2+, six other metal affinity ligands were screened (Ni2+, Cu2+, Al3+, Mn2+, Ca2+, and Fe3+).
4 Three different Influenza A strains were evaluated; thus, recoveries and impurity depletions vary. 5 HA and
HAU refer to hemagglutination units, a measure for the quantification of influenza viruses. 6 The process was
performed in a continuous periodic counter current operation (3 sections/cycles over 10 loops). 7 Pseudo-affinity
was evaluated as a capture step and for secondary purification. The product recoveries and impurity depletions
varied accordingly.

In principle, the use of membrane materials supports the implementation of single-
use applications, which reduce cleaning and validation efforts as well as potential cross-
contamination [51,54,119]. However, for many affinity ligands, single use is not a viable
option, due to the cost of the ligands themselves. Furthermore, affinity ligands are generally
highly target-specific, limiting a broader commercialization and restricting such membrane
applications to the laboratory scale. To overcome these limitations, platform technologies
for different virus classes are highly preferred. For particle resins, different platform
technologies have been described, including highly pharmaceutically relevant products,
such as AAV and different AAV subtypes (see Section 2). While AAV is a rather small virus
particle and thus benefits less from the convective flow approach [120,121], especially for
larger viruses, the adaption to membrane processes seems promising. A transfer of the
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ligand composition from bead particles to membranes stands to reason but has not been
implemented into the product portfolio of many manufacturers yet.

The only commercially available membrane material suitable for a purification plat-
form is the heparin-mimicking sulfated cellulose membrane adsorber, which allows for a
pseudo-affinity purification of various viruses and VLPs. However, the possible implemen-
tation in a DSP process is limited not only by the requirement for the product affinity but
also by the size of the product due to the rather narrow pore size (about 0.8 µm) of these
membranes.

4. Conclusions

Currently, many chromatographic applications for an affinity purification of viruses
and VLPs using affinity ligands are based on resin or gel column backbones, and several
different column types are commercially available. However, due to the limited process
productivity of these columns as a result of diffusion-limited mass transport, convective
flow materials such as monoliths and membranes are a promising choice for a wide range
of these applications.

To enable the robust single-use affinity membrane purification of large biopharmaceu-
ticals, such as viruses, further research is essential and will become increasingly important
in the future due to the rising number of medical applications of virus-based pharma-
ceuticals and the need for flexible and, at the same time, specific purification approaches.
Ideal ligands for such pseudo-affinity purifications must (i) be specific enough to separate
the target from contaminating DNA and proteins, as well as from other particles; (ii) be
unaffected by variations in the composition of the targets and ideally suitable for a range of
different virus types or at least for genotypic variations of individual (pharmaceutically
important) viruses (platform application); (iii) allow for mild elution conditions to not affect
the viral activity or the stability of the virus-like particles; and (iv) allow for an economic
production and immobilization on the membrane surface. The last point, in particular,
is crucial, as otherwise single-use applications are not financially feasible, thus severely
compromising one of the major advantages of membrane chromatography applications.
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