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Abstract: Medical product contamination has become a threatening issue against human health,
which is the main reason why protective nonwoven fabrics have gained considerable attention. In
the present, there is a soaring number of studies on establishing protection systems with nonwoven
composites via needle punch. Meanwhile, the disadvantages of composites, such as poor mechan-
ical performance and texture, impose restrictions. Hence, in this study, an eco-friendly method
composed of needling, hot pressing, and lamination is applied to produce water-resistant, wind-
proof, and antimicrobial Tencel/low-melting-point polyester-thermoplastic polyurethane/Triclosan
(Tencel/LMPET–TPU/TCL) laminated membranes. Field-emission scanning electron microscope
(SEM) images and FTIR show needle-punched Tencel/LMPET membranes successfully coated with
TPU/TCL laminated membranes, thereby extensively improving nonwoven membranes in terms of
water-resistant, windproof, and antimicrobial attributes. Parameters including needle punch depth,
content of LMPET fibers, and concentration of TCL are changed during the production. Specifi-
cally, Tencel/LMPET–TPU/TCL–0.1 laminated nonwovens acquire good water resistance (100 kPa),
outstanding windproof performance (<0.1 cm3/cm2/s), and good antimicrobial ability against
Escherichia coli and Staphylococcus aureus. Made with a green production process that is pollution-free,
the proposed products are windproof, water resistant, and antimicrobial, which ensures promising
uses in the medical and protective textile fields.

Keywords: Tencel; low-melting-point polyester (LMPET); needle-punch; laminated nonwovens;
thermoplastic polyurethane (TPU); protective properties

1. Introduction

Nonwoven products comprise 60–70 percent of medical protection applications, and
thus gain extensive attention. Nonetheless, owing to the low strength of the constituent
fibers, nonwoven fabrics have lower mechanical performances that constrain their indus-
trial uses. However, in a practical medical environment, medical practitioners are prone
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to contamination caused by bacteria, blood, and other pollutant fluids, and protective
textiles are thus required to be antimicrobial and fluid-contamination-proof; to implement
these, the majority of scholars coat or use other means to combine polymers and nonwoven
matrices in order to expand the protection level of the nonwoven fabrics [1].

In the present day, PU showing various unique features, e.g., high elasticity, good
tenacity, ultralightness, highly waterproof quality, and chemical-pollution-resistance prop-
erties has become one of the promising membrane materials [2–5]. Meanwhile, a growing
number of antimicrobial PU membranes are becoming popular in the medical textile field.
Most antimicrobial substrates can be used in the fabricating process, such as silver, quater-
nary ammonium groups, zinc oxide, chitosan, and triclosan [6–8]. Among antimicrobial
agents, triclosan (TCL) exhibits the most potential due to its wide-spectrum antimicrobial
activities [9]. For example, Zhao et al. [10] prepared a composite fibrous membrane con-
taining antibacterial polyurethane (PU) by using an electrospining method; Dong et al. [11]
created bilayered fibrous membranes consisting of an antibacterial agent and polymers;
the electrospun dual-layer mats could continuously and spontaneously guide the direc-
tional water transport. Moustafa et al. [12] studied the feasibility of preparing antibac-
terial polyurethane composites for green packaging applications. In our previous study,
TCL/TPU was employed to improve water protection and antibacterial activity [13]. The
above studies are very significant because they are helpful in improving products’ antimi-
crobial abilities, but most scholars explore only woven/TCL antimicrobial and mechanical
properties. In fact, composites that have only antimicrobial ability do not satisfy the practi-
cal applications of the medical environment. The potential of Tencel/LMPET–TPU/TCL
composite membranes for producing protective wear with excellent water protection and
windproof and antimicrobial performance has not been explored. In fact, coupling the mul-
tifunctional performances with composite membranes is a challenge because the physical
properties of polymers and nonwovens are very different.

Based on the current studies, we propose a feasible method to generate laminated non-
wovens with multiple functions; herein, the LMPET content as well as the triclosan content
are changed in order to strengthen the protection performance. First, LMPET fibers with a
sheath–core structure are used as reinforcement that is combined with Tencel fibers via hot
pressing, forming Tencel/LMPET nonwoven fabrics. On this basis, they are combined and
laminated with TPU/TCL compound membranes. Next, the morphology, FTIR, the water
resistance, the windproof property, the texture, and the mechanical properties are compared
systematically. The proposed laminated nonwovens have significant qualities, such as the
use of industrial-grade materials, multiple protections of products, lower consumption
of material, and feasibility of mass production, providing a new direction for developing
medical and outdoor protective materials.

2. Experimental Section
2.1. Materials

Tencel® fibers (known as Lyocel fibers, Haosen Fiber Technology Co., Ltd., Taichung
City, Taiwan, China) have a fineness of 1.7 dtex and a length of 51 mm. Low-melting-point
polyester fibers (LMPET fibers, Huvis Chemical Fiber Corporation, Seoul, Republic of
Korea) have a fineness of 4 denier, a length of 64 mm, and a melting point of 110 ◦C. Ther-
moplastic polyurethanes (TPU, HV-7280EB, Headway Polyurethane Co., Ltd., Taichung
City, Taiwan, China) have a melt index (MI) of 32 g/10 min (190 ◦C/8.7 kg). Triclosan
(USP-K001.1) is provided by Taiwan Pharma-UP Enterprise Co., Ltd., Taichung City,
Taiwan, China). PU resin is purchased from Twanfong Chemical Reagent Co., Ltd.,
Taichung City, Taiwan, China.

2.2. Preparation of Tencel/LMPET-TPU/Triclosan Laminated Membranes

To begin with, Tencel and LMPET fibers are blended at 100/0, 90/10, 80/20, 70/30,
60/40, and 50/50, and then the mixtures undergo opening, blending, laminating, and
needle punching successively, producing Tencel/LMPET nonwoven fabrics with an areal
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weight of 130 ± 10 g/m2, a needle punch density of 200 needle/min, and a needle punch
depth of 14 mm. Next, nonwoven fabrics are hot pressed at 160 ◦C at a rate being 7 rpm/min
as seen in Figure 1a.
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Figure 1. The manufacturing process of functional laminated nonwovens: (a) Tencel/LMPET nonwo-
ven fabrics and (b) Tencel/LMPET–TPU/TCL laminated composite membranes.

Next, the melt blending-coating method is used to produce TPU/triclosan compound
membranes containing different triclosan contents. The temperature for the single-screw
melt-blending process is 170 ◦C. Furthermore, Tencel/LMPET nonwoven fabrics and
TPU/TCL membranes are bonded at 90 ◦C using PU resin. The resulting products are
named Tencel/LMPET–TPU/TCL–x where x represents the triclosan contents, which are 0,
0.01, 0.05, 0.1, and 0.2, as shown in Figure 1.

2.3. Measurements and Characterizations

The morphology of membranes was characterized by a field-emission scanning elec-
tron microscope (FE-SEM, S-4800, HITACHI, Tokyo, Japan). The surface chemistry structure
of the membranes was analyzed using a Fourier transform (FTIR) spectrometer (NICOLET
iS10, Thermo Fisher Scientific, Waltham, MA, USA).

A hydrostatic pressure test was used to evaluate the water resistance. Bursting strength
(Figure 2a), tensile strength, flexibility (Figure 2b), and windproof properties were measured
to evaluate the durability and comfort of the nonwoven membranes (Table 1). Membranes
of tensile strength were taken along the machine direction (MD) and the cross machine
direction (CD) separately for the test. A qualitative assessment antimicrobial testing was
used to evaluate the membranes by observing the inhibition zones of two test strains:
Staphylococcus aureus (ATCC25923) and Escherichia coli (ATCC25922). The protocol was
performed according to the procedure described by Pinho et al. and Shiu et al. [14] Each
sample was tested at least five times.
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Table 1. Test on the membrane specimens.

Test Name Test Criterion Instrument Sample Size, cm

Hydrostatic pressure AATCC 127 YG812, Nantong Hongda Experiment
Instruments Co., Ltd., Nantong, China

circular with
a diameter of 100

Bursting Strength ASTM F2054-07 Instron 5565, Instron, Boston, MA, USA 15 × 15
Tensile strength ASTM D5035-11 Instron 5565, Instron, Boston, MA, USA 180 × 2.54

Windproof performance ISO 9273:1995
TEXTEST FX3300,

Aidengwei Automation Instruments,
Shanghai, China

25 × 25

Flexibility GB/T18318.1-2009 DRK207BDRK, DRK Experiment
Instruments Co., Ltd., Shandong, China 2.5 × 25

Antimicrobial properties AATCC 90-2011 Solid agar Petri plate, Hengfeng Medical
Instruments Co., Ltd., Huangshi, China

circular with
a diameter of 1

3. Results and Discussion
3.1. Mechanical, Breathable Properties, and Flexibility of Tencel/LMPET Nonwoven Fabrics

Figures 3 and 4 show the serial functions of Tencel/LMPET nonwoven fabrics, espe-
cially the mechanical properties that is the index of the service life of materials. According
to our previous study, when LMPET fiber content exceeds 70%, the thermal bonding level
among fibers reaches saturation. It is notable that 70% of LMPET fibers result in extreme
rigidity and brittleness for nonwoven fabrics, and studies suggest that the appropriate an
LMPET fiber content is 30–40 wt %. Therefore, LMPET fiber content is set between 0 wt %
and 50 wt % in this study. Figure 4 shows the tensile strength of Tencel/LMPET nonwoven
fabrics as related to the needle punch depth and the LMPET fiber content. Figure 3a,b show
that either along the CD or the MD, a rise in the LMPET fiber content improves the tensile
strength of nonwoven fabrics significantly because the sheath of LMPET fibers is melted to
construct bonding points. As a result, the nonwoven density is increased, which enable
Tencel/LMPET nonwoven fabrics to withstand an additional load.
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As far as the test direction is concerned, regardless of the needle punch depth and
LMPET fiber content, Tencel/LMPET nonwoven fabrics exhibit a greater tensile strength
along the CD than the MD, which is ascribed to the needle punch machine and process.
The discharge directions of the carding machine and needle punch machine are perpen-
dicular. When fibers are arranged along the CD, they gain a greater contact area, and
fibers can generate a greater friction along the direction of an external force. Therefore,
Tencel/LMPET nonwoven fabrics exhibit a greater tensile strength along the CD [15]. In
addition, Figure 3c,d demonstrate the effect of the needle punch depth on the mechanical
properties of Tencel/LMPET nonwoven fabrics. The tensile strength of nonwoven fabrics
is proportional to the needle punch depth because there is an increasing amount of vertical
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fiber bundles that enhances the entanglement and compactness among fibers. Afterwards,
the employment of hot pressing contributes to more thermal bonding points and thereby
achieving greater tensile properties. By contrast, pure Tencel nonwoven fabrics do not
demonstrate the same trend in tensile strength as related to the needle punch depth. The
tensile strength of pure Tencel nonwoven fabrics is not improved when the needle punch
depth is increased. Although the needle punch depth only strengthens the entanglement
level of fibers, thermal bonding points are absent in the pure Tencel nonwoven fabrics and
result in limited reinforcement.

Figure 3e shows the bursting strength of Tencel/LMPET nonwoven fabrics as related
to the needle punch depth and the LMPET fiber content. The bursting strength is improved
when the LMPET fiber content increases. Moreover, a needle punch depth of 14 mm
provides Tencel/LMPET nonwoven fabrics with greater bursting strength than a needle
punch depth of 12 mm. Similarly, a greater needle punch depth generates a greater amount
of vertical fiber bundles that help produce more bonding points during the hot pressing
process, increasing the bursting strength considerably. Besides, functional nonwoven
fabrics also demand good texture and a high comfort level. The incorporation of LMPET
fibers effectively strengthens the mechanical properties of nonwoven fabrics, but the main
challenge is the balance between the mechanical properties and the texture.

Figure 4a,b show the flexibility and windproof properties of Tencel/LMPET nonwo-
ven fabrics as related to the needle punch depth and the LMPET fiber content. A rise in
the LMPET fiber content has a positive influence on the bending length while adversely
affecting the air permeability. The mechanism is that a greater number of thermal bonding
points increases the fiber density. Comparing to the control group without hot pressing,
the experimental groups are constrained with fiber slippage due to the presence of thermal
bonding points. As a result, the more LMPET fibers, the more the thermal bonding points,
and the less flexiblity the fibers gain. A needle punch depth of 14 mm, rather than 12 mm,
generates a distinctively longer bending length for Tencel/LMPET nonwoven fabrics. Bend-
ing length (i.e., rigidity) and other mechancal properties share the same reliance on the
thermal bonding points. Furthermore, as Figure 4b shows, Tencel/LMPET nonwoven
fabrics containing more LMPET fibers show a higher windproof property, whereas non-
woven fabrics containing a smaller amount of LMPET fibers are more windproof. Based
on the previous study, LMPET fibers could reduce the porosity of nonwoven fabrics be-
cause of the employment of hot pressing, causing significantly lower air permeability and
a greater windproof property. Moreover, a needle punch depth of 14 mm provides the
Tencel/LMPET nonwoven fabrics with a distinctively lower air permeability than a needle
punch depth of 12 mm, which is ascribed to the same cause for lower mechanical properties.
Therefore, with other parameters, the optimal Tencel/LMPET nonwoven fabrics attain
synergistically improved machanical properties and flexibility when made of 40 wt % of
LMPET fibers. This ratio of LMPET fibers is thus used for subsequent discussions.

3.2. Antimicrobial Activity Evaluation of the TPU/Triclosan (TCL) Membrane

Considering that biomaterials are prone to bacterial contamination, antimicrobial
efficacy is indispensable for composite laminated nonwoven products when used clinically.
Among tremendous antimicrobial agents, triclosan can effectively inhibit Gram-negative
bacteria and Gram-positive bacteria when used with a low concentration. Therefore,
triclosan is a highly efficient antimicrobial agent [16,17] and has been pervasively used in
the industrial products for it meets the European Union and US requirements [18–21]. It is
notable that the aforementioned standards demand that the dosage of triclosan needs to be
lower than 0.3 wt %. As a result, current studies exploring antimicrobial efficacy only use
0.2 wt % triclosan.

Figure 5 shows that pure TPU membranes barely show an inhibition zone. Because of
an insufficient amount of triclosan, TPU-TCL-0.01 and TPU-TCL-0.05 membranes are not
effective in destroying harmful Gram-negative E. coli bacteria; the former does not exhibit
an inhibition zone while the latter shows an insignificant level of antimicrobial performance.
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Conversely, TPU-TCL-0.1 and TPU-TCL-0.2 display stable and distinctive antimicrobial
performance. As far as Gram-positive S. aureus bacteria are concerned, TPU-TCL-0.01 is
capable of killing and reducing the bacteria, whereas pure TPU membranes fail to generate
an inhibition zone. The membranes have increasingly strengthened antimicrobial efficacy
as a result of a rise in triclosan.
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TPU/TCL membranes possess good antimicrobial effect against E. coli and S. aureus,
especially the latter. Interestingly, TPU/TCL membranes have much greater antimicrobial
effect against S. aureus than against E. coli, as substantiated by a wider inhibition zone.
In terms of bacterial type, E. coli is Gram-negative and S. aureus is Gram-positive. The
difference in sensitivity between Gram-negative and Gram-positive bacteria is probably
due to the different organization of the cellular structure. The cell membrane of Gram-
negative bacteria is composed of lipopolysaccharides, lipids, and protein, which leads
to a narrower inhibition zone [22–25]. To sum up, based on the specified manufacturing
parameters, considering the stable and reproductive antimicrobial effect, TPU-TCL-0.1 is
the optimal group and used for subsequent examinations.

The membranes are responsive differently to Gram-negative and Gram-positive bacte-
ria. Composed of lipopolysaccharides, lipids, and protein, Gram-negative bacteria have a
different cell structure from S. aureus, and thus causes a narrower inhibition zone [22–24].
To sum up, based on the specified manufacturing parameters, considering the stable
and reproductive antimicrobial effect, TPU-TCL-0.1 is the optimal group and used for
subsequent examinations.

3.3. Morphology and FTIR of the Lamination Composite Membranes

In this study, Tencel/LMPET nonwoven fabrics are made in a specified ratio of 60/40,
which means there are 40 wt % of LMPET fibers. According to the previous discussion,
TPU/TCL membranes containing 0.1 wt % of triclosan (TPU/TCL-0.1) are optimal. In this
section, there are three sample groups, involving the control group (pure composite non-
wovens) and the experimental groups (nonwoven-membrane, containing 0 and 0.1 wt % of
triclosan). The samples are named according to the constituent materials, which are Ten-
cel/LMPET nonwovens, Tencel/LMPET–TPU/TCL–0, and Tencel/LMPET–TPU/TCL–0.1,
respectively. The SEM images in Figure 6a–c show the morphology of laminated nonwo-
vens as related to three triclosan contents. Figure 6 clearly shows the structure of pure TPU
membranes. With the presence of triclosan, TPU membranes retain the structure without
any remarkable difference, regardless of whether it is in Tencel/LMPET–TPU/TCL–0.1
or Tencel/LMPET–TPU/TCL–0. Furthermore, Figure 6c,c’ shows the cutting section of
Tencel/LMPET–TPU/TCL–0.1 where the three constituent layers are laminated from top to
bottom in order, including a Tencel/LMPET nonwoven fabric, PU resin, and a TPU/TCL-0.1
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membrane. Simply put, the top and bottom layers are firmly attached with the PU interlayer.
Moreover, the thickness is 132 µm for the PU resin and 19 µm for the TPU/TCL membranes.
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Figure 7 shows the FTIR spectra of the TCL, TPU/TCL membranes and Tenecel/LMPET-
TPU/TCL composite membranes. The bands at 2946 cm−1 and 2856 cm−1 demonstrate the
presence of symmetric and asymmetric stretching of the –CH2 and –CH3 groups [26,27].
The characteristic carbonyl-stretching (C=O) absorption peak of PCL at 1728 cm−1 is
presented for all the spectra of TPU/TCL and composite membranes [28]. Peaks at 1406,
1520, and 1619 cm−1 originate from the benzene ring C=C group of TPU [29]. The bands
at 1311 and 997 cm−1 are attributed to C–O–C and C–O, respectively. The TPU/TCL and
composite membranes exhibit typical –NH peak characteristic bands at 3334 cm−1 for
the stretching vibration of the amide group [30]. There are specific absorption peaks at
3300 cm−1 related to –OH bonds in TCL [31]. As shown in spectra between 900–600 cm−1,
the peaks at 762 cm−1 and 864 cm−1 indicate C–Cl bonds and C–C [9]. The FTIR spectra
indicate that TPU/TCL membranes has been successfully deposited onto the nonwovens
after lamination.
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3.4. Water Resistance and Machanical Properties of the Lamination Composite Membranes

Figure 8a–f demonstrate the mechanical properties of laminated nonwovens. Re-
gardless of the triclosan content, the experimental groups have greater strengths than the
control group (i.e., Tencel/LMPET nonwoven fabrics). This result can be attributed to the
structure of laminated nonwovens as seen in Figure 6c. As for the control group, fibers
are entangled and bonded by the melted sheath of LMPET fibers, indicated by a dotted
blue circle in Figure 6c’. The damage mechanism of a tensile force is mainly based on the
sliding fibers for pure nonwoven fabrics, which is totally different from that of laminated
nonwovens. By contrast, laminated nonwovens consist of PU resin and TPU membranes
via different combinations between heterogeneous polymers, which in turn causes different
mechanical responses and deformation [32]. Moreover, PU resin creates tremendous solid-
ifying bonds that immobilize some portions of the fibers, with flexible TPU membranes
being bonded as a protective layer, providing laminated nonwovens with toughness and
strength to withstand extra expansion. Concurrently, the presence of nonwoven fabrics
serves as a supportive source, improving the mechanical properties effectively. In addition,
Tencel/LMPET–TPU/TCL–0 and Tencel/LMPET–TPU/TCL–0.1 show comparable tensile
strength, which is in conformity with the result of a previous study [33]. Figure 8b shows
the bursting strength of the control group (i.e., Tencel/LMPET nonwoven fabrics) and
experimental groups (i.e., Tencel/LMPET–TPU/TCL–0, and Tencel/LMPET–TPU/TCL–0.1
laminated nonwovens). It is apparent that the laminated nonwovens outperform pure
nonwoven fabrics in terms of bursting strength, which is ascribed to the same damage mech-
anism discussed for tensile strength, and so the TPU protective layer enhances the bursting
strength. As the incorporation of triclosan with laminated nonwovens does not affect the
morphology of the products (Figure 6), triclosan is irrelevant with the bursting strength.

In addition to the mechanical properties, outdoor and medical products demand
water resistance and flexibility, too. Figure 8c shows that the experimental groups still
possess greater flexibility than the control group, which is also attributed to the resilient
TPU membrane. Unlike the control group, which is without the waterproof attribute, the
experimental groups exhibit water resistance as high as 100 kPa (Figure 8d), the mecha-
nisms of which are shown in Figure 8e,f. The hydrophobic properties of solid surfaces are
related to the surface chemical composition and microstructure, such as whether it is a
rough surface or not. For the chemical composition, TPU is a hydrophobic elastic polymer
with soft segments and hard segments, and its membranes do not have pores (as seen in
Figure 6), which in turn provide laminated nonwovens with high water resistance and
windproof functionality. Furthermore, the water resistance mechanism can be expained
by the Laplace–Young equation, which was correlated to the membrane pores and water
surface tension (γ). In comparison with the control nonwovens, the introduction of a TPU
hydrophobic film changes the surface tension of the laminate composite membranes, thus
improving the hydrophobic property [34–37]. The water resistance and antimicrobial prop-
erty of the proposed laminated nonwovens (Tencel/LMPET–TPU/TCL–0.1) are compared
with the results of a previous study [2–4,11,34,38–43] (as seen in Table 2), in which the
hydrostatic pressure was 15–84 kPa for PU-contained laminated fabrics and 38–83 kPa
for electrospinning nonwoven membranes. By contrast, Tencel/LMPET–TPU/TCL–0.1
laminated nonwovens show a greater hydrostatic pressure of 100 kPa because of LMPET
fibers and compact PU pore-free membranes. The proposed laminated nonwovens also
receive a generally favorable water resistance via the employment of needle punch, hot
press, full cure of PU resin, and lamination.
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Figure 8. (a) Tensile strength, (b) busting strength, (c) bending length, and (d) waterproof & breathable
performance of the control group, Tencel/LMPET–TPU/TCL–0, and Tencel/LMPET–TPU/TCL–0.1
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Table 2. Comparison of the water resistance and antimicrobial performances between this study and
previous studies.

Substrate Modifacation
Materils

Treatment
Method

Hydrostatic
Pressure, kPa

Antimicrobial Activity
Ref.

E. coli S. aureus

Tencel/LMPET@PU PU/TCL Lamination 100 # # This work
Polyester@PU PU Lamination 78 × × [2]

Taslan@PU PU Lamination 84 × × [3]
Cotton@PU PU Lamination 52 × × [4]

PAN@PVDF/ZnO PVDF/ZnO Electrospun — # × [11]
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Table 2. Cont.

Substrate Modifacation
Materils

Treatment
Method

Hydrostatic
Pressure, kPa

Antimicrobial Activity
Ref.

E. coli S. aureus

Nylon@PU PU Lamination 32 × × [34]
Nylon@WPU WPU Coating 15 × × [38]
PVDF/PVB PVB Electrospinning 58 × × [39]
PAN/WFPU WFPU Electrospinning 83 × × [40]

PVDF/PU/PVDF PVDF Electrospinning 38 × × [41]
PET/VIS/cotton@AgCl AgCl Spraying — # # [42]
Tencel/cotton@propoils propoils Dip coating — # # [44]

Where # stands for the antimicrobial property and × refers to non antimicrobial property. PVDF: polyvinylidene
fluoride; PVB: polyvinyl butyral; PU: polyurethane; WPU: waterborne polyurethane; PAN: polyacrylonitrile.

4. Conclusions

A Tencel/LMPET–TPU/TCL composite membrane was successfully prepared via a
simple needle punch and lamination method. The improved mechanical properties of
the nonwoven membranes could be achieved with an increase in LMPET ratio. The test
results indicate that a needle punch depth of 14 mm, LMPET fiber content of 40%, and TCL
concentration of 0.1% contribute to an outstanding water resistance of 100 kPa, an excellent
windproof property that is lower than 0.1 cm3/cm2/s, and good antimicrobial ability
against E. coli and S. aureus. These experimental results are quite significant, considering the
lower consumption of antimicrobial agent, easier processing, and multiple protections. The
cooperative strategy of needle punch and lamination is suitable for large-scale production.
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20. Cieślak, M.; Solarz, K.; Kamińska, I. Effect of bioactive modified nonwoven systems on the development of house dust mites

Dermatophagoides farinae (Acari: Pyroglyphidae) in laboratory assay. Text. Res. J. 2014, 85, 469–478. [CrossRef]
21. Zain, N.B.M.; Akindoyo, J.O.; Beg, M.D.H. Synthetic Antimicrobial Agent and Antimicrobial Fabrics: Progress and Challenges.

IIUM Eng. J. 2018, 19, 10–29. [CrossRef]
22. Fiori, M.A.; Paula, M.M.S.; da Silva, L.; Santos, M.F.; Angioletto, E.; Riella, H.G.; Quadri, M.G.N. Extrusion Effects with

Bactericidal Additives in Polymer Wood Composites. Int. Polym. Process. 2009, 24, 414–420. [CrossRef]
23. Comim, L.M.; Gazolla, P.S.; Santiago, T.V.F.; Duarte, G.W.; Angioletto, E.; Pich, C.T.; Piletti, R.; Fiori, J.; Riella, H.G.; Fiori, M.A.

Effect of the Extrusion Process on the Bactericidal Performance of Biocidal Polypropylene Catheters. Polym. Plast. Technol. Eng.
2012, 51, 283–289. [CrossRef]

24. Pandimurugan, R.; Thambidurai, S. UV protection and antibacterial properties of seaweed capped ZnO nanoparticles coated
cotton fabrics. Int. J. Biol. Macromol. 2017, 105, 788–795. [CrossRef]

25. Yu, Z.-C.; Zhang, J.-F.; Lou, C.-W.; He, H.-L.; Chen, A.-P.; Lin, J.-H. Moisture Comfort and Antibacterial Properties of Elastic
Warp-Knitted Fabrics. Autex Res. J. 2015, 15, 60–66. [CrossRef]

26. Yousefi, N.; Gudarzi, M.M.; Zheng, Q.; Lin, X.; Shen, X.; Jia, J.; Sharif, F.; Kim, J.-K. Highly aligned, ultralarge-size reduced
graphene oxide/polyurethane nanocomposites: Mechanical properties and moisture permeability. Compos. Part A Appl. Sci.
Manuf. 2013, 49, 42–50. [CrossRef]

27. Zhang, L.; Li, Y.; Yu, J.; Ding, B. Fluorinated polyurethane macroporous membranes with waterproof, breathable and mechanical
performance improved by lithium chloride. RSC Adv. 2015, 5, 79807–79814. [CrossRef]

28. Zeng, Z.; Mavrona, E.; Kummer, N.; Nystrm, G. Terahertz Birefringent Biomimetic Aerogels Based on Cellulose Nanofibers and
Conductive Nanomaterials. ACS Nano 2021, 15, 1381. [CrossRef] [PubMed]

29. Moiz, A.; Padhye, R.; Wang, X. Coating of TPU-PDMS-TMS on Polycotton Fabrics for Versatile Protection. Polymers 2017, 9, 660.
[CrossRef]

30. Moiz, A.; Vijayan, A.; Padhye, R.; Wang, X. Chemical and water protective surface on cotton fabric by pad-knife-pad coating of
WPU-PDMS-TMS. Cellulose 2016, 23, 3377–3388. [CrossRef]

31. Yu, Z.; Liu, J.; He, H.; Ma, S.; Yao, J. Flame-retardant PNIPAAm/sodium alginate/polyvinyl alcohol hydrogels used for
fire-fighting application: Preparation and characteristic evaluations. Carbohydr. Polym. 2021, 255, 117485. [CrossRef]
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