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Abstract: This work is dedicated to the study of the treatment of multi-walled carbon nanotubes
(MWCNTs) with dichromic acid. The dichromic acid was formed by dissolving different concentra-
tions of CrO3 in water. The effect of the concentration of dichromic acid on the change in texture
characteristics, elemental composition, defectiveness, graphitization degree, and surface chemistry
of MWCNTs was investigated using various analytical techniques, such as transmission electron
microscopy, energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy
(FTIR), X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). Testing of MWCNTs as elec-
trodes for supercapacitors in 3.5 M H2SO4 solution was carried out using cyclic voltammetry. A
decrease in the average diameter of CNTs after treatment was found. The EDX and XPS showed
that the oxygen content on the surface of MWCNTs increased after treatment with dichromic acid.
The formation of Cr2O3 after treatment with dichromic acid was detected by XPS. High angle an-
nular dark field scanning transmission electron microscopy was used to confirm the intercalation
of the chromium-containing compound between graphene layers of MWCNTs after treatment with
dichromic acid. It was found that two different types of MWCNTs showed diverse behavior af-
ter treatment. The highest specific capacitance of the MWCNTs after treatment was 141 F g−1 (at
2 mV s−1) compared to 0.3 F g−1 for the untreated sample.

Keywords: carbon nanotubes; functionalization; chemical functionalization; dichromic acid; carbon
nanomaterials; MWCNTs; treatment; intercalation; chromium oxide

1. Introduction

The study of the effect of oxidants on the change in structure and properties of carbon
nanomaterials is an urgent task. More than 300 papers devoted to various methods of
carbon nanomaterials functionalization are published annually. Carbon nanomaterials
have a wide range of applications in various fields and their research is cutting edge
nowadays. The main prospective materials from this group are carbon nanotubes, which
are interesting to be applied in supercapacitors [1–4], membranes [5,6], biosensors [7],
polymer composites [8,9], batteries [10], gas sensors [11–13], etc. The creation of novel
high-performance supercapacitors is on the way to large-scale production and extensive
research should be carried out to overcome many problems towards this direction. One
of the problems is the low amount of functional groups in as-received carbon nanotubes
that hinders their practical use in supercapacitors. The method to modify single-walled
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carbon nanotubes [14,15] and multi-walled carbon nanotubes (MWCNTs) [16] is chemical
treatment, which makes it possible to considerably improve the physical and chemical
properties [17–19]. There are a variety of other fields where chemical treatment might
be useful, e.g., membrane technology [6,20,21], where the selectivity and permeability of
CNT-based membranes can be controlled via functionalization.

There are several methods to modify the carbon nanotubes (CNTs), e.g., chemical treat-
ment [22,23], electrochemical treatment [24,25], ball milling [26–28], heat treatment [29,30],
etc. In [31], the authors considered the prospects for chemical modification of MWNTs
as electrodes for cotton textile supercapacitors, indicating the formation of redox-active
oxygen groups on the surface of CNTs which induced pseudocapacitive properties. In [32],
acid etching was used to open the tips of CNTs and led to the formation of functional
groups and enhanced the energy density of the symmetric supercapacitor. At the same
time, there are a lot of challenging problems for large-scale chemical treatment of CNTs,
and the main one is the loss of material as a result of etching [33]. Unfortunately, there is
no systematic research directed to increase the yield of CNTs after chemical treatment. The
acid treatment can be considered as the most scalable and convenient method, and for one
needs extended data on its technological parameters.

This work was devoted to chemical treatment of MWCNTs with dichromic acid. The
latter was obtained by dissolution of CrO3 in water; the effect of the concentration of
solution was investigated. The strong oxidation of CNTs with dichromic acid, and the
decrease in their diameter was detected. The appearance of intercalation in MWCNTs
via treatment with dichromic acid was detected. A significant enhancement of specific
capacitance of MWCNTs in sulfuric acid electrolyte was found.

2. Materials and Methods
2.1. Treatment of MWCNTs

Commercial MWCNTs were chemically treated in dichromic acid. Chromic anhydride
was added to water to obtain chromic and dichromic acids. Chromate and dichromate
ions transfer into each other when the pH of the solution changes. However, in aqueous
solutions, when a large amount of CrO3 is dissolved in water, it forms mainly dichromic
acid (H2Cr2O7; concentration of more than 100 g·L−1 or 0.95 M). We took solutions with
concentrations ranging from 1 to 6 mol·L−1. The concentration is indicated in terms of
CrO3 dissolved in water. The name of the sample was accompanied with the concentration
of solution taken for treatment. For example, MWNT-1020_3M sample (Table 1) shows that
the sample was treated with 3 mol·L−1 concentration of CrO3 dissolved in water.

Table 1. Samples and preparation technique.

Sample Concentration of CrO3, mol·L−1

MWNT-1020 -

MWNT-1020_1M 1

MWNT-1020_3M 3

MWNT-1020_6M 6

MWNT-4060 -

MWNT-4060_1M 1

MWNT-4060_3M 3

MWNT-4060_6M 6

Commercial multi-walled carbon nanotubes (Shenzhen Nanotech Port Co., Shenzhen,
China) were investigated. There are two samples marked as MWNT-1020 and MWNT-4060,
respectively.
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The treatment was carried out as follows. A sample of pristine MWCNTs (0.15 g)
was placed in a conical flat-bottomed flask, and then 100 mL of CrO3 solution was poured
and heated for 6 h with constant stirring at 80 ◦C. After 6 h of boiling, the treated sample
was washed with distilled water until pH = 7 with different indicators (Cresol red [II],
Bromothymol blue, Methyl Red, test paper) and vacuum filtered. After filtration, the
treated MWCNTs were dried at 100 ◦C for 12 h. After drying, the samples were ground in
a mortar and sifted through a 100-µm mesh size sieve.

2.2. Characterization

Transmission electron microscopy (TEM) was carried out using a JEM-2200FS CS
(JEOL, Tokyo, Japan) microscope. The elemental composition of carbon materials after
treatment was investigated using a scanning electron microscope S–3400N (Hitachi, Tokyo,
Japan) equipped with an add-on for energy dispersive X-ray spectroscopy (EDX) manu-
factured by Oxford Instruments Co. The samples were investigated without sputtering
(electron beam energy 10 keV), with a Li-Si detector at an elevation of detector 35◦ and a 0◦

inclination of the sample.
The defectiveness of carbon nanomaterials was estimated using Raman spectroscopy

on the device T64000 «Horiba Jobin Yvon» (Ar laser, λ = 514 nm). The disorder degree of
carbon nanomaterials was estimated from the ratio of intensities of D and G peaks [34]. In
addition to Raman spectroscopy, the structural features of carbon nanomaterials were also
determined by means of X-ray diffraction (XRD) using DRON-3 diffractometer (Russia)
and Cu Kα radiation (λ = 1.54 Å). The degree of graphitization Y of carbon nanomaterials
was calculated on the basis of interlayer spacing d002, which, in turn, corresponds to the
main plane of graphite [35] according to Equation (1) shown below.

Y = (3.440 − d002)/(3.440 − 3.354), (1)

where 3.440 Å is an interlayer spacing of turbostratic structure carbon, and 3.354 Å is an
interlayer spacing in graphite (defect-free material).

Fourier transform infrared spectroscopy (FTIR) was used for analysis of functional
groups in MWCNTs and carried out using FT-801 spectrometer (Simex, Novosibirsk, Russia).

The analysis of functional groups formed as a result of treatment was also studied
using X-ray photoelectron spectroscopy (XPS). The chemical composition of the surface of
the samples was studied using a SPECS Surface Nano Analysis GmbH (Berlin, Germany)
spectrometer. The spectrometer was equipped with hemispherical analyzer PHOIBOS-150
and an XR-50 X-ray characteristic radiation source with a double Al/Mg anode. Non-
monochromatic Al Kα radiation (h* = 1486.61 eV) was used. Relative concentrations of
elements within the area of analysis were determined based on the integral intensities
of XPS lines taking into account the cross section of photoionization of corresponding
terms. For detailed analysis, we used decomposition of spectra into individual components.
Accordingly, after background subtraction by the Shirley method, the experimental curve
was decomposed into a set of lines corresponding to the photoemission of electrons from
atoms in a different chemical surrounding. The data were processed using the CasaXPS
software (http://www.casaxps.com/). The shape of peaks was approximated by a sym-
metric function obtained by multiplication of the Gaussian and Lorentzian functions. C1 s
peak (284.50 eV) corresponding to carbon in sp2 hybridization (graphite, graphene) was
used to account for the charging effect.

High angle annular dark field scanning transmission electron microscopy (HAADF-
STEM) micrographs were obtained with the Themis-Z 3.1 instrument (TFS, Plano, TX,
USA) equipped with an X-FEG-monochromator and CS/S double corrector. Accelerating
voltage was 200 kV. Elemental analysis was performed with a Super-X EDS detector
(energy resolution about 120 eV). The samples for the study were prepared by ultrasonic
dispersing in ethanol and consequent deposition of the suspension upon a “holey” carbon
film supported on a copper grid.

http://www.casaxps.com/
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2.3. Supercapacitors

The chemically treated MWCNTs were tested as electrodes for supercapacitors. To
calculate the specific capacitance of the studied samples, the cyclic voltammetry at different
rates of sweep rates (2–10 mV·s−1) was carried out. Voltammetry curves were recorded
using IPC-compact potentiostat (Russia). Three-electrode scheme was used for measure-
ments: auxiliary electrode (Pt), reference electrode (Ag/AgCl; saturated KCl), working
electrode made using MWCNTs. Potentials are given relative to the Ag/AgCl electrode.
The specific capacitance of the carbon materials under study was determined using the
Formula (2) [36–41]:

Csp =
J

Vm
(2)

where Csp is the specific capacitance, F·g−1; J is the sum of cathodic and anodic currents
(J = Jk + Ja) at 500 mV, mA; m is the weight of carbon material, g; V is a sweep rate, mV·s−1.
MWNT-1020 and MWNT-4060 samples were mixed with 10–15% carbon black (Alfa Aesar,
Haverhill, MA, USA), 0.01 g of the resulting composite was taken and mixed with 10%
vaseline oil (Russia) to form a pasty state. The resulting mixture was evenly applied to
the graphite electrode (S = 1 cm2). Then, the electrodes were immersed in 3.5 M H2SO4
solution and cyclic voltammetry curves were recorded using direct voltammetry when the
electrical potential at the working electrode changed from 0 to 1 V. The error of the sweep
rate was 1.0%; the error of the potential setter was 0.03 mV.

3. Results and Discussion

TEM images of chemically modified MWCNTs are shown in Figure 1. Images of
pristine MWCNTs were presented in [42] (MWNT-1020 sample) and [43] (MWNT-4060
sample). The difference in the number of layers in CNTs of two samples can be seen.
The chemical treatment of MWCNTs induced the shortening of carbon nanotubes, which
is a typical effect in chemical treatment of carbon nanomaterials [16]. Additional high-
resolution TEM images of treated MWCNTs are presented in Supplementary Materials
(Figure S1). The catalytic particles partially remained in both samples within the channel
inside the CNTs (Figure S1b in Supplementary Materials). At the same time, there are a
lot of empty cups in nanotubes observed in chemically treated materials (probably, the
treatment was carried out by manufacturer).

Based on the TEM micrographs of the samples, the diameters of MWCNTs (Table 2)
were calculated. It was found that the average diameter of carbon nanotubes decreased
after chemical treatment. This can be induced by etching of graphene layers on the surface
of carbon nanotubes. The increase of concentration of dichromic acid led to a decrease in
average diameter of the CNTs. It is worth noting that the etching of surface graphene layers
was stronger for MWNT-1020 compared to MWNT-4060 samples. Finally, the average
diameter of carbon nanotubes treated with 6M H2Cr2O7 was close to each other. The
decrease in diameter of CNTs was also reported in [44] for sulfuric acid treatment.

Table 2. Average diameter of MWCNTs.

Sample Average Diameter of CNTs, nm

MWNT-1020 26 ± 0.82
MWNT-1020_1M 25.6 ± 0.75
MWNT-1020_3M 23.9 ± 1.42
MWNT-1020_6M 21.4 ± 0.55

MWNT-4060 36 ± 1.51
MWNT-4060_1M 27.1 ± 1.27
MWNT-4060_3M 23.2 ± 1.82
MWNT-4060_6M 22.6 ± 1.20
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Figure 1. TEM images of treated MWCNTs: (a) non-treated MWNT-1020; (b) MWNT-1020_1M; (c) 
MWNT-1020_3M; (d) MWNT-1020_6M; (e) non-treated MWNT-4060; (f) MWNT-4060_1M; (g) 
MWNT-4060_3M; (h) MWNT-4060_6M. 

Figure 1. TEM images of treated MWCNTs: (a) non-treated MWNT-1020; (b) MWNT-1020_1M;
(c) MWNT-1020_3M; (d) MWNT-1020_6M; (e) non-treated MWNT-4060; (f) MWNT-4060_1M;
(g) MWNT-4060_3M; (h) MWNT-4060_6M.
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The distribution of diameter of CNTs formed during the treatment is shown in
Figure S2 in Supplementary Materials. From the distribution curves of MWNT-1020 sam-
ples, it is seen that the increase in concentration of dichromic acid led to a shift of the maxi-
mum of the distribution curve from the 25–30 nm range to 20–25 nm and even 15–20 nm.
The same behavior was observed for the MWNT-4020 sample, showing a shift of the max-
imum of distribution to the 10–20 nm range. Concerning the larger diameters, it is seen
that the maximum diameters of MWNT-1020 and MWNT-4060 were 70 nm and 120 nm,
respectively. The treatment showed a decrease of the span of distribution to maximum
values of 50 nm and 100 nm.

Figure 2 shows X-ray diffraction patterns of the treated samples. XRD patterns of non-
treated MWCNTs were reported in [43]. The presence of (002) reflection typical for CNFs
around 2θ~26◦ was shown. At the same time, there are reflections at the angle 2θ = 10–15◦.
Strong reflections were especially observed for the MWNT-4060_1M sample. These peaks
were also for all samples treated with H2Cr2O7. The reflection around 2θ = 10–15◦ was
relatively weak at the concentration of 3M (2θ~13◦ for both types of MWCNTs) and the
MWNT-4060_6M sample (2θ = 12.8◦ and 14.7◦ for MWNT-1020 and MWNT-4060 samples,
respectively). The appearance of such reflections with interlayer spacing higher than d002
can be considered as the formation of intercalation compounds, since such an effect usually
causes an increase of interlayer spacing [45,46]. In CNTs, it is clearly seen for intercalation
with chlorides [47,48] and other compounds [49,50]. It is worth noting that there were no
reflections related to chromium oxides or any other compounds in the XRD patterns.
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Figure 2. XRD spectra of the MWCNTs (Cu Kα radiation) treated with dichromic acid: (a) MWNT-
1020; (b) MWNT-4060.

Raman spectroscopy provides information related to structural changes in nanotubes
and can be a direct evidence of chemical functionalization [27,51]. Raman spectra obtained
for the non-treated and functionalized MWCNTs are shown in Figure 3.

Two main bands were observed; the D band, which results from the formation of
sp3-bonded carbon atoms, at approximately 1340 cm−1 and the G band, which is related to
the tangential modes of the sp2-bonded carbon atoms, at approximately 1570 cm−1 [34,52].
The D band is a two-resonance Raman mode, which is influenced by defects in the graphene
structure. This band together with the G-band can be used for material characterization to
probe and monitor the structural modifications of the nanotube sidewalls resulting from
the introduction of defects and the attachment of various molecules. All functionalized
materials showed an increase in the I(D)/I(G) ratio compared to the non-modified samples
(Table 3). The only exclusion is the MWNT-1020_6M sample, which was strongly oxidized
and showed the highest concentration of chromium according to EDX. The direct proof
of stronger oxidation of samples in 6M H2Cr2O7 solutions is the lowest average diameter
of CNTs (according to TEM) and graphitization degree Y (according to XRD). Usually, the
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increase of I(D)/I(G) after acid treatment takes place [44,53] and the cases of its decrease
compared to pristine material are rare, but in such papers the initial defectiveness of MWC-
NTs is low enough (for example, I(D)/I(G) = 0.2 [53] or I(D)/I(G) = 0.47 [44]) compared to
this paper. The surface area of both types of MWCNTs tends to decrease when exposing
dichromium acid solution treatment (Table 3). Usually, the surface area of CNTs grows
during chemical treatment [54]; however, it can be assumed that the surface layers of
nanotubes were actively etched with dichromic acid leading to removal of defective surface
layers. This effect apparently induces the slight change in specific surface area.
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Table 3. Raman spectroscopy and XRD data.

Sample
Raman Spectroscopy XRD Surface Area

(BET), m2/gFWHM, cm−1 (D) FWHM, cm−1 (G) I(D)/I(G) d002, nm Y, %

MWNT-1020 52.4 50.6 1.03 0.3400 46.5 128
MWNT-1020_1M 89 78 1.28 0.3380 43.5 123
MWNT-1020_3M 53.6 53.9 1.16 0.3382 67 119
MWNT-1020_6M 61.8 73 0.78 0.3414 30 111

MWNT-4060 50.7 42.5 0.54 0.3387 61.6 68
MWNT-4060_1M 52 44.4 0.70 0.3385 62.3 65
MWNT-4060_3M 54.6 44.4 0.78 0.3367 84 63
MWNT-4060_6M 59 51.7 0.65 0.3388 61 61

The increase of I(D)/I(G) indicates the growth of the disorder degree of material caused
by chemical treatment. The interesting behavior was found in the MWNT-1020_6M sample,
showing the appearance of a new additional peak in the Raman spectrum between D and
G modes (1487 cm−1). Such a peak between two main modes is usually seen in spectra of
graphite intercalation compounds [55]. The formation of intercalation compounds is also
confirmed by the additional peak at 2θ = 10–15◦ in XRD patterns. Such a peak is observed
in all chemically treated samples.
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FTIR spectra are shown in Figure 4. Also for this treatment, a peak on the 2930 cm−1

absorption band corresponding to the valence vibration of the O-H group in carboxyls is
observed [56]. For less concentrated solutions in carbon materials, C-O (carboxyl, ethers)
and C=O (carboxyl) valence vibrations are observed in the 1017, 1132, 1240 cm−1 absorption
bands [16,36,57]. This is due to the fact that less concentrated solutions do not etch the
MWCNTs’ surface and allow more diverse groups to form. For MWNT-4060 C-C and
C=C, stretching vibrations are observed; as for MWNT-1020 samples, however, stretching
vibrations of C-H bonds were still recorded. In this case, CNTs treated with 3M solutions
were better functionalized, since the most diverse valence vibrations were detected.
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XPS showed the significant oxidation of samples as a result of treatment with dichromic
acid. Figure 5 shows the typical C1s spectra of the samples studied.
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C1s spectra can be described by several peaks corresponding to carbon in different
chemical surroundings. Thus, the peak around 284.5 eV corresponding to carbon in graphite
(sp2 hybridization) was used as an internal standard to account for the charging effect of
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the samples. In addition, the spectrum of carbon nanotubes contains peaks around 289.7
and 290.9 eV. According to the literature data, the peaks in the region of 286.4-284.8, 288.1,
and 288.8 eV can be attributed to carbon bonded to oxygen, e.g., C-O, C=O, and O-C=O,
respectively [58–61]. Since the treatment of MWCNTs was carried out in the chromium-
containing compound, the presence of chromium was detected. The Cr2p spectra are shown
in Figure 6.
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Figure 6. Cr2p photoelectron spectra of MWCNTs treated with different concentrations: (a) 1M;
(b) 3M; (c) 6M CrO3 solution.

In the Cr2p spectrum of the studied samples, the Cr2p3/2-Cr2p1/2 doublet was ob-
served. The binding energy of Cr2p3/2 was 577.6 eV, which is typical for chromium in the
Cr3+ state. In the literature, the Cr2p3/2 binding energy value of 576.6–577.0 eV is given
for bulk Cr2O3 oxide [62]. For Cr2O3 oxide deposited on Al2O3, the binding energy of
Cr2p3/2 was 577.2–577.6 eV. CrO3 oxide is characterized by a significantly higher binding
energy of Cr2p3/2 in the range of 579.1–580.0 eV [63]. Therefore, it is assumed that during
the interaction of the dichromic acid with carbon nanotubes, carbon played the role of
a reducing agent converting H2Cr2O7 to Cr2O3, which most likely occurred somewhere
inside the structure after the formation of intercalation compounds (GICs) took place. Other
C1s spectra are shown in Figure S4 (Supplementary Materials). It is worth noting that
there is no formation of chromium oxide nanoparticles seen in the TEM images (Figure S1
in Supplementary Materials and Figure 1). The formation of graphite intercalation com-
pounds with chromium oxide was already reported, but only in a few papers. In [64], the
formation of CrO3-GICs (i.e., graphite intercalation compounds) was discussed during
treatment of graphite in CrO3 and 12 M HCl solution. The authors suggested not only
doping with CrO3 after its interaction with SWCNTs, but also its intercalation between
graphene layers [64].

The proposed reaction of dichromic acid reduction to chromium (III) oxide is shown below:

3C + 2H2Cr2O7 = 2Cr2O3 + 3CO2 + 2H2O

According to XPS, the presence of chromium in the Cr3+ state, the additional peak in
Raman spectra, and the reflections within a range 2θ = 10–20◦ in XRD patterns confirm that
there is a formation of Cr2O3 intercalated compound between graphene layers of MWCNTs
chemically treated with dichromic acid. These data were also confirmed by HAADF-STEM
images of MWNT-1020_6M sample depicted in Figure 7. The presence of chromium in the
sample is shown by the bright traces in the micrographs, since the mass of carbon atoms
is significantly lower compared to chromium. The typical lines of chromium distribution
of the sample along the graphene layers are clearly seen (Figure 7b,c,e). EDX mapping of
the Figure 7i image showed the presence of C, O, Si, and Cr elements. The appearance of
silicon in the EDX spectrum is related to mesh substrate.
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Moreover, in order to clearly confirm the presence of chromium in the form of the
Cr2O3 intercalated compound, the HAADF-STEM images of other group of samples,
e.g., MWNT-4060_3M were taken (Figure 8). It is shown that even there are a weak
peak within 2θ = 10–20◦ in XRD patterns of samples treated with dichromic acid of both
types of MWCNTs investigated in this paper, the intercalation of chromium-containing
compounds takes place. The detection of chromium along with nickel coming from catalytic
nanoparticles in the CNTs has been shown. Additional HAADF-STEM micrographs and
EDX spectra are presented in Supplementary Materials (Figure S3).

One considering the content of other elements, Table 4 shows the binding energies of
the C1s photoelectron peaks and their concentration in spectra. The highest concentration of
the C-OH (285.7 eV) component of C1s spectrum was detected. The content of components
related to carbon bonded to oxygen (C-OH, C-O, C=O, O-C=O) decreased predominantly
when increasing the concentration of dichromic acid. There is some exclusion as MWNT-
4060_3M showed the highest concentration of C-OH groups (Table 4).

Data on content of elements in the sample are presented in Table 5. According to EDX,
the C:O ratio decreases when increasing the concentration of solutions. This was shown for
both MWCNT samples. EDX showed a higher C:O ratio, whereas XPS showed growth of
this value for the MWNT-4060 sample after treatment. The surface nature of analysis (for
XPS) showed the higher oxidation degree of the surface compared to EDX. The presence
of chromium was detected in all samples treated. It is worth noting that the non-treated
sample did not contain the chromium. The highest concentration of chromium is also
in agreement with the appearance of indicators of intercalation by Raman spectroscopy
and XRD.

Table 4. XPS data of MWCNTs chemically treated with dichromic acid.

Sample
Concentration of Components of C1s Photoelectron Peak (at.%)

C=C (sp2)
284.5 eV

C-C (sp3)
284.9 eV

C-OH
285.7 eV

C-O
286.7 eV

C=O
288.0 eV

O-C=O
289.3 eV

π-π*
290.8 eV

MWNT-1020 65.4 8.0 13.2 6.0 2.2 2.8 2.4
MWNT-1020_1M 62.1 8.1 17.4 4.4 2.5 4.2 1.4
MWNT-1020_3M 60.5 16.0 9.0 4.7 3.1 3.3 3.5
MWNT-1020_6M 72.4 8.3 7.3 3.6 2.6 3.2 2.6

MWNT-4060 57.0 4.2 23.0 7.9 2.8 3.9 1.2
MWNT-4060_1M 59.9 11.8 14.8 5.2 2.5 3.7 2.1
MWNT-4060_3M 63.7 6.1 17.1 4.4 2.8 3.8 2.0
MWNT-4060_6M 63.4 9.9 12.3 5.0 3.0 3.4 3.1

Table 5. EDX and XPS results of the concentration of elements in the samples.

Sample
EDX XPS

C:O Impurities, at.% C:O Impurities, at.%

MWNT-1020 - 0 13.1 0
MWNT-1020_1M 22 Cr (0.1) 7.3 Cr (0.16)
MWNT-1020_3M 14 Cr (0.31) 7.7 Cr (0.29)
MWNT-1020_6M 10 Cr (1.68) 8.54 Cr (0.19)

MWNT-4060 - 0 9.4 0

MWNT-4060_1M 73 Ni (0.13)
Cr (0.12) 8.5 Cr (0.16)

MWNT-4060_3M 33 Ni (0.11)
Cr (0.15) 8.53 Cr (0.35)

MWNT-4060_6M 18 Cr (0.48) 6.4 Cr (0.11)
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The behavior of chemically treated MWCNTs as electrodes of supercapacitors was
carried out. Cyclic voltammetry at low sweep rates makes it possible to estimate the
capacitance of the material as a whole, not just the contribution of the surface layer. Table 6
shows the values of specific capacitance for the materials under study.
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Table 6. Cyclic voltammetry results.

Sample
Specific Capacitance Csp, F g−1

10 mV s−1 5 mV s−1 2 mV s−1

MWNT-1020 0.3 0.5 0.7
MWNT-1020_1M 38 42 60
MWNT-1020_3M 35 43 58
MWNT-1020_6M 76 89 111

MWNT-4060 0.16 0.19 0.3
MWNT-4060_1M 66 86 114
MWNT-4060_3M 71 97 141
MWNT-4060_6M 28 33 40

The difference in capacitance for the two types of materials, despite the high degree
of functionalization and chromium content in all samples, is more related to the structure
of the material. The use of dichromic acid treatment leads not only to etching, but also to
the formation of a large number of functional groups. It is observed that the chromium
content increases when increasing the solution concentration, but this does not explain
the difference in the increase in specific capacitance for the 1M solution compared to the
3M one. This difference is more due to the difference in the content of functional groups
formed since the specific surface area did not change significantly during the treatment
(Table 3). Pore size distribution curves of the samples with the highest capacitance are
presented in Figure S5 in Supplementary Materials. The low concentration of dichromic
acid does not lead to etching of CNTs surface and leaves more functional groups. The
increase in concentration to 3M led to strong etching and delamination of surface graphene
layers, which was confirmed by the graphitization degree for MWCNTs, which became
higher (e.g., 67% for MWNT-1020_3M sample) compared to untreated ones (46.5% for
MWNT-1020 sample). In addition, the samples treated in the 3M H2Cr2O7 solution showed
the highest disorder degree according to Raman spectroscopy.

When comparing the specific capacitance of MWCNTs treated with sulfuric acid,
which is one of the most frequently used oxidizers [44], it can be concluded that the
treatment with dichromic acid leads to higher specific capacitance of material as well as
lower C:O ratios [2]. Moreover, sometimes the oxidative treatment with sulfuric acid or
nitric acid does not lead to a significant improvement in specific capacitance (the latter
varied from 2.9 to 3.67 F g−1 for chemically treated CNT-based textile samples) [31].

Figure 9 shows cyclic voltammetry curves showing peaks at 480–530 mV, correspond-
ing to redox processes occurring with oxygen in functional groups (namely the oxida-
tion and reduction of the hydroxyl and carbonyl group –CHO ↔ COH at a potential
~500 mV) [65]. The peaks around 500 mV were recorded for the entire set of treated sam-
ples. It is worth noting that the current spikes at 100 mV for the MWNT-4060_6M sample
were observed, but there are no reported data describing processes at this voltage.

The specific capacitance taken at low sweep speeds reflects to a greater extent the
capacitance of the material itself, however, we cannot ignore the rich group composition
on the surface layer. For MWNT-1020, lower solution concentrations result in the highest
number of functional groups. Even at low total oxidation degree in the sample treated in a
6M solution, there is a large amount of chromium (1.6 at.%), which, in turn, influenced a
sharp jump in capacitance, associated precisely with the intercalation of Cr2O3. The MWNT-
4060 sample possessed a lower disorder degree compared to MWNT-1020, and the first is
oxidized but not as strong. It is worth noting that for the 6M solution, there is over-etching
of the surface, leading to both peeling of graphene layers from the surface (structural
damage), and the oxidation of the already existing groups to CO or CO2 predominantly.
Because of this, the specific capacitance of MWNT-4060_6M was very low compared to
other treated samples. The impact of surface area on the enhancement of the capacitance of
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MWCNTs is negligible, since the treatment with dichromic acid did not lead to an increase
in this value (Table 3).

Overall, the study demonstrated that the treatment of MWCNTs with dichromic
acid using various concentrations can significantly improve their texture characteristics,
elemental composition, and surface chemistry. This treatment can be useful for various
applications of MWCNTs, such as in membranes, energy storage, catalysis, gas sensors,
and biomedical applications.
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4. Conclusions

Two different brands of MWCNTs were used for investigation, and they showed
different behavior in dichromic acid solutions. The decrease in average diameter of the
treated carbon nanotubes was found. The main result of this paper is the strong oxidation
of CNTs and intercalation of chromium (III) oxide into multi-walled carbon nanotubes after
treatment with dichromic acid that was revealed by XRD, Raman spectroscopy, and XPS.
The concentration of chromium in the sample was at the level of 0.1–1.68 at.% (according to
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EDX). At the same time, TEM images did not show the formation of any other inclusions
in the samples except for MWCNTs. The treatment with dichromic acid made it possible
to significantly improve the specific capacitance of MWCNTs in H2SO4 electrolyte and
reach the values above 70 F/g (at 10 mV s−1). The study demonstrated that the treatment
of MWCNTs with dichromic acid using various concentrations can significantly improve
their physical and chemical properties. The treatment can be useful for various applica-
tions of MWCNTs in membranes, energy storage, catalysis, gas sensors, and biomedical
applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes13080729/s1. Figure S1. TEM images of treated
samples of MWNTs: (a) MWNT-1020_1M; (c) MWNT-1020_3M; (e) MWNT-1020_6M; (b) MWNT-
4060_1M; (d) MWNT-4060_3M; (f) MWNT-4060_6M. Figure S2. Distribution of diameters of CNFs
formed during the treatment: (a) MWNT-1020 samples; (b) MWNT-4060 samples. Figure S3. HAADF-
STEM micrographs of MWNT-4060_3M sample. Figure S4. C1s X-ray photoelectron spectra of treated
samples: (a) MWNT-4060_1M; (b) MWNT-1020_1M; (c) MWNT-4060_3M; (d) MWNT-1020_3M.
Figure S5. Pore size distribution of MWCNT samples with high specific capacitance: (a) WNT-
1020; (d) MWNT-4060 initial samples; (c) MWNT-1020_6M; (d) MWNT-4060_3M chemically treated
samples.
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