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Abstract: Plasmalogens are a unique family of cellular glycerophospholipids that contain a vinyl-ether
bond. The synthesis of plasmalogens is initiated in peroxisomes and completed in the endoplasmic
reticulum. Plasmalogens are transported to the post-Golgi compartment, including endosomes and
plasma membranes, in a manner dependent on ATP, but not vesicular transport. Plasmalogens
are preferentially localized in the inner leaflet of the plasma membrane in a manner dependent
on P4-type ATPase ATP8B2, that associates with the CDC50 subunit. Plasmalogen biosynthesis is
spatiotemporally regulated by a feedback mechanism that senses the amount of plasmalogens in
the inner leaflet of the plasma membrane and controls the stability of fatty acyl-CoA reductase 1
(FAR1), the rate-limiting enzyme for plasmalogen biosynthesis. The physiological consequences of
such asymmetric localization and homeostasis of plasmalogens are discussed in this review.
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1. Introduction

Phospholipids are one of the components of biological membranes formed by lipid
bilayers, with their hydrophobic fatty-acid chains located in the center of the bilayer and
hydrophilic heads facing the aqueous periphery of the bilayer. Phospholipids are not
randomly distributed throughout the biological membranes of eukaryotic cell membranes.
This asymmetric distribution is most pronounced in the plasma membrane, where phos-
phatidylethanolamine (PtdEtn), phosphatidylserine (PtdSer), and phosphatidylinositol
(PtdIno) are primarily located at the cytoplasmic leaflet of the membrane, whereas phos-
phatidylcholine (PtdCho), sphingomyelin, and glycolipids are enriched on the external or
exoplasmic leaflet [1,2]. The amphiphilic nature of phospholipids hampers the movement
of lipids across hydrophobic lipid bilayers. However, the movement of lipids in biological
membranes is accelerated by the function of three types of lipid transporters, type-IV P-type
ATPases (P4-ATPases), ATP-binding cassette (ABC) transporters, and scramblases [3–5]. Of
these transporters, the first two translocate specific lipids across the bilayer using the energy
of ATP. P4-ATPases act as phospholipid flippases from the exofacial to the cytosolic leaflet,
whereas ABC transporters transport lipids in a direction opposite to that of P4-ATPases [6].
The activities of P4-ATPases are required for the formation and maintenance of asymmetric
distribution of phospholipids [7–9] and are involved in membrane protein regulation [10],
phospholipid signaling [11], the maintenance of cell polarity, membrane trafficking [12,13],
cytoskeletal dynamics [14,15], and cell differentiation [16].
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2. Plasmalogens

Plasmalogens are a type of glycerophospholipid characterized by the presence of a
vinyl-ether bond at the sn-1 position of the glycerol backbone. Plasmalogens are a major
constituent of cellular membranes and are mainly generated by de novo synthesis rather
than via dietary intake [17]. The synthesis of plasmalogens is initiated in the peroxisome
and completed in the endoplasmic reticulum by the formation of vinyl-ether bonds cat-
alyzed by plasmanylethanolamine desaturase 1 (PEDS1) [17–20] (Figure 1). Plasmalogen
deficiency was found in infants with rhizomelic chondrodysplasia punctata (RCDP) and
peroxisome biogenesis disorders (PBDs), where the former is caused by genetic mutation in
the gene-encoding proteins required for the synthesis of plasmalogens or factors essential
for the transport of the enzyme to the peroxisome. There are five genetic subtypes to
underlie RCDP. RCDP1 is the most common type of RCDP and is caused by mutations in
the PEX7 gene encoding the PEX7 receptor that is essential for the import of alkylglycerone
phosphate synthase (AGPS) into the peroxisome [21–25]. RCDP2, 3, and 4 are caused by mu-
tations of enzymes, glyceronephosphate-O-acyltransferase (GNPAT), AGPS, or fatty alcohol
reductase 1 (FAR1), respectively, which catalyze the synthesis of plasmalogens [26–28].
RCDP5 is caused by mutations in the long isoform of PEX5, acting as a cytosolic receptor
for PEX7 in the transport of PTS2-AGPS to peroxisomes [29]. These mutations result in a
severely reduced capacity of plasmalogen synthesis, hence implying that de novo synthesis
of plasmalogens is essential in our health. Moreover, the recent finding that a group of
patients with elevated plasmalogen levels in early childhood due to a genetic disorder
developed spastic paraplegia clearly demonstrates the physiological importance of plas-
malogen homeostasis [30]. Based on these facts, it is now clear that the biosynthesis of
plasmalogens significantly contributes to the homeostasis of plasmalogens in the human
body. Furthermore, tissue-specific conditional knockout mice showing a defect in plas-
malogen synthesis caused by impaired peroxisome biogenesis, including the cerebrum,
skeletal muscle, heart, and adipose tissue, show a dramatic decrease in plasmalogens in
the respective tissues, highlighting the importance of the local synthesis of plasmalogens
in tissues [31–33]. In addition to the severe loss of plasmalogens in patients with RCDP
or PBDs, moderate reductions in plasmalogens have been reported in neurodegenerative
disorders, including Alzheimer’s disease, Parkinson’s disease, and Multiple Sclerosis, as
well as cardiovascular diseases such as Barth syndrome and coronary artery disease [34–42].
Therefore, an understanding of the molecular mechanisms underlying the regulation of
plasmalogen biosynthesis is critical to explore the pathogenesis of diseases associated
with reduced plasmalogen levels, as well as to improve disease states and establishing
treatments by restoring plasmalogens of the disease.

3. Asymmetric Distribution of Ethanolamine Plasmalogen

Plasmalogens are present in all mammalian tissues. Ethanolamine plasmalogens
(PlsEtn) are known to be abundant in the brain, heart, neutrophils, and eosinophils, whereas
choline plasmalogens (PlsCho) are found in heart and skeletal muscle [17–20,43]. PlsEtn
are thought to be located in the inner leaflet of the plasma membrane in red blood cells and
myelin [44,45]. The asymmetric distribution of PlsEtn was further verified by incubating cul-
tured cells with the membrane-impermeable amine reaction reagent 2,4,6-trinitrobenzene
sulfonic acid (TNBS), which specifically modifies plasmalogens in the outer membrane
leaflet [46]. Approximately 4% of the total plasmalogens were modified by TNBS in HeLa
cells, less than the amount of PtdEtn, known to be located in the inner leaflet of plasma
membranes [47], implying that PlsEtn are preferentially localized to the cytoplasmic leaflet
of the membrane. Given these facts together with a notion of the asymmetric distribution
of PtdEtn, P4-ATPase-mediated transport of PlsEtn from the exoplasmic to the cytoplas-
mic leaflet is expected. This scenario was investigated by lowering the expression of the
CDC50A-encoding β-subunit of P4-ATPases [46]. The β-subunit forms a heterodimer with
several P4-ATPases and plays pivotal roles in the proper folding, organellar targeting, and
lipid-flipping of P4-ATPases [48–50]. For instance, knockdown of CDC50A expression
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inhibits the incorporation of fluorescent aminophospholipids such as NBD-PtdEtn and
NBD-PtdSer [51] due to the dysfunction of P4-ATPases. Similarly, knockdown of CDC50A
elevates the level of TNBS-modified PlsEtn, suggesting that the asymmetric distribution of
PlsEtn in the cytoplasmic leaflet is due to the presence of P4-ATPase(s).

4. ATP8B2-Mediated Asymmetric Distribution of PlsEtn

P4-ATPases are exclusively expressed in eukaryotes [3,52]. The human genome en-
codes fourteen P4-ATPases, and their intracellular localization, substrate specificities, and
cellular roles have been explored mainly by using fluorescent glycerophospholipid probes
such as NBD-PtdEtn, NBD-PtdSer, and NBD-PtdCho [53,54]. Unfortunately, fluorescent
PlsEtn is not commercially available, by which the substrate specificity of P4-ATPase(s)
toward PlsEtn has not been investigated. However, potential candidate P4-ATPase(s) re-
sponsible for PlsEtn can be picked up thanks to the results of substrate specificity and
subcellular localization analysis on the several P4-ATPases identified so far [54,55]. From
the basis of expression, intracellular localization, and association with CDC50A in HeLa
cells, four P4-ATPases (ATP8B2, ATP10D, ATP11A, and ATP11B) were selected and their
flippase activity toward PlsEtn was assessed by monitoring the level of TNBS-modified
PlsEtn in cells, where the expression level of respective P4-ATPase was lowered. Knock-
down of ATP8B2 expression appeared to enhance the exoplasmic localization of PlsEtn, but
not PtdEtn [56], implying that ATP8B2 transports PlsEtn rather than PtdEtn. The substrate
specificity of ATP8B2 was assessed using commercially available fluorescent glycerophos-
pholipids, thereby showing that ATP8B2 transports NBD-PtdCho but not NBD-conjugated
PtdSer, PtdEtn, sphingomyelin, and glucosylceramide [53]. However, the flippase activity
of ATP8B2 toward NBD-PtdCho was lower than that of ATP8B1 and ATP10A, both ex-
pressed in the cells used for the analysis of ATP8B2 function, by which impaired PlsCho
flippase activity of ATP8B2, if any, is thought to be compensated for by other P4-ATPases
such as ATP8B1 and ATP10A [53,57]. Based on these studies, it is concluded that ATP8B2
is most likely the transporter of PlsEtn (Figure 1). Further investigations of mechanistic
insight on PlsEtn recognition by ATP8B2 and the identification of other P4-ATPases acting
as PlsEtn flippase, if any, are required. As described above, it is unlikely that ATP8B2
transports PtdEtn based on the analyses of flipping activity with NBD-PtdEtn or TNBS
modification [56,58,59]. The difference between PlsEtn and PtdEtn, including the presence
of a vinyl-ether bond in PlsEtn and/or closer packing of the proximal regions of acyl chains
in PlsEtn compared with diacyl counterparts, may be involved in the specific recognition of
PlsEtn by ATP8B2 [60]. The development of fluorescent PlsEtn and the structural analysis
of ATP8B2 will greatly accelerate the elucidation of the issues related to the topogenesis of
PlsEtn.
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Figure 1. A schematic model of ATP8B2’s role and regulation of plasmalogen biosynthesis. Per-
oxisomal matrix enzymes, GNPAT and AGPS, sequentially catalyze the synthesis of acyl-DHAP
and alkyl-DHAP, respectively, where AGPS catalyzes the formation of alkyl-DHAP by replacing the
acyl chain of acyl-DHAP with a long-chain alcohol. FAR1, a peroxisomal C-tail anchored protein,
reduces fatty acids to long-chain alcohols. Alkyl-DHAP is reduced to alkyl-glycerol-3-phosphate
(Alkyl-G3P), further catalyzed to plasmalogens via the remaining four steps in the ER. The final step
for the synthesis of PlsEtn is catalyzed by plasmanylethanolamine desaturase 1 (PEDS1) in a manner
dependent on oxygen and cytochrome b5 [18]. (a). Plasmalogens are transported to the post-Golgi
compartment, including endosomes and plasma membranes, in a manner dependent on ATP, but
not vesicular transport [61] (b). In the plasma membrane, plasmalogens are preferentially localized
in the inner leaflet in a manner dependent on P4-type ATPase ATP8B2, which associates with the
CDC50 subunit (c). Plasmalogens localized in the inner leaflet of the plasma membrane are sensed (d)
and the signal monitoring the cellular level of plasmalogens is conveyed to peroxisomes, where the
stability of FAR1 is regulated, thereby controlling the synthesis of plasmalogens (e). Plasmalogens in
the inner leaflet of the plasma membrane contribute to the 3-phosphoinositide-dependent protein
kinase 1 (PDK1)-mediated phosphorylation of AKT and participate in cell proliferation through the
activation of AKT-downstream proteins (f).

5. Roles of Plasmalogens Located in the Cytoplasmic Leaflet

The involvement of a PlsEtn-sensing step at the cytoplasmic leaflet in the regulation
of PlsEtn biosynthesis is proposed from a study in cells that were compromised in the
asymmetric distribution of PlsEtn due to a reduced expression of CDC50A [46]. The sensing
of PlsEtn is an important step for the feedback regulation of PlsEtn biosynthesis. Two fatty
acyl-CoA reductases, FAR1 and FAR2, both localized to peroxisomes and which catalyze
a reduction in fatty acids to fatty alcohols, were successfully isolated [62]. Subsequent
analyses revealed that FAR1, preferentially catalyzing the synthesis of alcohol containing
saturated or unsaturated fatty acids of 16 or 18 carbons [62], is a rate-limiting enzyme
of PlsEtn synthesis that is initiated in the peroxisome and completed in the endoplasmic
reticulum [20,63,64], whereas FAR2 is involved in the formation of fatty alcohols with
carbon chain lengths ≥C24, in meibomian glands, and in the formation of the tear film lipid
layer [65]. FAR1 activity is known to be regulated by altering FAR1 protein level in a manner
dependent on cellular PlsEtn [20,46,63,64]. In contrast, FAR2 protein level is not changed
by the elevation of PlsEtn, suggesting that FAR2 is unlikely to be involved in plasmalogen
synthesis [66]. FAR1 protein level is augmented by the dysfunction of CDC50A or enzymes
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responsible for the synthesis of plasmalogens, likely due to the reduction in PlsEtn in the
cytoplasmic leaflet [46]. Similarly, an increased FAR1 protein is shown by the knockdown
of ATP8B2, but not other P4-ATPases such as ATP10D, ATP11A, and ATP11C [56]. These
results suggest that the ATP8B2-mediated cytoplasmic leaflet localization of PlsEtn is crucial
for the sensing of PlsEtn in the regulation of PlsEtn synthesis.

In addition to the role of cytoplasmically localized PlsEtn in the sensing step of
PlsEtn, the asymmetric distribution of PlsEtn is also suggested to be involved in a cellular
signaling pathway from the findings of impaired membrane recruitment and subsequent
activation of protein kinase B (AKT) in Schwan cells and neurons derived from Gnpat
knockout (Gnpat−/−) mice [67,68]. The AKT activation was similarly inhibited in cells by
the reduced expression of ATP8B2 [56], reinforcing the role of cytoplasmic-localized PlsEtn
in AKT activation (Figure 1). Although any roles of PlsEtn in AKT activation have not
been elucidated, PlsEtn is proposed to facilitate the binding of AKT to phosphoinositides
through altered membrane properties [69]. AKT activation is thought to be dependent on
lipid rafts [70], small platforms composed of sphingolipids and cholesterol in the outer
exoplasmic leaflet, which are connected to phospholipids in the inner cytoplasmic leaflet
of the lipid bilayer [71]. The enrichment of PlsEtn in lipid rafts is shown in several types
of cells [61,72,73]. Moreover, cholesterol, sphingomyelin, and PlsEtn in the enveloped
retrovirus HIV, which is derived from the host membranes where virus budding occurs,
are enriched as compared with those in host cells [74]. Given these facts together with
the asymmetric distribution of PlsEtn, it is more likely that ATP8B2-mediated transport of
PlsEtn into the cytoplasmic leaflet plays an important role in the formation of a platform-like
domain in the cytoplasmic leaflet that recruits at least AKT. The less-efficient recruitment of
AKT in lipid rafts derived from cells with a lower level of plasmalogens was very recently
shown in the 4T1 murine mammary carcinoma cell line [75]. The reduced growth rate of
cancer cell lines caused by impaired activation of AKT is reported by suppressing ATP8B2-
mediated PlsEtn localization in the inner leaflet or reduced levels of dihydroxyacetone
phosphate (DHAP), an essential substrate for the synthesis of plasmalogens [56,75]. In
addition, impaired AKT activation caused by the absence of plasmalogens in Schwan cells
and neurons leads to the abrogation of Schwann cell differentiation and myelination and a
lack of control of the position of the axon initial segment, respectively [67,68]. Collectively,
these studies indicate that the homeostasis of plasmalogens, involving the sensing of PlsEtn
located in the cytoplasmic leaflet of the plasma membrane, plays an important role in the
regulation of AKT activity.

In a study of phagocytosis using opsonized zymosan, plasmalogen-deficient cells de-
rived from a macrophage-like cell line RAW264.7 showed a reduced phagocytosis efficiency,
as well as reduced activation of extracellular signal-regulated kinase (ERK) p44 and p42,
which are returned to normal after incubation of the cells with lyso-plasmenylethanolamine,
which is incorporated and reacylated, thus replenishing the cellular plasmalogen pool [76].
The stimulation of macrophages with zymosan enhances arachidonic acid release from
glycerophospholipids including PlsEtn, which are enriched in polyunsaturated fatty acids,
in a manner dependent on calcium-independent phospholipase A2 [77,78], followed by
generating eicosanoids, a large family of signaling molecules which play a critical role in
inflammatory processes, from arachidonic acid [79,80]. Furthermore, activation of ERK
signaling in tumor cells bearing oncogenic Ras seems to be important for ferroptosis [81].
These results, together with findings that plasmalogens containing polyunsaturated fatty
acid promote ferroptosis initiated by an inhibitor for the lipid peroxidation repair enzyme
glutathione peroxidase 4, expand the possibility of the regulation of signaling pathways by
plasmalogen homeostasis [82,83]. We should await further elucidation to understand the
role of plasmalogen in ERK activation during phagocytosis and ferroptosis.

6. Future Perspective

In recent decades, much has been learned concerning the regulation of PlsEtn synthesis
and the roles of PlsEtn in cells and tissues [17,19,20,64,84,85]. The isolation of the gene



Membranes 2023, 13, 764 6 of 12

TMEM189, encoding PEDS1, which catalyzes desaturation of plasmanylethanolamine
(PlaEtn) to yield PlsEtn, is one of the major recent achievements (Figure 1). According to
the data from GEPIA 2 (http://gepia2.cancer-pku.cn/, accessed on: 20 January 2022), the
expression of TMEM189 is upregulated, whereas that of ATP8B2 is reduced in most of
the human cancers [56,86]. Moreover, a significantly higher expression of mitochondrial
glycerol-3-phosphate dehydrogenase (GPD2) in several cancer tissues than in normal
tissues is shown from the transcriptomic comparison study between cancer and normal
tissues using the cancer gene atlas (TCGA) TARGET GTEx database [75]. GPD2 catalyzes
the synthesis of DHAP from glycerol-3-phosphate, thereby allowing the elevation of DHAP,
a substrate of GNPAT. These transcriptional changes in GPD2, TMEM189, and ATP8B2 and
the resulting metabolic changes may be responsible for the elevated plasmalogens seen
in some cancer cells [87–89], particularly the decreased expression of ATP8B2, which may
reduce plasmalogens in the cytoplasmic leaflet, thereby escaping synthetic inhibition via
the plasmalogen-sensing step [56]. The mechanism underlying a transcriptional regulation
of GPD2, TMEM189, and ATP8B2 in cancers remains to be explored.

The generation of Peds1-deficient mice and subsequent analysis of ether lipid home-
ostasis show unaltered FAR1 protein levels in the cortex despite the absence of plasmalo-
gens [90], suggesting that PlaEtn is transported to the inner leaflet and its levels are sensed
to regulate ether lipid biosynthesis, as in the case of PlsEtn. Based on these results, it is
expected that asymmetrically localized PlaEtn by means of ATP8B2 is sensed, as in the
case of PlsEtn, suggesting that ATP8B2 transports at least three phospholipids, including
PlsEtn, PtdCho, and PlaEtn, where the ability of transport of the first two phospholipids
was shown by either the TNBS modification method or NBD-PtdCho [31,34]. A study
addressing the substrate specificity and structural analysis of ATP8B1, which has an 83%
similarity to ATP8B2, revealed that several substrates, such as PtdCho, PtdSer, PtdIns,
and plasmanylcholine, are transported by ATP8B1 [91]. Therefore, careful analyses in-
volving structural analysis of ATP8B2 are indeed necessary to fully understand how three
phospholipids are transported by ATP8B2.

Recent studies addressing the potential function of plasmalogens in the activation of
the cellular signaling pathway showed an activation of ERK- and AMP-activated protein
kinase (AMPK) by exogenously added plasmalogens [92,93]. The physiological conse-
quence of plasmalogen-mediated activation of the signaling pathway is not uncovered,
although a beneficial effect on cognitive function is reported upon oral administration of
plasmalogens [94–96]. Importantly, plasmalogens are secreted from keratinocytes, digested
by secretory phospholipase A group IIF sPLA-IIF, and the resultant lyso-plasmalogens
exacerbate psoriasis [97]. The way that plasmalogens are secreted from keratinocytes
remains unknown, whereas secretion associated with vesicles such as exosomes is favored,
as is the enrichment of plasmalogens in exosomes [98,99]. Thus, plasmalogens may be
translocated from the cytoplasmic leaflets of the plasma membrane to the outer leaflets of
vesicles, whereby the plasmalogens are digested by sPLA-IIF. Therefore, it is important
to investigate whether ATP8B2-mediated topogenesis of plasmalogens is canceled prior
to the formation of multivesicular bodies and/or exosomes in keratinocytes in order to
further understand the physiological role of ATP8B2-mediated asymmetric distribution of
plasmalogens.

The physiological significance of the findings obtained from the assessment of FAR1
stability in Peds1-knockout mouse has not yet been explored [90]. It is plausible that
PlaEtn, rather than PlsEtn, is preferentially synthesized under some conditions, such as
a hypoxic state, due to the limited available oxygen which is required for the activity of
PEDS1 (Figure 2) [100,101]. Moreover, several genes encoding enzymes for the synthesis of
PlsEtn and proteins called peroxins required for peroxisome biogenesis are shown to be
essential for cell survival under hypoxic conditions from genetic screening in several types
of cells [102]. In contrast, PlsEtn is not essential for the survival of cells in normoxia because
several plasmalogen-deficient Chinese hamster ovary mutant cells and patient-derived
fibroblasts, including peroxisome biosynthesis-deficient mutant cells, have been isolated
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in normoxic conditions [26,27,103–106]. Therefore, PlaEtn rather than PlsEtn may play a
major role in cell survival in hypoxic compartments where stem cells are localized. It is
clear that we should await future studies addressing the homeostasis and functional roles
of ether lipids, including PlsEtn and PlaEtn, to fully understand the physiological roles of
ether lipids.
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Figure 2. The final step of the plasmalogen synthetic pathway. In the last step of plasmalogen
synthesis, plasmanylethanolamine desaturase 1 (PEDS1) catalyzes the formation of vinyl-ether bond
(dashed square) of plasmenylethanolamine (PlsEtn) from plasmanylethanolamine (PlaEtn) using
NADPH and oxygen as cofactors.

Finally, the way for the replacement or supplementation of plasmalogens in the brain
has not been established yet [17]. Plasmalogen replacement in peripheral tissues has been
shown to be possible, at least in animals, via oral administration of alkylglycerol and syn-
thetic plasmalogens containing proprietary cyclic phosphoethanolamine groups [107,108].
In addition, the synthetic plasmalogen normalizes the hyperactive phenotype associated
with a reduction in neurotransmitters, particularly monoamine, in the brain of heterozy-
gous Pex7hypo/null, resembling milder RCDP1 [108]. Similarly, 1-O-tetradecyl glycerol
(1-O-TDG) treatment rescued myelination in plasmalogen-deficient oligodendrocytes in
mutant mice [109]. However, the restoration of plasmalogens in the brain upon administra-
tion of the synthetic plasmalogen was not observed and the level of plasmalogens in the
brain was not described by the treatment of 1-O-TDG despite the elevation of plasmalogens
in mouse fibroblasts cultured with 1-O-TDG [108,109].

Thus, these molecules, such as alkylglycerol, synthetic plasmalogens, and 1-O-TDG,
which have the ability to rescue dysfunction and developmental defects in the brains of mice
with impaired plasmalogen homeostasis, are potential candidates for further improvement
to normalize plasmalogen levels in the brain. Moreover, small molecule(s) that enhance
the expression of GPD2 and FAR1 or that are inhibitors for ATP8B2 may also be useful for
elevating plasmalogen levels in the brain.
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