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Abstract: This article reviews the role of outer membrane vesicles (OMVs) in mediating the interaction
between Gram-negative bacteria and their human hosts. OMVs are produced by a diverse range
of Gram-negative bacteria during infection and play a critical role in facilitating host–pathogen
interactions without requiring direct cell-to-cell contact. This article describes the mechanisms
by which OMVs are formed and subsequently interact with host cells, leading to the transport
of microbial protein virulence factors and short interfering RNAs (sRNA) to their host targets,
exerting their immunomodulatory effects by targeting specific host signaling pathways. Specifically,
this review highlights mechanisms by which OMVs facilitate chronic infection through epigenetic
modification of the host immune response. Finally, this review identifies critical knowledge gaps
in the field and offers potential avenues for future OMV research, specifically regarding rigor and
reproducibility in OMV isolation and characterization methods.

Keywords: outer membrane vesicles (OMVs); DNA methylation (DNAm); immune modulation;
inter-kingdom communication

1. Introduction

Gram-negative bacteria employ diverse mechanisms to interact with other bacteria
and their human hosts. Among these mechanisms, outer membrane vesicles (OMVs)
are critical in facilitating host–pathogen interactions without requiring direct cell-to-cell
contact. This is particularly relevant when bacteria colonize the mucus that overlays host
epithelial cells [1,2]. OMVs are spheroidal proteoliposomes ranging from ~20 to 200 nm in
diameter that originate from the outer membrane of Gram-negative bacteria [3–6]. These
vesicles contain various cytoplasmic and periplasmic components, including proteins,
DNA, RNA, and metabolites [7–10]. The lipid bilayer of OMVs protects the contents from
extra-vesicular proteins, such as proteases and RNases [2]. OMVs were first characterized
in 1967 by Chatterjee and Das by transmission-electron microscopy of Vibrio cholerae [11].
Studies in the years since have shown that OMVs are produced by a diverse range of
Gram-negative bacteria during infection and have been isolated from both pathogenic and
commensal bacteria colonizing the human gut and lung. Although Gram-negative bacteria
also release outer-inner membrane vesicles (O-IMVs) that derive from the bacterium’s
inner and outer membrane, these vesicles account for less than 1% of the total secreted
vesicles [12]. Both OMVs and O-IMVs encapsulate bacterial factors that modulate the
host’s immune response to infection. These factors include proteins that inhibit epithelial
chloride ion secretion and small interfering RNA (sRNA) that bind to and silence host
mRNA transcripts. Despite the significant progress that has been made in characterizing
the immunomodulatory properties of OMVs, many of their mechanisms of action remain
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elusive. Therefore, investigating the interplay between host and OMVs is crucial for
developing novel therapies against bacterial infections and the ensuing inflammatory
response. Recent reviews explore the intricate interactions between OMVs and the host
immune response [13–21].

Despite the growing interest in OMVs as mediators of host–pathogen interactions,
only a few studies have investigated the mechanisms underlying OMV-induced regulation
of the host immune response to infection. OMVs have been shown to contain virulence
factors such as sRNA, that like microRNAs (miRNA), target host immune cell genes to
downregulate the host response to infection, thereby allowing microbes to establish chronic
infections [2]. Although a few bacterial factors have been identified in OMVs that elicit a
reduced immune response, little is known about their epigenetic mechanisms of action.
Research has begun to delve into the epigenetic mechanisms behind bacterial interaction
with host immune cells. This involves virulence factors that cause altered DNA methylation
(DNAm) patterns in immune cells, resulting in a decreased immune response to subsequent
infections and contributing to the establishment of chronic bacterial infections. For instance,
Pseudomonas aeruginosa OMVs can downregulate the human macrophage immune response
to infection by inducing changes in DNAm patterns [22]. Similarly, OMVs derived from
the human gut commensal Bacteroides thetaiotaomicron reduce the inflammatory response to
colitis-inducing dextran sodium sulfate in a mouse model [23]. Although some research has
examined the immunomodulatory effects of OMVs, few studies have explored the underly-
ing mechanisms of these interactions, specifically regarding the epigenetic modification of
the host immune response to subsequent infections.

This review provides an overview of the current state of knowledge on how Gram-
negative pathogens utilize OMVs to modulate the host immune response during infection.
Specifically, this review highlights the novel mechanisms by which OMVs are formed and
subsequently interact with host cells, leading to alternative methylation patterns of immune
genes. Additionally, this review identifies critical knowledge gaps in the field and offers
potential avenues for future research.

2. OMV Biogenesis

The biogenesis of OMVs has been a topic of intense research in recent years due to the
diverse roles that OMVs play in bacterial pathogenesis, immune modulation, and potential
therapeutic applications. The explosive cell lysis and budding models are two proposed
mechanisms for OMV generation in Gram-negative bacteria (Figure 1).

The explosive cell lysis model proposes that OMVs are generated as a result of a sudden
and catastrophic rupture of the bacterial cell membrane. In this model, a high amount of
stress on the bacterial cell can lead to a breakdown in membrane integrity and a subsequent
release of large amounts of cytoplasmic and periplasmic contents, including membrane
fragments [24,25]. The released membrane fragments can spontaneously assemble into
OMVs. This model is supported by observations of high levels of OMVs in bacterial
cultures undergoing stress or lysis, such as during antibiotic treatment or exposure to
detergents [24–26]. The use of a live–dead staining assay on bacteria is beneficial for all
OMV studies to determine if some OMVs are formed from explosive cell lysis versus
another budding mechanism [27,28]. For example, preliminary studies in our laboratory
have revealed that low concentrations (1 µg/mL) of the antibiotic Tobramycin kill about
10% of P. aeruginosa (PA14) as determined by the live–dead assay.

On the other hand, the budding model proposes that OMVs are generated by a more
controlled process involving the gradual formation and release of vesicles from the bacterial
outer membrane. In this model, the budding of OMVs is thought to involve a selective
packaging of cargo, such as proteins, lipids, and nucleic acids, into the vesicles [29]. Once
the cargo is packaged, the OMVs are released from the outer membrane [29]. This model is
supported by observations of asymmetrically shaped OMVs that display a more uniform
size and cargo composition than those generated by explosive cell lysis [30]. Furthermore,
OMV budding has been observed by electron microscopy of P. aeruginosa biofilms (Figure 2).
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In some cases, the budding of OMVs may also be triggered by bacterial stressors such as
oxidative stress or exposure to antimicrobial agents [26,29].

While both the explosive cell lysis and budding models have their merits and are not
mutually exclusive, it is important to note that the relative contribution of each process to
OMV biogenesis may depend on the bacterial species and environmental conditions. Some
studies have suggested that most OMVs are generated by the budding model [29–31], while
others have proposed that both mechanisms can contribute equally to OMV biogenesis [32].
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Figure 1. The explosive cell lysis and budding models of OMV and O-IMV generation. (A) The
budding mechanism of OMV generation. Lipoproteins (Lpp) anchor the outer membrane to the
peptidoglycan. Membrane proteins and lipopolysaccharides (LPS) decorate the outer membrane
and are incorporated into the budding OMV along with periplasmic proteins and sRNA. (B) The
budding model of O-IMV generation. Both cytoplasmic and periplasmic proteins and sRNA are
incorporated into budding O-IMVs. (C) Cellular stress such as exposure to reactive oxygen species
disrupts the membrane of a Gram-negative bacterium, causing membrane fragments to encapsulate
free periplasmic and cytoplasmic material and form OMVs and O-IMVs.
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aeruginosa PA14 grown in Minimal Essential Medium (MEM) with 0.4% arginine. (C) OMVs on fila-
mentous structures produced by P. aeruginosa. (D) P. aeruginosa OMV (derived from PAO1 grown in 
MEM with 10 mM glucose and 8 µM FeCl3) fusing with a eukaryotic cell. The red arrow indicates a 
mitochondrion in the airway epithelial cell. 
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Figure 2. Electron microscopy images of OMVs budding from P. aeruginosa. Scale bars indicate
100 nm in panels (A–C) and 500 nm in panel (D). White arrows indicate OMVs in all panels.
(A) OMVs budding from P. aeruginosa PAO1 cultured on human bronchial epithelial cells. (B) OMV
budding from P. aeruginosa PA14 grown in Minimal Essential Medium (MEM) with 0.4% arginine.
(C) OMVs on filamentous structures produced by P. aeruginosa. (D) P. aeruginosa OMV (derived from
PAO1 grown in MEM with 10 mM glucose and 8 µM FeCl3) fusing with a eukaryotic cell. The red
arrow indicates a mitochondrion in the airway epithelial cell.

Further research is needed to fully understand the mechanisms involved in OMV
biogenesis, how RNA, DNA, and other virulence factors are differentially packaged in
OMVs, and to develop strategies for engineering OMVs with specific cargo and properties
for various applications, including the development of novel treatments against chronic
bacterial infections.

3. OMV Factors Modulate the Host Immune Response to Infection

Upon release by microbes, whether through explosive cell lysis or budding, OMVs
diffuse through their environment, including mucus, to deliver their contents to recipient
cells. OMVs have been shown to fuse with lipid rafts located on the membranes of epithe-
lial cells, and to be taken up by host cells by phagocytosis or through other mechanisms
such as clathrin-dependent endocytosis, caveolin-mediated endocytosis, and membrane
fusion [29,33,34]. OMVs contain various types of cargo, including proteins, sRNA, and
transfer RNA fragments (tRNA-fragments), which target host immune genes. Some OMV
proteins, for instance, have been shown to upregulate the host immune response by stimu-
lating host Toll-like receptors (TLRs) [35–39]. OMV sRNA and tRNA fragments, similar
to eukaryotic miRNAs, can decrease host mRNA transcript stability, as well as regulate
transcription and translation of target genes [10]. Suppression of the host immune response
is advantageous for establishing and maintaining bacterial infections. Studies are encour-
aged to elucidate novel factors within OMVs that specifically modulate the human immune
response to infection, with the expectation that this may lead to the development of novel
therapeutics to fight bacterial infections and inflammation.
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During infection, OMVs provide a valuable mechanism for transporting microbial
virulence factors to their host targets, particularly in diseases characterized by chronic
infections or colonization of mucus layers residing above epithelia. For example, OMVs
from pathogenic bacteria such as P. aeruginosa contain flagellin and LPS, which can activate
the host immune system by stimulating TLR5 and TLR4, respectively [38,39]. Recognition
of the lipidA portion of LPS by TLR4 [39] leads to a signaling cascade through MyD88 and
NF-κB, increases the production of hyperinflammatory cytokines such as IL-8, which in
turn recruits immune cells to the lungs in an attempt to eliminate infection [40]. Some OMV
proteins can exert their immunomodulatory effects by targeting specific host signaling
pathways. For example, OMVs from Burkholderia pseudomallei contain the effector protein
BopE, which can bind to the host GTPase Rac1 and activate downstream signaling events,
promoting bacterial invasion and intracellular survival [41,42]. The immunomodulatory
proteins found in bacterial OMVs represent an important mechanism by which bacteria
can manipulate the host immune response to their advantage.

P. aeruginosa OMVs also carry Cif (CFTR Inhibitory Factor), a protein that interferes
with the endocytic cycling of the cystic fibrosis (CF) transmembrane conductance regulator
(CFTR) chloride ion channel in host epithelial cells [43–53]. Cif disrupts ion transport across
epithelial cell membranes by promoting CFTR degradation and leads to dehydration of the
airway surface layer and decreased mucociliary clearance of invading pathogens [50,54].
Cif has also been shown to prevent Major Histocompatibility Complex antigen presenta-
tion and CD8 T cell killing [55]. Similarly, delivery of the toxin CNF1 by Escherichia coli
OMVs impairs neutrophil chemotaxis [56]. On the other hand, Helicobacter pylori OMVs
harbor the CagA oncoprotein that is translocated into host cells and alters ATP affinity
for the H1 histone, leading to an increase in DNA binding, cellular transformation, and
oncogenesis [57–59]. OMVs can also contain proteases that cleave and inactivate host
antimicrobial peptides and enzymes that degrade host extracellular matrix components,
facilitating bacterial dissemination [60,61]. Bacterial OMV immunomodulatory proteins are
an essential mechanism for bacteria to manipulate the host immune response. To combat
bacterial infections and prevent antibiotic resistance emergence, it is crucial to understand
the intricate interplay between OMV proteins and the host immune system.

OMVs also contain sRNA and tRNA fragments (~35 nt) important for modulating
host gene expression by binding to mRNA transcripts, affecting translation and transcript
stability [10]. For example, Choi et al. has shown that sRNAs in OMVs secreted by
Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola
decrease cytokine secretion by Jurkat T cells, thus suppressing the immune response [62].
More examples of OMV sRNA-host interaction have been reviewed in detail [20].

One of the most striking findings is that tRNA fragments from bacterial OMVs can
target and decrease the expression of host immune genes. For example, the P. aeruginosa
methionine tRNA fragment sRNA52320 secreted in OMVs targets multiple kinases in the
LPS-stimulated MAPK signaling pathway, decreasing IL-8 secretion of human bronchial
epithelial cells and downregulating neutrophil recruitment in a mouse lung infection
model [2]. The mechanisms by which tRNA fragments from bacterial OMVs target host
mRNA transcripts are not yet fully understood. It is thought that the tRNA halves may
act as decoys that compete with host miRNAs for binding to target mRNA transcripts or
may interact directly with target transcripts through complementary base pairing, possibly
by interacting with the AGO2/RISC complex, thereby using the host miRNA mechanism
to pair with target mRNA [63–68]. However, at the present time, the mechanism whereby
bacterial sRNAs and tRNAs inhibit gene expression in eukaryotic hosts is incompletely
understood and, therefore, warrants study.

In summary, OMV-derived proteins and RNA fragments play a crucial role in reducing
the host immune response. The identification and characterization of additional novel
factors within OMVs that specifically modulate the human immune response to infection
may lead to the development of novel therapeutics to fight chronic bacterial infections and
prevent the emergence of antibiotic resistance.
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4. OMVs Alter the Host Immune Response to Subsequent Bacterial Infections through
Alternative Methylation of Immune Genes

Trained immunity is a concept that challenges the traditional view of the immune
system as a static, pre-programmed system. Instead, trained immunity suggests that
the immune system can be trained or “primed” to provide enhanced protection against
subsequent infections [69–71]. This phenomenon is mediated by immune cells such as
macrophages and natural killer cells, which can be reprogrammed by exposure to certain
stimuli to produce either a more or less robust and efficient immune response [71]. Early-in-
life infections in people with CF are typically cleared with antibiotics through several cycles
before eventually establishing a chronic infection [72–74]. Compared to non-CF donors, CF
lung macrophages exhibit alternative methylation patterns in genes associated with the
phagocytic response to infection [75], while CF nasal epithelial cells display differential
methylation in genes involved in the inflammatory response [76]. It is possible that immune
reprogramming of the host by early-in-life bacterial infections through trained immunity
contributes to the establishment of chronic infections by decreasing the host immune
response to infection over time.

Trained immunity is mediated by epigenetic modifications, which are heritable changes
to the DNA and chromatin structure that regulate gene expression [69–71]. These epigenetic
modifications take the form of the alternative methylation of immune genes and their up-
stream transcriptional regulators. Over 70% of promoters located at a gene’s transcription
start site contain dense cytosine regions that precede a guanine nucleotide (CpG sites) [77].
Methylation of these regions can recruit proteins involved in the repression of genes or
inhibit transcription factors from binding DNA [78]. Another critical mechanism is histone
modification, wherein chemical groups such as acetyl, methyl, or phosphate are added or
removed from histone proteins around which DNA is wrapped [79]. These modifications
alter the structure of chromatin and thereby alter the availability of promoter regions,
enhancing either gene activation or repression [79]. Exposure to certain stimuli can cause
these modifications in immune and epithelial cells, leading to changes in the expression of
genes involved in immune function and metabolism (Figure 3) [71,80]. This can result in an
enhanced or suppressed immune response to subsequent infections, as well as alterations
in other physiological processes such as metabolism and inflammation [80]. The concept
of trained immunity was first proposed in the context of vaccination, where it was ob-
served that inoculation with a certain pathogen could provide protection against multiple
pathogens beyond the specific target [70,81]. This was thought to be due to the training of
the immune system to respond more effectively to subsequent infections. However, bacteria
can take advantage of this system for their own benefit, delivering factors to the host that
encourage a downregulation of the immune response to infection in order to establish
chronic infections. In a proof-of-concept study, exposure of human bronchial epithelial
cells to P. aeruginosa flagellin decreased epithelial cell secretion of IL-8 upon secondary
treatment with LPS, P. aeruginosa, Aspergillus fumigatus, or Stenotrophomonas maltophilia [82].
This effect was lost upon treatment with compounds that inhibit either histone acetyltrans-
ferase or histone methyltransferase, suggesting that epigenetic mechanisms are involved
in reprogramming the transcriptional immune response [82]. Epigenetic reprogramming
by bacterial infections extends beyond in vitro studies and has been demonstrated in an
in vivo murine infection model. Brindisi et al. reported a significant reduction in proinflam-
matory cytokines in the CF mouse lung following P. aeruginosa infection, achieved by using
a chemical inhibitor that targets histone deacetylase 6 (HDAC6), a major player in CF proin-
flammatory phenotype dysregulation [83]. By inhibiting HDAC6 activity and consequently
increasing histone acetylation, the authors successfully demonstrated a notable reduction
in interleukins and chemokines involved in the proinflammatory response to infection [83].
More research has shown that trained immunity can be induced by non-specific stimuli,
such as exposure to microbial components like OMVs [22,23].
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Figure 3. Example of epigenetic regulation of host genes by sRNA delivered by OMV. (1) OMV fuses
with a host cell and delivers contents including an sRNA. (2) The sRNA inhibits a methyltransferase,
thereby preserving methyl groups on chromosomal DNA. (3) The presence of methyl groups obstructs
the binding of transcription factors to promoter regions of immune genes, resulting in reduced
expression of immune gene transcripts. Additional epigenetic mechanisms include modulating the
expression of DNA methylation modifiers, such as ten-eleven translocation (TET) methylcytosine
dioxygenases and DNA methyltransferases (DNMT) [84].

OMVs also play a significant role in suppressing the host immune response in CF,
where chronic bacterial infections are established in a thick mucus layer in the lungs overly-
ing epithelial cells, limiting direct contact of the invading pathogens with host lung epithe-
lia [85]. As several bacterial virulence pathways require direct contact with the host—for
example, the Type III secretion system—these systems are unlikely to be relevant if the bac-
teria and host cells are not in contact. Recent studies have linked initial exposure to OMVs to
induce alterations in immune responses following subsequent infection [2,29,46,86]. For ex-
ample, OMVs secreted by the anaerobic Gram-negative pathogen Porphyromonas gingivalis
mediate LPS tolerance to subsequent infections of P. gingivalis or E. coli LPS through the
inhibition of pro-inflammatory TNFα and IL1-β secretion [87,88]. An sRNA in P. aerug-
inosa OMVs decreases the LPS-stimulated IL-8 response in human bronchial epithelial
cells and diminishes the secretion of the mouse keratinocyte-derived chemokine (KC, the
mouse homologue of IL-8), and infiltration of neutrophils in the lung in an in vivo murine
model [2]. It is possible, although not yet tested, that this effect of OMVs is due to changes
in chromatin accessibility or DNAm mediated by sRNAs. A few recent studies have linked
bacterial OMVs to changes in methylation of immune cell genes, altering their response to
infection. For example, B. thetaiotaomicron OMVs ameliorated chronic intestinal inflamma-
tion in a mouse model by increasing methylation of the 4th lysine residue of the histone H3
protein in murine bone-marrow-derived macrophages [23]. On the other hand, treatment
with OMVs secreted by P. aeruginosa caused a decrease in the methylation of CpG sites in
human lung macrophages, which had a strong negative correlation with pro-inflammatory
immune cytokine gene expression [22]. Han et al. conducted a comprehensive review
focusing on OMVs in respiratory diseases. Their review not only explored the biology of
OMVs, but also delved into the signaling pathways that could potentially undergo epige-
netic modifications, thereby influencing the immune response to bacterial infections [84].
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Although only a handful of studies have examined the mechanisms underlying OMV-
induced epigenetic modifications, this is an emerging field within OMV biology. Further
research is encouraged on specific epigenetic changes caused by contact with OMVs.

5. OMV Characterization

To ensure that the results of OMV research are reliable and meaningful, rigorous and
reproducible methods are essential. A critical aspect of rigor is the use of standardized pro-
tocols for the isolation, purification, and characterization of OMVs. This can help to ensure
that the samples are consistent and comparable across different studies. The International
Society for Extracellular Vesicles (ISEV) has published recommendations for the isolation
and characterization of OMVs [89]. According to the ISEV, differential ultracentrifugation
is the most common method of EV isolation [89,90]. Techniques such as density gradients,
filtration, and immunoisolation, among others, are also commonly used for OMV isolation,
and recent papers have suggested that ultracentrifugation alone does not result in the
most contaminant-free preparation of OMVs [89,91–94]. Thus, the ISEV recommends that
combining isolation methods is more effective in obtaining relatively contaminant-free
OMV preparations than any single method [89]. The ISEV recommendations also include
suggestions for both qualitative and quantitative methods of characterization. For ex-
ample, the ISEV recommends providing images of OMV preparation by either electron
microscopy, atomic-force microscopy, or super-resolution microscopy [89]. Quantitative
measures such as total protein or lipid quantification, the use of protein markers, and
nanoparticle tracking analysis (NTA) are recommended by the ISEV for determining OMV
concentration and size [89]. Of these methods, NTA is one of the most commonly used for
the characterization of particle size and concentration. However, this method is limited
since it measures total particles, including both OMVs and any other non-OMV particles
present in an OMV preparation, such as protein and lipoprotein aggregates [95,96]. Due to
this, NTA tends to overestimate the OMV number, as it reports the hydrodynamic radius
of all particles, both OMVs and non-OMV contaminates. In recent years, significant strides
have been made in the field of EV and OMV quantification, offering alternatives to NTA.
One such advancement is the implementation of tunable resistive pulse sensing (TRPS),
which allows for label-free, real-time detection and sizing of EVs and OMVs. TRPS utilizes
nanoscale pores to measure changes in electrical potential caused by the passage of vesicles
through the pores, providing valuable information about their size and concentration [97].
A notable challenge associated with TRPS lies in the interference of background noise,
particularly with smaller particles around 50 nm in size [98,99]. Progress is being made to
improve this characterization method, and Ejjigu et al. have addressed the interference of
environmental background noise by designing an external shield specifically tailored to
mitigate such noise [99]. Additionally, flow cytometric approaches have been used for the
quantification of EVs and OMVs [100,101]. Moreover, vesicle studies should always visual-
ize their vesicle preparations with cryo-EM or transmission electron microscopy (TEM) to
obtain additional size measurements to those reported by NTA, as these methods report
the size of the densest portion of the OMV membrane and allow researchers to distinguish
between OMVs and contaminating particles. According to the guidelines set forth by the
ISEV, researchers should characterize vesicles by multiple methods to ensure accurate
particle size and count with their EV/OMV preparations [89]. Using multiple, orthogonal
approaches to EV/OMV characterization, such as both NTA and EM, will improve the
rigor, reproducibility, and validity of results. As of this review, updated guidelines for
vesicle isolation and characterization are in preparation by the ISEV.

Characterization of OMVs is especially important to ensure rigor and reproducibility
in the field, as various factors can alter OMV production, characteristics, and biological
effects on the host. It is important to consider relevant in vivo environments when de-
signing in vitro OMV studies. Recent publications have found bacterial OMVs in human
biofluids, such as bronchoalveolar fluid in the lungs, blood and urine [102–106]. Many
factors are known to affect OMV content and production, including nutrient availability
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and growth state. The composition of culture media plays a critical role in OMV production
and content in Gram-negative bacteria. Different media formulations, such as rich media or
minimal media, can result in variations in carbon sources and nutrient availability, which
influence bacterial growth and OMV production, as shown in Francisella novicida, Neisseria
meningitidis, and Bordetella spp. [107–110]. Additionally, growth conditions, such as temper-
ature and pH, can also impact OMV production. Hypervesiculation is a method utilized
by bacteria to rid themselves of misfolded proteins in response to environmental stress,
such as increased temperature [26]. pH is another environmental factor that alters OMV
production and composition. At neutral pH, OMVs produced from Salmonella enterica have
a lipid A composition that parallels that of the bacterial outer membrane [111]. As acidity
in the medium increases, OMVs become larger and less protein-dense than those produced
in a neutral pH medium [111]. Thus, researchers should consider isolating OMVs from
bacteria grown under conditions that reflect the in vivo environment they wish to model.
For example, in recent studies examining the effect of P. aeruginosa OMVs on CF airway
epithelial cells, P. aeruginosa was grown in artificial sputum in anoxic conditions [112–114],
which is similar in composition to the mucus overlying airway cells in the CF lung [85]. It is
also worth noting that biofilm formation, a common mode of bacterial growth in various en-
vironments, can significantly affect OMV production. The size of OMVs can be influenced
by biofilm formation, attributed to the distinct microenvironment and the necessity for
intercellular communication within the biofilm matrix [115]. Although numerous studies
have primarily focused on OMVs derived from planktonic cells, comparisons between
biofilm-derived and planktonic-derived OMVs have been conducted, albeit without reach-
ing a consensus [115–117]. Notably, Cooke et al. observed that biofilm-derived OMVs
from P. aeruginosa are larger in size when compared to their planktonic counterparts [115],
while Johnston et al. reported the opposite, suggesting smaller sizes [116]. Conversely,
other studies found no statistically significant difference in either P. aeruginosa or Bordetella
pertussis [117,118]. Despite the inconsistency regarding OMV size, several investigations
have demonstrated that biofilm-derived OMVs exhibit a higher DNA content than their
planktonic counterparts [115,116,119,120]. These findings highlight the complex interplay
between growth conditions and OMV production.

In addition to isolation and characterization methods, careful attention should be
paid to the statistical analysis of data and the use of appropriate controls. This includes
using uninoculated media run through the OMV isolation process to control for con-
taminants that may remain in the OMV preparation from the media or isolation process
(i.e., processed controls). In addition, if possible, experiments using OMV-depleted media
are useful controls. Reproducibility is also critical in OMV research, and efforts should
be made to replicate key findings using multiple clinical strains of the bacteria of interest
and independent orthogonal isolation methods. In addition, for in vitro experiments, it is
recommended to use primary cultures of host cells from multiple male and female donors
rather than rely on a single immortalized or tumor cell line that is derived from one donor
and may not mimic the phenotype/genotype of primary cells. Experiments involving
research on host–pathogen interactions with OMVs should also extend to in vivo models
to substantiate previous in vitro findings. Ultimately, by adhering to rigorous and repro-
ducible methods, OMV researchers can improve the validity and impact of their findings
in this exciting and rapidly evolving field.

6. Conclusions and Future Research Prospects

In conclusion, the interplay between Gram-negative bacteria and host cells mediated
by OMVs is a complex process that remains incompletely understood. While significant
progress has been made in characterizing the immunomodulatory properties of OMVs,
further research is needed to elucidate the underlying mechanisms of these interactions.
Specifically, future studies should focus on elucidating the mechanism of OMV generation
and differential loading of sRNA, tRNA fragments, virulence factors, and other bacterial
components in OMVs. Furthermore, studies should also focus on identifying the specific



Membranes 2023, 13, 752 10 of 15

molecular components of OMVs responsible for inducing epigenetic modifications of host
immune genes, as well as investigating the downstream effects of these modifications
on host immune responses to subsequent infections. The potential utilization of OMVs
to induce a diminished immune response and foster trained tolerance within the host
could represent a significant mechanism employed by bacteria to establish persistent
infections. This becomes particularly noteworthy in the investigation of conditions marked
by prolonged bacterial infections, like cystic fibrosis. A more comprehensive understanding
of the mechanisms of OMV biogenesis and cargo selection will facilitate the development
of new therapeutic strategies for treating bacterial infections. In addition, mechanistic
studies on how proteins and sRNA- and tRNA-fragments regulate gene expression in
eukaryotic hosts deserves special attention. Very little is known about how bacterial sRNA-
and tRNA-fragments regulate eukaryotic gene expression. Finally, while studies have
started to shed light on Gram-positive bacterial vesicles [27], our understanding of them
pales in comparison to our knowledge regarding those secreted by Gram-negative species.
Therefore, it is crucial for further investigations to delve into the contents of Gram-positive
vesicles, their impacts on host cells, and interactions between different bacterial species.

Overall, continued investigation into the mechanisms underlying OMV-mediated host-
pathogen interactions using rigorous and reproducible methodology will provide important
insights into bacterial pathogenesis and immune modulation and may ultimately lead to
the development of novel therapeutic approaches to combat chronic antibiotic-resistant
bacterial infections.
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