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Abstract: Oxygen and hydrogen mobility are among the important characteristics for the opera-
tion of solid oxide fuel cells, permselective membranes and many other electrochemical devices.
This, along with other characteristics, enables a high-power density in solid oxide fuel cells due
to reducing the electrolyte resistance and enabling the electrode processes to not be limited by the
electrode-electrolyte-gas phase triple-phase boundary, as well as providing high oxygen or hydrogen
permeation fluxes for membranes due to a high ambipolar conductivity. This work focuses on the
oxygen and hydrogen diffusion of mixed ionic (oxide ionic or/and protonic)–electronic conducting
materials for these devices, and its role in their performance. The main laws of bulk diffusion and
surface exchange are highlighted. Isotope exchange techniques allow us to study these processes in
detail. Ionic transport properties of conventional and state-of-the-art materials including perovskites,
Ruddlesden–Popper phases, fluorites, pyrochlores, composites, etc., are reviewed.

Keywords: solid oxide fuel cells; oxygen separation membranes; hydrogen separation membranes;
oxygen mobility; hydrogen mobility; isotope exchange of oxygen

1. Introduction

One of the major important challenges facing modern society is the necessity to search
for renewable and environmentally friendly energy sources [1–6]. The progressive trend
in alternative energy research is directed towards the intensive development of hybrid
configuration systems that combine multiple energy sources and power systems to maxi-
mize the efficiency of energy production, use and storage [7–12]. Current polygeneration
technologies include, among others, the combination of the solid oxide fuel cell (SOFC)
as a promising source of direct energy production [13–16] with batteries, gas turbines,
vehicles, heat systems, desalination systems, and hydrogen production systems [17–23].
The hybrid systems of SOFCs with proton-exchange membrane fuel cells [18,20,24] and
waste-to-energy systems based on biofuels [25,26] should be mentioned separately.

The environmentally and economically efficient production of hydrogen and syngas
for the above-mentioned polygeneration systems [27] and the dominant strategy to reduce
the operating temperature of SOFCs [28] require the development of high-performance
construction materials. They can be used for the design of electrodes [29–35] and elec-
trolytes [36–41] in SOFCs and for the design of gas separation membranes [42–46] as well
as in catalytic membrane reactors [47–49]. Oxide materials with mixed ionic-electronic
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conductivity (or mixed ionic electron conductors, MIECs) are considered as a prospective
class of multifunctional materials and are widely investigated for their use in both SOFCs
and membrane reactors [50–56].

Adler et al. [57] and Sadykov et al. [58] showed that the performance of SOFCs and
permselective membranes, both based on MIECs, correlates with the oxygen mobility and
surface reactivity, which can be characterized by the values of the oxygen self-diffusion
coefficient and surface exchange constant. According to the Adler–Lane–Steele model,
the electrode activity is defined both by the values of the oxygen self-diffusion coefficient
and the surface exchange constant of the electrode material and by the microstructure
characteristics [57,59]. In contrast to cathodes made of materials with dominant elec-
tronic conductivity, whose performance is limited by the triple-phase boundary (TPB),
the performance of MIEC cathodes is limited by the double-phase boundary (DPB). It
stimulates the oxygen reduction reaction at the cathode and enhances ion transport to the
electrolyte [58,60–62].

Materials with mixed ionic-electronic conductivity are successfully applied in the
design of oxygen separation membranes in catalytic membrane reactors to separate oxygen
from air, while the oxygen is used in the oxidation of biofuels (methane, ethanol, etc.)
to produce syngas as fuel for SOFCs. An asymmetric configuration of the membrane
design includes a porous substrate and a gas-tight permselective layer, thus ensuring
increased mechanical strength combined with a high oxygen flux [58]. High oxygen fluxes
across the membrane and superior performance in catalytic reactions could be achieved
if the materials used for the oxygen separation membranes (or for the permselective
layer in the case of the asymmetric configuration) have a high mixed ionic-electronic
conductivity [56,59].

The unique review work by Manthiram et al. [63] provides a comprehensive overview
of the correlations between the chemical composition, crystal structure, transport properties
and electrochemical performance of the mixed ionic-electronic oxide conductors that could
be used in both SOFCs and membrane reactors. Oxides with the perovskite structure ABO3,
layered perovskites LnBaCo2O5+δ, Ruddlesden–Popper phases (La,Sr)n+1MnO3n+1 and
hexagonal phases RBa(Co1−yMy)4O7 have been widely discussed in the review. Meanwhile,
it is worth noting that review [63] was published in 2011.

A global search in the scientometric database Scopus with the query {mixed ionic
electron conductor} yielded 535 documents of the type of Article and Review, indexed
in the period from 1986 to June 2023. Figure 1, constructed with the software package
VOSviewer version 1.6.19 [64] considering a minimum number of occurrences equal to
20 author keywords, visualizes the map with thematic clusters related to MIECs according
to the query {mixed ionic electron conductor}.

The graphical data shown in Figure 1 illustrate that the author keywords in the doc-
uments referring to MIECs can be divided into three thematic clusters: the green cluster
focusing on SOFCs, the red cluster focusing on oxygen membranes, and the blue cluster
focusing on electrical conductivity. It can be said that the blue cluster highlights the fun-
damental property of MIECs—the presence of ionic and electronic conductivity—while
the red and green clusters characterize the applications of MIECs. The green cluster sum-
marizes the electrochemical activity of MIECs as the anode, cathode, including composite,
and electrolyte materials, and the electrochemical performance of MIEC-based SOFCs in
general. The red cluster generalizes the topics related to oxygen transport in MIEC-based
membranes: oxygen mobility, oxygen permeability, oxygen diffusion, surface reactivity
and ion exchange. Thus, published documents on the mixed ionic-electronic conductors
can, therefore, be grouped under the three research themes mentioned above.
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Figure 1. Thematic map of co-occurring author keywords from search results for the keyword {mixed
ionic electron conductor (MIEC)} in the Scopus database.

Among the highly cited documents in the MIEC search list in the Scopus database, the
reviews highlighting the applications of MIECs as the anode [65,66] and cathode [67,68] ma-
terials for SOFCs and as the ceramic separation membranes [50–52] were found. However,
it is worth noting that all the above reviews were published up to the year 2017. Therefore,
the aim of the present review is to summarize recent studies on the oxide materials with
mixed ionic-electronic conductivity, such as perovskites, fluorites, Ruddlesden–Popper
phases, pyrochlores, and composites, focusing on their ion transport properties: oxygen and
hydrogen diffusion, oxygen and hydrogen isotope exchange, and oxygen and hydrogen
mobility. The applications of MIECs in SOFCs as cathodes and as the functional layers of
the oxygen separation membranes are also highlighted.

2. Importance of Oxygen and Hydrogen Transport Properties for the Performance of
Membranes and SOFCs
2.1. Oxygen Separation Membranes

High oxygen mobility and surface reactivity as well as a high electronic conductiv-
ity are the crucial characteristics of oxygen separation membrane materials required for
achieving high oxygen permeation fluxes. The oxygen bulk diffusion enables oxide ions’
transport across the membrane, while the oxygen surface exchange enables oxygen adsorp-
tion/desorption. Since the oxide ions’ transport across the membrane is coupled with the
electron transport, a high electronic conductivity is required as well (Figure 2). This allows
to use such membranes for pure oxygen production as well as a part of catalytic membrane
reactors for fuels transformation reactions [53,55,58,69–76].
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Figure 2. Schematic diagram of the different sections involved in the oxygen transport during oxygen
permeation [74]. Reprinted with permission from Ref. [74]. Copyright 2019 Elsevier.

The oxygen permeation flux across the membrane
(

jO2

)
obeys the Wagner equation

(Equation (1)):

jO2 = − RT
16F2L

ln PI I
O2∫

ln PI
O2

σOσel
σO + σel

d ln PO2 , (1)

where F is the Faraday constant, L is the membrane thickness, PI
O2

and PI I
O2

are the oxygen
partial pressures at different sites of the membrane, and σO and σel are oxide-ionic and
electronic conductivity, respectively [70]. In MIEC materials, σO << σel. If the ionic conduc-
tivity is constant across the entire membrane thickness, Equation (1) can be simplified as
follows (Equation (2)):

jO2
∼= −

RT
16F2L

σO ln
PI I

O2

PI
O2

. (2)

For MIEC membrane materials with oxygen nonstoichiometry depending on the
oxygen partial pressure proportional to Pn

O2
, the Nernst–Einstein equation of their ionic

conductivity (Section 3) can be re-written as follows (Equation (3)):

σO =
4F2

RTVm
DVδ0Pn

O2
, (3)

where δ0 is the oxygen nonstoichiometry at the reference oxygen pressure (1 atm), Vm
is the molar volume of the oxide, DV is the oxygen vacancy’s self-diffusion coefficient.
Combining this with Equation (1) and assuming σO << σel one can obtain Sievert’s law
(Equation (4)),

jO2 = −DVδ0

4VmL

ln PI I
O2∫

ln PI
O2

Pn
O2

d ln PO2 =

(
A
L

)((
PI

O2

)n
−
(

PI I
O2

)n)
, (4)

where A = DV δ0
4Vmn .
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Considering the effect of the surface exchange of oxygen, the Wagner Equation (2)
is transformed into the modified Wagner equation introduced by Bouwmeester et al.
(Equation (5)) [77]:

jO2 =
1

1 + 2LC
L

− RT
16F2L

σO ln
PI I

O2

PI
O2

. (5)

where LC is the characteristic thickness (will be defined in Section 3).
Several models are used to model the membrane performance based on the mem-

brane material oxygen mobility and surface reactivity, electronic conductivity, and other
characteristics, such as Jacobson’s model [70], Xu and Thomson’s model [70,78], Zhu’s
model [70,75,76]. E.g., Zhu’s model (Figure 3) is based on the Wagner equation and con-
siders the area-specific resistance of membrane surfaces at the air and purge sides (r′

and r′′, respectively), which are proportional to the reciprocal oxygen surface exchange
constant, and the membrane bulk (rb), which is proportional to the reciprocal oxygen
self-diffusion coefficient.
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Figure 3. Conceptualization of oxygen permeation process according to the Zhu model [75].
Reprinted with permission from Ref. [75]. Copyright 2019 Elsevier.

In the case of a multi-layer asymmetric supported membrane, the characteristics of
each layer should be considered along with the properties of gas-phase diffusion in a
porous support [55,58,79–81]. However, gas-phase phenomena are out of the scope of
this review.

2.2. Hydrogen Separation Membranes

Similar to the oxygen separation membranes, a high hydrogen mobility and surface re-
activity as well as a high electronic conductivity are required for hydrogen separation mem-
brane materials. This allows it to reach high hydrogen permeation fluxes for obtaining pure
hydrogen including its production in catalytic membrane reactors for fuel transformation
reactions [42,55,58,82–89]. There are advantages in using triple (H+/O2−/e−)-conducting
materials for hydrogen separation membranes, since the presence of the oxide-ionic com-
ponent of the conductivity can enable the following features:
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1. Some proton transport mechanisms being mediated by the oxygen transport as will
be mentioned in Section 3.2 [90–92];

2. Oxide ion counterpermeation across the membrane allows us to increase the hydrogen
yield due to the water splitting reaction [89,93,94];

3. Triple conductivity allows to enhance the performance in various catalytic reactions
and to improve gas separation properties due to the coupled transport of all types
of mobile species, forcing them to be transported against their chemical potential
gradient [95–97].

The processes in the triple-conductive hydrogen separation membrane are illustrated
in Figure 4.
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For dense metallic membranes, the hydrogen concentration in metal is proportional
to P0.5

H2
[88]. Similar to MIEC oxides with the variation of oxygen nonstoichiometry on the

oxygen partial pressure (Equation (4)), Sievert’s law (Equations (6) and (7)) can be obtained:

jH2 =

(
Pe
L

)((
PI

H2

)n
−
(

PI I
H2

)n)
, (6)

where
Pe = 0.5DHKs (7)

is the hydrogen permeability, PI
H2

and PI I
H2

are hydrogen partial pressures in retentate and
permeate gases, respectively, n is the exponent which in the ideal case is equal to 0.5 (for
real membranes it lies in the range of ~0.5–1), DH is the hydrogen self-diffusion coefficient,
and Ks is the hydrogen solubility constant (Sievert’s constant) [87,88,98].

For ceramic membranes containing only protonic-electronic conductors, the Wagner
equation can be written as follows (Equation (8)):

jH2 = − RT
4F2L

ln PI I
H2∫

ln PI
H2

σHσel
σH + σel

d ln PH2 , (8)

where σH is the protonic conductivity [87,99,100]. Since protonic and electronic conductivity
may depend on PH2 , the result of integrating it in Equation (8) can be different. Assuming
σH << σel and σH is proportional to Pn

H2
, there are limiting cases which can be considered:

• n = 0.5, when protons are minority defects, then jH2 = − RT
2F2L σH,0

((
PI

H2

)0.5
−
(

PI I
H2

)0.5
)

;
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• n = 0.25, when protons are majority defects compensated by electrons, then jH2 =

− RT
F2L σH,0

((
PI

H2

)0.25
−
(

PI I
H2

)0.25
)

;

• n = 0, when protons are majority defects compensated by acceptor dopants, then

jH2 = − RT
4F2L σH,0 ln

(
PI I

H2
PI

H2

)
[87,99,101–103].

In the case of a cermet membrane, the equation for its hydrogen permeation flux
combines those for the ceramic (Equation (8)) and metallic (Equation (6)) components
(Equation (9)):

jH2 = −

xceram
RT

4F2L

ln PI I
H2∫

ln PI
H2

σHσel
σH + σel

d ln PH2 + (1− xceram)

(
Pemetal

L

)((
PI

H2

)n
−
(

PI I
H2

)n), (9)

where xceram is the volume fraction of the ceramic component, Pemetal is the permeability of
the metallic component [86].

For triple-conductive membranes, the oxide-ionic component of the conductivity
should be accounted for (Equations (10)–(12)) [89,103]:

jH2 = − RT
8F2L

I I∫
I

σH

(
2

σO + σel
σH + σO + σel

d ln PH2 +
σO

σH + σO + σel
d ln PO2

)
, (10)

jH2 = − RT
4F2L

I I∫
I

σH

(
σel

σH + σO + σel
d ln PH2 +

σO
σH + σO + σel

d ln PH2O

)
, (11)

jH2 =
RT

4F2L
σH + σel

σH + σO + σel
ln

PI
H2

PI I
H2

+
RT

8F2L
σO + σel

σH + σO + σel
ln

PI I
O2

PI
O2

. (12)

In the case of the asymmetric supported hydrogen separation membrane, more com-
plex description is required since mass and heat transfer phenomena take place in the gas
phase in the layers of the porous support. Gas-phase mass transport certainly affects the
membrane performance or even can determine its characteristics [55,99,104–106]. However,
gas-phase phenomena are out of the scope of this review.

2.3. Solid Oxide Fuel Cells

By selecting solid oxide fuel cell materials with a high oxygen and/or hydrogen
mobility, the fuel cell operating temperature can be lowered while maintaining or even
increasing the power output. A high oxide-ionic or/and protonic conductivity of the
electrolyte reduces its resistance which is a predominant component of the ohmic losses of
the cell [41,53,58,69,107–109]. Figure 5 demonstrates SOFCs with oxide-ionic, protonic, and
dual (oxide-ionic + protonic) conductive electrolytes.

Using the electrode materials with pure electronic conductivity leads to limiting the elec-
trode process by the electrode–electrolyte–gas phase triple-phase boundary (TPB) (Figure 6a).
The ionic (oxide-ionic or/and protonic) component of the conductivity allows the electrode
process to take place on the electrode–gas phase double-phase boundary (DPB) (Figure 6b).
This results in the improvement in the electrode reaction kinetics [53,55,56,58,65–69,108,110].
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3. Oxygen and Hydrogen Diffusion in MIEC Materials
3.1. Self-Diffusion, Tracer Diffusion and Chemical Diffusion

Let us consider an oxide-based material, in which the following species are mobile:
electrons/holes, oxide anions/oxygen vacancies, protons/hydroxyls, etc. The flux of each

of these species is
→
j i. In the absence of the gradients of electric potential and temperature,

the Fick’s first law (Equation (13)) is satisfied:

→
ji

∣∣∣∣→
∇T=0

= −Di
→
∇Ci, (13)

where Di is a diffusion coefficient of i-th species, Ci is their concentration. Strictly speaking,
Equation (13) is correct if the diffusing species do not interact with each other. The interac-
tion of the following species in triple-conductive oxides: holes, oxygen vacancies and pro-
tons, was noted in the number of studies [111–113]. In this case, in a linear non-equilibrium
thermodynamics region, Equation (13) can be written as follows (Equation (14)):

→
ji

∣∣∣∣→
∇T=0

= −∑
k

∑
l

Di
k(l)

→
∇Cl , (14)

where the coefficients Di
k(l) correspond to the effect of the l-th species concentration gradient,

→
∇Cl , on the i-th species diffusive flux,

→
j i, and such coefficients are the sums of the respective

species’ diffusion coefficients multiplied by the transference numbers. Three types of the
Di

k(l) coefficients can be distinguished:



Membranes 2023, 13, 698 9 of 53

• “Direct” coefficients Di
i(l) corresponding to the effect of the gradient

→
∇Ci on the flux

→
j i;

• “Indirect” coefficients Di
l(i) corresponding to the effective diffusion coefficients of i-th

species under the effect of the driving force
→
∇Cl when

→
∇Ci = 0, i.e., they correspond

to the effect of the gradient
→
∇Cl on the flux

→
j i when

→
∇Ci = 0;

• The coefficients with three different indices Di
k(l) correspond to the effective diffusion

coefficients of i-th species when
→
∇Ck is a driven force and

→
∇Cl = 0.

Fick’s second law (Equation (15)) follows from Fick’s first law and the mass conservation:

∂Ci
∂t

= Di∆̂Ci. (15)

In the absence of the chemical potential gradient, Di is referred to as a self-diffusion
coefficient. It is related to the ionic conductivity (σi) according to the Nernst–Einstein
equation (Equation (16)) [114–117]:

σi =
f I,iDiCiqi

kBT
, (16)

where fI,i is a correlation factor, fI,i ≈ 1. The self-diffusion coefficient is related to the
tracer diffusion coefficient

(
D∗i
)

determined by isotope exchange techniques as follows
(Equation (17)):

D∗i = fiDi, (17)

where fi is a correlation factor which is related to influence of counterflows of ions of
different isotopes [69,114,116,117]. The ratio (Equation (18))

HR =
f
f I

(18)

is referred to as a Haven ratio.
It is to be noted that i-th species’ mobility may be non-uniform in the material’s bulk:

the fraction θ1 of these species possesses a self-diffusion coefficient of Di1, the fraction θ2
possesses a self-diffusion coefficient of Di2, etc. [69,118–123]. In this case, the transport of
the i-th species’ can be described by a set of parameters {Dij(T), θj} or by an effective (mean)
self-diffusion coefficient (Equation (19)):

Dover,i = ∑
j

θjDij. (19)

If one of Dij significantly exceeds other self-diffusion coefficients (it can be denoted as
Di,fast) and its fraction θj is high enough (it can be denoted as θfast), then Dover,i ≈ θfast Di,fast.

However, in the real operating conditions of SOFCs/SOECs and permselective mem-
branes, the chemical or electrochemical potential gradient occurs due to different gas
phase composition in various device compartments and the flowing electric current.
In this case, instead of the Fick’s first law (Equation (13)), the Nernst–Plank equation
(Equation (20)) [124–126]

→
ji

∣∣∣∣→
∇T=0

= −Di
→
∇Ci −

DiCiqi
kBT

→
∇ϕ (20)

or the modified Fick’s first law (Equation (21)) [117,124,127]

→
ji

∣∣∣∣→
∇T=0

= −ΓV Di
→
∇Ci (21)
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can be used, where ΓV is referred to as the thermodynamic factor, or in other words,
the factor of enhancement. In this case, such a gradient as a driving force (as well as
electroneutrality conservation) causes net transport of species characterized by a chemical
diffusion coefficient (Dchem), which is related to the self- and tracer diffusion coefficients as
follows (Equation (22)) [69,114,117]:

Dchem = ΓV Di =
ΓV
HR

D∗i . (22)

For oxide-ionic and mixed oxide-ionic–electronic conductors, the following equations
for the thermodynamic factor (Equations (23) and (24)) are known:

ΓV = −th ·
1
2

∂ ln PO2

∂ ln CV••O
, (23)

ΓV = th

(
1 +

4CV••O
Ch

)
, (24)

where th is the hole transport number, PO2 is the partial pressure of oxygen in the gas
phase, and CV••O

and Ch are the concentrations of oxygen vacancies and holes in the oxide,
respectively [69,117,127–130].

For protonic conductors, a more complex relationship of chemical diffusion coefficient
and self-diffusion coefficients of charge carriers (Equation (25)) is given in the work [111]:

Dchem =

(
2−

COH•O
2CV••O |P H2O=0

)
DH DV

COH•O
2CV••O |P H2O=0

DH + 2

(
1−

COH•O
2CV••O |P H2O=0

)
DV

, (25)

where COH•O
is the concentration of hydroxyl ions in the oxide, PH2O is the partial pressure of

water in the gas phase, DH is the self-diffusion coefficient of protons, DV is the self-diffusion
coefficient of oxygen vacancies (Equation (26)),

DV =
CO

CV••O
DO =

1
fO

CO

CV••O
D∗O. (26)

For oxide-ionic and mixed oxide-ionic–electronic conductors, the temperature depen-
dence of the oxygen self-diffusion coefficient is given according to the random walk theory
(Equation (27)):

DO =
ζ

6
ε2CV••O

ν× exp
(

∆mS
R

)
× exp

(
−∆m H

RT

)
, (27)

where ζ is a number of equivalent positions, ε is the random walk step length, ν is a
frequency of particle vibrations, ∆mS and ∆mH are migration entropy and enthalpy, respec-
tively [131].

For the self-diffusion coefficient of protons in interstitial sites of a metal face-centered
cubic lattice with the parameter a (e.g., nickel), the following equation (Equation (28)) is
given in the work [132]:

DH = a2 kBT
h

exp
(
−∆TS−oxtG

kBT

)
, (28)

where h is the Planck constant, ∆TS–octG is the Gibbs’ energy of the proton transition from
the transition state to the ground octahedral state.
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3.2. Oxygen and Hydrogen Diffusion Mechanisms

There are three general types of oxygen diffusion mechanisms in oxides and composites:

• Vacancy mechanism (Figure 7a): transport of regular oxide anions into neighboring
vacancies; this mechanism is typical for perovskites, fluorites and many other types of
oxides [54,70,107,133,134];

• Interstitial mechanism (Figure 7b): transport of interstitial oxide anions into neighbor-
ing interstitial sites; this mechanism is typical for some pyrochlores, mayenites and
some other oxides [70,107,134–137];

• Cooperative mechanism (Figure 7c): cooperative movement of different types of
oxide anions (regular, interstitial); this mechanism is typical for Ruddlesden–Popper
phases, apatites, brownmillerites, orthorhombic oxides and is proposed for some other
oxides [69,70,107,134–136,138].
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In the case of non-uniformity of the oxygen mobility in the materials’ bulk due to
structural and defect features, more complex features of oxygen transport can take place.
They will be reviewed in details in Section 6.

The main mechanisms of hydrogen diffusion are:

• Diffusion of protons through interstitial defects (Figure 8a); this mechanism is typical
for metals and alloys [90,91,99,132,139];

• Grotthuss mechanism (Figure 8b): jumps of protons between neighboring oxide anions
with reorientation of M–O–H bonds; this mechanism is typical for the most oxides
possessing a protonic component of conductivity [91,111,140];

• Vehicle mechanism (Figure 8c): transport of protons together with the neighboring
oxide anion as a hydroxyl; this mechanism is also typical for proton-conducting
oxides [91,111,140];

• Diffusion of structurally bound water (Figure 8d): transport of water species embedded
into the lattice; this mechanism is proposed for some oxides [92,141].
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3.3. Surface Exchange of Oxygen and Hydrogen

In 1970s, V.S. Muzykantov demonstrated that the interaction of oxide-based materials
with molecular oxygen takes place via a dissociative adsorption–desorption mechanism
(Muzykantov–Boreskov mechanism) [142,143], which includes the following stages:

1. Physical adsorption;
2. Dissociative chemisorption (Equations (29)–(31)):

O2(g) + 2( )a = 2(O)a, (29)

O2(g) + ( )a + [ ]S = (O)a + [O]S, (30)

O2(g) + 2[ ]S = 2[O]S; (31)

3. Embedding (the exchange itself) (Equation (32)):

(O)a + [ ]S = ( )a + [O]S. (32)
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Here, ( )a and [ ]S denote the adsorption site and oxygen vacancy on the surface,
respectively, (O)a and [O]S are the adsorbed (weakly bound, capable of surface diffusion)
and surface (strongly bound with oxygen vacancy) oxygen species, respectively.

The exchange of oxygen with carbon dioxide proceeds in a different way compared
to that with molecular oxygen. First, the entire surface of the material participates in the
exchange, not only the active sites. Secondly, the mechanism of exchange is different.
As a result, the exchange with CO2 proceeds 2–5 orders of magnitude faster compared
to the exchange with O2. The CO2 molecule is adsorbed on the surface of the oxide
(Equation (33)):

CO2(g) + ( )a = (CO2)a, (33)

then interacts with a neighboring oxide anion to form the carbonate complex (Equation (34)):

(CO2)a + [O] = [CO3]S, (34)

or with a neighboring oxygen vacancy to form the carboxylate complex (Equation (35)) [144–150]:

(CO2)a + [ ] = [CO2]S, (35)

or, especially at high temperatures, can dissociate to the adsorbed carbon monoxide
molecule and adsorbed oxygen (Equation (36)) [150–153]:

(CO2)a + ( )a = (CO)a + (O)a. (36)

The carbonate complexes can be negatively charged complexes like CO2−
3 , CO−3 ,

neutrally charged complexes like CO3, or complexes being something between CO3 and
CO2 as well. They can have various configurations depending on the metal cation they are
coordinated to. The examples of such complexes are given in Figure 9 [144,145,149,154].
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The carboxylate ion-radical, formed by the interaction of the adsorbed CO2 molecule
and the oxygen vacancy, is unstable, and the free valence of carbon would tend to be
saturated (Figure 10) [149].
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Figure 10. The formation of surface carbonate ion while closing of carboxylate ion-radical’s carbon
bond on the oxide surface oxygen [149].

The interaction of molecular hydrogen with metals is described by two main mech-
anisms: the Bonhoeffer–Farkas mechanism (Equation (37)) [155] corresponding to the
dissociative adsorption of hydrogen with the formation of hydrogen adatoms Ha:

H2 = 2Ha, (37)

and the Eley–Rideal mechanism (Equation (38)) [156,157], for which the formation of a
hydrogen adatom on the metal surface proceeds through the stage of the formation of a
three-atomic activated complex (H · · ·H · · ·H)a:

H2 + Ha = (H · · ·H · · ·H)a. (38)

For metals which can intercalate hydrogen in their structure as interstitial defects (Hi;
Figure 8a), the intercalation reaction (Equation (39)) is considered as well [90,91]:

Ha = Hi. (39)

Oxide materials interact with molecular hydrogen via its adsorption, dissociation,
and interaction with the surface oxygen. They interact with water via hydration. In
both cases, hydroxyls are formed on the oxide surface. These reactions are given in
Equations (40)–(44) [99,111–113,139].

H2 = 2H• + 2 e′, (40)

H2 + 2O×O = 2OH•O + 2 e′, (41)

H2O + 2h• = 2H• +
1
2

O2, (42)

H2O + V••O = 2H• + O×O , (43)

H2O + O×O + V••O = 2OH•O. (44)

The rate of surface exchange is typically determined in terms of a surface exchange
constant (k). In the presence of a chemical potential gradient, there is a chemical surface
exchange constant (kchem). In the absence of such a gradient, there is a surface exchange
constant (kex or k* in the case of isotope studies) which, like diffusion coefficients, is
related to the chemical surface exchange constant via a thermodynamic factor. The ratio
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of diffusion coefficient and surface exchange constant is referred to as a characteristic
thickness (Equation (45)) [129,158]:

LC =
D∗

k∗
,. . . . . . LC,chem =

Dchem
kchem

. (45)

4. Isotope Exchange of Oxygen and Hydrogen

Isotope exchange techniques are based on the substitution of one isotope of the element
in the sample (e.g., oxygen, hydrogen) with the other isotope (e.g., 16O/18O, H/D) while in-
teracting with a gas-phase reagent in equilibrium or steady-state. These methods allow us to
acquire the data on D* and k*. They can be divided into methods with the solid-state-phase
and gas-phase analysis. The methods with solid-state-phase analysis such as SIMS, in some
cases do not allow one to study diffusion processes in detail and allow one to acquire the
data on the mean integral diffusion coefficient. Therefore, the methods with the gas phase
analysis are more suitable for studying oxygen and hydrogen mobility features for SOFC
and permselective membrane materials [32,159]. The methods with gas phase analysis can
be implemented using static or flow reactors. In the case of using flow reactors, gas-phase
diffusion limitations are avoided, and more complete isotopic substitution can be achieved
during the experiment, allowing oxygen and hydrogen transport features to be studied
in greater detail [32,55,58,69,152,159–164]. In the authors’ previous experimental works
and reviews [55,58,69,161–164], it has been demonstrated that temperature-programmed
oxygen isotope exchange with 18O2 and C18O2 allows one to describe the oxygen surface-
exchange mechanisms and bulk oxygen diffusion features, including the non-uniformity
of bulk oxygen mobility, for many types of ceramic materials, and for SOFCs, permselec-
tive membranes and other applications. The most interesting feature of using C18O2 as a
18O-containing gas-phase reagent instead of 18O2 is its faster surface exchange with C18O2
compared to that with 18O2 (as marked in Section 3.3) [58,145–148], which generally allows
one to avoid the limitation of the process by the surface exchange (i.e., to carry out the
experiments in the diffusion-controlled or mixed-controlled regime) [153] and to obtain
more detailed data on the oxygen bulk diffusion [58,69,161]. The comparison of various
types of isotope exchange experiments with gas phase analysis is given in Table 1.

Table 1. Options of oxygen isotope exchange experiments with gas-phase analysis.

Reactor Type

Static Flow

Oxygen exchanged in the oxide <10% up to ∼=100%
Sensitivity to the diffusion rate No Yes

Low isotope consumption Yes No
Simple reactor construction No Yes

Exchangeable gas-phase reagent
18O2 C18O2

Sensitivity to the diffusion rate No Yes
Sensitivity to the kinetics of

interaction with the oxide surface Yes No

Temperature mode

Isothermal Temperature-programmed
Sensitivity to the oxygen

non-uniformity in the oxide bulk No Yes

The reaction of isotope exchange of the solid states with the gas-phase reagent con-
taining two identical atoms (18O2, C18O2, D2, D2O, etc.) proceeds via routes which are
classified as three types of exchange mechanisms according to Muzykantov’s classification
(Equations (46)–(48)) [165]:
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• Homoexchange:

o R0-type (0-atomic type, I type):

X2 + Y2 = 2 XY; (46)

• Heteroexchange:

o R1-type (1-atomic type, II type):

X2 + (Y)S = XY + (X)S, (47)

o R2-type (2-atomic type, III type):

X2 + 2 (Y)S = Y2 + 2 (X)S. (48)

In many cases, several types of exchange occur simultaneously.
If isotope exchange takes place with molecules containing more than two identical

atoms, the mechanism can be more complex. For example, for hydrogen isotope exchange
with methane, the theory of five types of exchange mechanisms is used [166,167].

Several models or combinations thereof are used to describe oxygen diffusion in the
bulk [58,162–164]:

• Uniform 1D model (e.g., simple oxides) (Figure 11a);
• Non-uniform 1D model with a single diffusion channel involving the weakest bound

oxygen form and an exchange with the neighboring strongly bound oxygen forms
(complex oxides) (Figure 11b);

• Non-uniform 1D model with several parallel diffusion channels involving different
oxygen forms (composites) (Figure 11c);

• Non-uniform 2D model with a single fast diffusion channel along grain boundaries
followed by diffusion of the isotope tracer within the grain bulk (monocrystalline)
(Figure 11d);

• Non-uniform 2D model with a single fast diffusion channel along grain boundaries
with subsequent diffusion of the isotope tracer within the balk of different grains
(polycrystalline) (Figure 11e).

The generalized model of oxygen isotope exchange is the following (Equations (49)–(54)):

Ng
∂αg

∂t
+ O = NSRΣ(αs − αg) + O(Ng, αg), (49)

∂αs

∂t
= RΣ(αg − αs)−

Nbulk
Ns

D
h2

∂αbulk
∂η

∣∣∣∣
η=0

, (50)

∂αbulk
∂t

=
D
h2

∂2αbulk
∂η2 , (51)

Ng
∂ f16−18

∂t
= NsR(i)(P16−18 − f16−18) + O(Ng, f16−18), (52)

where Ng, NS and Nbulk are numbers of oxygen atoms in the gas phase, on the sample
surface and in the sample bulk, respectively; αg, αS and αbulk are 18O atomic fractions in
the gas phase, on the sample surface and in the sample bulk, respectively; O(Ng,αg) is a
component which depends on the reactor type,

O(Ng, αg) =

{
0 -static reactor
1
τ Ng

∂αg
∂ξ -flow reactor

; (53)
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Figure 11. Models for the description of oxygen diffusion in oxides and composites: (a) Uniform 1D
model; (b) non-uniform 1D model with a single diffusion channel and an exchange with neighboring
oxygen forms; (c) non-uniform 1D model with several parallel diffusion channels; (d) non-uniform
2D model with a single diffusion channel along grain boundaries with subsequent diffusion within
the grain bulk; and (e) non-uniform 2D model with a single diffusion channel along grain boundaries
with subsequent diffusion within the bulk of different grains.

R and D are the heteroexchange rate and oxygen tracer diffusion coefficient, respec-
tively, which are assumed to be constant for isothermal isotope exchange (IIE) experi-
ments and dependent on the temperature according to the Arrhenius law for temperature-
programmed (TPIE) experiments:

R(i) =

{
R2= 0.5RΣ

R1 = RΣ P16−18 =

{
2αs(1− αs) -exchange with O2
αg(1− αs) + αs(1− αg) - exchange with CO2

. (54)

The mathematical models for specific cases of oxygen diffusivity features (e.g., 2D
diffusion) can be found in the works [162–164].

5. Relaxation Techniques

Relaxation techniques such as the electrical conductivity relaxation (ECR) [168–176],
mass relaxation (MR, also referred to as weight relaxation or thermogravimetric relax-
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ation) [69,111–113,176–178] and unit cell volume relaxation (UCVR) [69,162,179] techniques
are based on the changing some characteristics of a sample with time after rapid change of
the gas-phase composition such as the partial pressure of oxygen, carbon dioxide, hydrogen
or water vapors. After such a rapid change, the system solid-state sample–gas phase be-
comes non-steady-state, and oxygen or/and hydrogen desorbs from the sample or adsorbs
on the sample to reach a new steady state. This leads to the relaxation of characteristics
dependent on the oxygen and hydrogen content in the sample such as the electrical conduc-
tivity, the sample weight, and the unit cell volume to the new steady-state values. These
methods allow one to acquire the data on the coupled transport of the mobile particles
(oxide anions, protons, holes, etc.) in the materials for SOFC, permselective membranes
and other devices (Dchem and kchem).

The data acquired from the relaxation (ECR, MR or UCVR) experiment are normalized,
like those shown in Equation (55) for ECR:

σ(t) =
σ(t)− σ0

σ∞ − σ0
, (55)

where σ0, σ(t) и σ∞ are the sample electrical conductivity before changing pressure, at the
moment of time t and after the relaxation, respectively; σ(t) is the normalized electrical
conductivity depending on time, 0 ≤ σ(t) ≤ 1. The experimental data (Equation (55)) are
fitted by theoretical curves, which can be found by solving Fick’s second law (Equation (15)).
Such a solution was found for the following cases [173,174,180–182]:

• The infinite plane sheet (Equations (56)–(62)):

σ(t) =
∞

∑
i=1

Ai exp
(
− t

ti

)
+ 1, (56)

where

Ai = −
2Λ2

β2
i
(

β2
i + Λ2 + Λ

) , (57)

ti =
l2

4β2
i Dchem

, (58)

Λ =
lkchem
Dchem

=
l

LC,chem
; (59)

βi are the eigenvalues of Equation (60):

βi tan βi = Λ; (60)

l is the sheet thickness;

• The infinite cylinder (Equations (61)–(64)):

σ(t) =
∞

∑
i=1

Ai exp
(
− t

ti

)
+ 1, (61)

where

Ai = −
2Λ2

ρ

ρ2
i

(
ρ2

i + Λ2
ρ

) , (62)

ti =
r2

ρ2
i Dchem

, (63)
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and the parameters Λρ and the eigenvalues ρi can be found while solving Equation (64):

ρj J1
(
ρj
)
= Λρ J0

(
ρj
)
=

rkchem
Dchem

J0
(
ρj
)
, (64)

where J0 and J1 are the zero-order and the first-order Bessel functions, respectively; r is the
cylinder radius;

• The short cylinder (Equations (65)–(67)):

σ(t) =
∞

∑
i=1

∞

∑
j=1

Aij exp

(
− t

tij

)
+ 1, (65)

where

Aij = −
2Λ2

β2
i
(

β2
i + Λ2 + Λ

) 2Λ2
ρ

ρ2
i

(
ρ2

i + Λ2
ρ

) , (66)

tij =
1

Dchem

[(
βi

l/2

)2
+
(

ρj
r

)2
] ; (67)

• The sphere (Equations (68)–(71)):

σ(t) =
∞

∑
i=1

Ai exp
(
− t

ti

)
+ 1, (68)

where

Ai = −
6Λ2

ρ

ρ2
i
(
ρ2

i + Λρ

(
Λρ − 1

)) , (69)

ti =
r2

ρ2
i Dchem

, (70)

and the eigenvalues ρi can be found while solving Equation (71):

ρi cot ρi −Λρ − 1 = 0; (71)

r is the sphere radius;

• The rectangular bar (Equations (72)–(75)):

σ(t) =
∞

∑
i=1

Ax,i exp
(
− t

tx,i

)
×

∞

∑
j=1

Ay,j exp

(
− t

ty,j

)
+ 1, (72)

where

Ax,i = −
2Λ2

x

β2
x,i

(
β2

x,i + Λ2
x + Λx

) ,. . . Ay,j = −
2Λ2

y

β2
y,i

(
β2

y,i + Λ2
y + Λy

) , (73)

tx,i =
l2
x

4β2
i Dchem

,. . . tx,i =
l2
x

4β2
i Dchem

, (74)

Λx =
lxkchem
Dchem

,. . . Λy =
lykchem

Dchem
, (75)

lx and ly are the bar dimensions along the x and y axes, respectively.
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For a more complex sample shape or, all the more so, for any geometrical shape, a
more complex approach is required such as mathematical modeling, e.g., the generalized
model based on the inverse algorithm [172,175].

The reactor flush time (tf) is taken into account by introducing the factor ti
ti+t f

and

the addendum exp
(
− t

t f

)
into Equations (56), (61), (65), (68) and (72) [182]. E.g., for the

short cylinder case, the best description of disc-shaped pelletized samples, Equation (65)
transforms into Equation (76):

σ(t) =
∞

∑
i=1

∞

∑
j=1

Aij
tij

tij − t f

[
exp

(
− t

tij

)
− exp

(
− t

t f

)]
− exp

(
− t

t f

)
+ 1. (76)

The relaxation techniques are being developed up to now, and include new approaches
for processing the experimental data, elucidating the contribution of each phase and
interphase of composite materials, the analysis of different charge carrier behavior in
triple-conductive materials, etc. [111–113,168,170,172,175,178].

6. Oxygen and Hydrogen Mobility of Materials for Membranes and SOFC
6.1. Fluorites, Bixbyites and Rhombohedral Phases

Fluorites and fluorite-related materials are the most of important types of materials
for application in electrochemistry including SOFCs/SOECs, oxygen/hydrogen separation
membranes, etc.

Recent research efforts [183–187] have made it possible to increase the grain-boundary
conductivity of proton-conducting zirconates with a perovskite structure. At the same time,
there is another class of proton-conducting materials, with a fluorite-like structure, which
have comparable total and bulk conductivities, whereas the contribution of grain-boundary
conductivity is extremely small or zero. This class of materials comprises the following
disordered pyrochlores and fluorites based on La compounds:

1. Ca-doped La2Zr2O7 ((La2−xCax)Zr2O7−δ) pyrochlore, a proton conductor in the range
of 200–600 ◦C [188,189];

2. La2Ce2O7 (50% CeO2 + 50% La2O3) fluorite, a proton conductor below 450 ◦C and an
oxygen ion conductor at high temperatures [190]; and

3. Fluorite-like La6−xWO12−δ (x = 0–0.8), a proton conductor with conductivity up to
(3–7) × 10−3 S cm−1 at 800 ◦C and 1 Pa, depending on x [82,191].

Ln tungstates were revealed to have mixed ionic–electronic conductivity with a po-
tential ability of using in solid oxide fuel cells and proton conducting membranes [82,191].
La6−xWO12−δ (x = 0.2–1) solid solutions based on lanthanum tungstate La6WO12 were of
particular interest since they were found to have the highest proton conductivity among the
few non-perovskite proton-conducting materials [82,191–195]. La6−xWO12−δ (x = 0.2–1)
tungstates can be used as potential solid electrolytes for solid-state fuel cells and proton-
conducting membranes for hydrogen separation. An important advantage of lanthanum
tungstates over perovskite-acceptor-doped barium and strontium cerates BaCeO3, SrCeO3–
is the absence of interaction with CO2 and SOx with the formation of carbonates and
compounds containing sulfur [192].

Among single-phase materials La6−xWO12−δ (x = 0–0.8), the highest proton conduc-
tivity was provided by La6−xWO12−δ (x = 0.4, 0.5) materials, but subsequent investigation
showed that their proton conductivity dropped rather sharply during prolonged hold-
ing in wet H2 at 1100 ◦C, and the most stable materials were La6−xWO12−δ with x = 0.6
and 0.7 [82]. According to Partin et al. [196], who prepared samples by standard solid-
state reactions, the most stable solid solution was La6−xWO12−δ with x = 0.4. It seems
likely that the problem of low grain-boundary conductivity arises as well in the case of
proton-conducting lanthanum tungstates. For example, in studies of the conductivity of
La6−xWO12−δ (x = 0.4, 0.6, 0.8, 1.0) [196], comparison of impedance plots before and after
holding in a wet atmosphere showed a marked increase in grain-boundary resistance at
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800–900 ◦C. By contrast, in the range 300–500 ◦C, the grain-boundary resistance decreased
with increasing partial pressure in various atmospheres [82,196]. Since W6+ and Mo6+

are similar in ionic radius, Savvin et al. [197,198] expected to obtain proton-conducting
materials based on the Ln6MoO12 (Ln = La–Lu) molybdates. Indeed, they succeed to extend
the class of proton-conducting fluorite-like materials by synthesizing new mixed electron–
proton-conducting molybdates: La5.8Zr0.2MoO12.1 and Ln5.4Zr0.6MoO12.3 (Ln = Nd, Sm,
Dy) [197,198]. Doping with zirconium ensured a higher stability of molybdates to reduction,
but as in the case of tungstates [191], Zr was found to be a donor dopant, reducing the pro-
ton conductivity of materials [197]. Among proton-conducting Ln6−xZrxMoO12+δ (Ln = La,
Nd, Sm, Gd, Dy, Ho; x = 0.2–0.6) molybdates, most of which have a fluorite structure (sp.
gr. Fm3m), the highest conductivity was found for the rhombohedral La5.8Zr0.2MoO12.1
phase (sp. gr. R3), which exhibited a total conductivity of 2.5 × 10−5 S cm−1 at 500 ◦C
(3 × 10−4 S cm−1 at 800 ◦C) in wet air [198]. It should be noted that solid solutions based
on rare-earth tungstates and molybdates are predominantly oxygen ion conductors in dry
air at low temperatures, and predominantly proton conductors in wet air [82,198]. At
high temperatures (above 600 ◦C) in an oxidizing atmosphere (air), the charge transport
is dominated by p-type conduction, whereas under reducing conditions n-type conduc-
tion prevails [82,198]. Doping with Ti, Zr, and Nb on the Mo site and with fluorine on
the oxygen site was studied using La5.4MoO11.1 as an example, but essentially all of the
dopants reduced ionic conductivity of the material [197,199,200]. A similar situation was
observed in La6−xWO12−δ (x = 0.4, 0.5) lanthanum tungstates [82,191–195]. Due to the
fact that cation doping [197,199–201] decreased the proton conductivity of RE molybdates,
the main attention was paid to the study of pure solid solutions based on Ln6MoO12:
Ln6−xMoO12−δ (Ln = La, Nd, Sm, Gd–Lu) [163,202–212]. It is known that, to a large extent,
the proton conductivity depends on the crystal structure type, and, in this regard, the
rich polymorphism of solid solutions based on RE molybdates and tungstates Ln6MO12
(M = Mo, W) should be noted [199,201,203,205,206,209,210,212]. In the series Ln6−xMoO12−δ
(Ln = La, Nd, Sm, Gd–Lu), depending on the temperature and lanthanide ionic radii, vari-
ous structural types are realized: rhombohedral

(
R3
)
, fluorite

(
Fm3m

)
, and bixbyite

(
Ia3
)
.

Proton conductivity was found in various solid solutions based on RE molybdates, and
it was shown that it reached maximal values for lanthanum molybdates La6−xMoO12−δ
(x = 0.5, 0.6) with a complex rhombohedral structure R1 [202,203,211].

The stability of solid solutions based on REE molybdates, as well as of lanthanum
tungstates La6−xWO12−δ (x = 0–0.8) solid solutions, known proton conductors [82,191–195],
is an important issue in the perspective of their practical application. As a rule, it is the
process of reduction in variable valence cations in solid solutions, which results in a grain-
boundary contribution growth, limiting the conductivity of materials in wet atmospheres
at high temperatures. The stability of the Ho5.4Zr0.6MoO12.3 fluorite structure and the
La6−xMoO12−δ (x = 0.5) fluorite-like rhombohedral structure R1 in extremely dry conditions
under dynamic vacuum was investigated by in situ variable temperature neutron diffraction
(NDD) between 800 and 1400 ◦C [205]. The NDD results unambiguously demonstrated
the dimensional stability of the fluorite-like rhombohedral La6−xMoO12−δ (x = 0.5) as
compared to the Ho5.4Zr0.6MoO12.3 fluorite in the heating–cooling cycle. According to the
NDD, heating to 1100 ◦C followed by vacuum cooling does not change the c cell parameter
of rhombohedral La6−xMoO12−δ (x = 0.5), whereas its a parameter decreases by 0.13%. It
was also found that the a cell parameter of cubic fluorite Ho5.4Zr0.6MoO12.3 decreases by
~2.6%. It may be result of the partial reduction of Mo6+ to Mo+5 in RE molybdates. It seems
likely that the same cause, i.e., the decrease in cubic cell parameter as a result of the partial
reduction of W6+ to W+5, accompanied by disordering on the La/W sites, and subsequent
formation of a denser atomic packing in the La6-xWO12−δ (x = 0.4, 0.6, 0.8) lanthanum
tungstates, underlies their relatively low stability [196,198,213–215]. We believe that the
loss of dimensional stability under reducing conditions in Ln6MO12 (M = Mo, W)-based
solid solutions, which results in a grain-boundary contribution, limiting their conductivity
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in wet atmospheres, is due to the partial reduction of Mo6+ and W6+ in the rare-earth
molybdates and tungstates, respectively [205].

A follow-up study of the structure of La-containing molybdates La6−xMoO12−δ
(x = 0.5, 0.6) showed that they have a new structure type based on rhombohedral cells,
which has been discussed in series of papers [199,203,205,206,209,210,212]. Along with
main peaks of the R3 [205] or R3m [209] structure, additional lines are present. These
are superstructure lines typical of complex crystallographic cells whose parameters are
increased by seven (R1) or five (R2)) times according to López-Vergara et al. [209]. López-
Vergara et al. [203] reported that, depending on the cooling rate, the La6−xMoO12−δ (x = 0.6)
solid solution can be obtained either in the form of a complex rhombohedral modification
R1 (slow cooling) or in the form of fluorite (quenching), which agrees with the high-
temperature experiment in vacuum for La6−xMoO12−δ (x = 0.5) [205]. It also turned out
that R1 phase La6−xMoO12−δ (x = 0.6) has better oxygen-ion and proton conductivity than
that of fluorite [203,209]. The decrease in the lanthanum concentration led to a decrease
in the rhombohedral distortion degree and to the decrease in the contribution of proton
conductivity in the series La6−xMoO12−δ (x = 0.5, 0.6, 0.7, 1) [211]. The proton conductivity
for the optimal composition of La6−xMoO12−δ (x = 0.5) was ~5 × 10−5 S cm−1 at 500 ◦C in
wet air, while for La6−xMoO12−δ (x = 1) it was ~9 × 10−6 S cm−1 (Figure 12a) [30].

A tendency towards a decrease in the proton conductivity contribution for the rare-
earth (RE) molybdates Ln6−xMoO12−δ (Ln = La–Yb) series has been established. For heavy
RE molybdates, the conditions for the synthesis of new proton conductors with a bixbyite
structure (Figure 12b) were found for the first time [202,204,206,208,212], and the bixbyite
structure type was first presented in the ICDD PDF crystallographic database (Er6MoO12−δ
(No. I11624) and Tm6MoO12−δ (No. I11626)). It was found that with decreasing of the
Ln2O3 content by 1.8 mol.%, fluorites Ln5.5MoO11.25−δ (Ln = Er, Tm) are formed under the
same conditions (Figure 12c) [212].

Fluorites and bixbyites turned out to be mixed electron-oxygen conductors in dry air
and electron-proton conductors in wet air, while the dominant ionic contribution maintains
up to 550–600 ◦C [163,202,206]. In wet air, Er and Tm fluorites and bixbyites had a close
total conductivity of ~2 × 10−6 S cm−1 at 500 ◦C, but at 200 ◦C, bixbyites performed better
than that of fluorites. The using of the isotope exchange with C18O2 made it possible
to confirm the high mobility of oxygen in these compounds in air, starting from 200 ◦C
(Figure 13) [212]. A high or at least intermediate oxygen mobility was demonstrated for
other fluorites and bixbyites (in some cases due to defect features such as the effect of grain
boundaries resulting in a fast oxygen diffusion along grain boundaries (2D diffusion)), while
rhombohedral phases possess lower oxygen mobility (Figure 13) [55,58,163,206,212,216].

It is of interest to note that the existence of compounds and solid solutions with close
composition, differing by only a few mole percent, but having different structure, is typical
for the Ln2O3–Mo(W)O3 (Ln = La, Nd, Pr, Sm) systems [217–219]. For example, in the
Pr2O3–MoO3 and Nd2O3-MoO3 systems at 1000 ◦C, the compounds with Ln2O3:MoO3
(Ln = Pr, Nd) molar ratios of 5:6 and 7:8 differ in composition by just ~3 mol.% [217].
According to Chambrier et al. [218,219], cubic solid solutions based on La10W2O21 free
of La2O3 and La6W2O15 impurities exist up to ~1700 ◦C in a narrow composition range,
26–30 mol.% WO3, and La10W2O21 exact composition is 28.6 mol.% WO3 + 71.4 mol.%
La2O3. La6WO12 contains 25 mol.% WO3. Thus, in the Ln2O3–WO3 system, La6WO12 and
La10W2O21 differ in composition by just 3.6 mol.% WO3.
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Doped ceria materials being typically pure ionic conductors in air and MIECs in
reducing atmospheres are generally used as intermediate-temperature SOFC buffer layers
between the electrolyte and the cathode in order to prevent their chemical interaction
as well as electrolytes or components of composites for intermediate-temperature SOFC
electrodes and oxygen separation membranes [33,36,39,53,54,58,69,70,107,220]. For using
ceria as electrode or membrane material itself, the electronic component of conductivity
should be increased. This can be achieved by doping with cations possessing redox activity
such as Pr4+/3+ and Tb4+/3+ [70,220]. Doping with Pr leads to an increase in oxygen
mobility and surface reactivity as well, due to the formation of ordered chains of Pr4+/3+

cations [69,221,222]. For Tb-doped ceria, it was demonstrated that it possesses a high
oxygen heteroexchange rate comparable with that for Gd-doped ceria [220,222]. On the
other hand, it was demonstrated that the oxygen mobility of Ce1−xTbxO2−δ (x = 0, 0.2
and 0.5) decreases with increasing Tb content, probably due to interaction between defects
resulting in forming local associates [223,224]. Nevertheless, the oxygen permeability of
membranes based on some Pr- and Tb-doped ceria was comparable to that for similar
membranes based on perovskites such as LFN and LSFC [70,220]. Figure 14 demonstrates
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comparison of the oxygen tracer diffusion coefficient values of MIEC-doped ceria materials.

Membranes 2023, 13, x FOR PEER REVIEW 25 of 56 
 

 

0.8 1.2 1.6 2.0 2.4 2.8 3.2

-44

-40

-36

-32

-28

-24

-20

-16

-12

-8

-44

-40

-36

-32

-28

-24

-20

-16

-12

-8

lo
g

(k
e
x,

 [
c
m

/s
])

         3  R II Tm
6
MoO

12-2

         7  R II Yb
6
MoO

12-2

   10  Ia3 Yb
6
MoO

12-

lo
g
(D

O
, 
[c

m
2
/s

])

1000/T, [K-1]

3

10

10

7

  800 600 400 200 100

T, [°C]

 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
–20

–18

–16

–14

–12

–10

–8

–6

{ slow

fast

slow

middle

grains' bulk 2

2 grain boundaries

grains' bulk

grain boundaries

1

1

lo
g

(D
*  (

c
m

2
 s

1
))
��
��
��

1000/T (K
1

)

fast

{

800 600 500 400 300 200

T (°C)

 

(a) (b) 

Figure 13. (a) Arrhenius plots of oxygen tracer diffusion coefficients and surface exchange constants 

for rhombohedral Tm6MoO12−δ, rhombohedral Yb6MoO12−δ, and bixbyite Yb6MoO12−δ. Reprinted with 

permission from Ref. [206]. Copyright 2019 American Chemical Society. (b) Arrhenius plots of oxy-

gen tracer diffusion coefficients for Nd5.5WO11.25−δ (1) [216] and Nd10Mo2O21 (2) [163]. 

Doped ceria materials being typically pure ionic conductors in air and MIECs in re-

ducing atmospheres are generally used as intermediate-temperature SOFC buffer layers 

between the electrolyte and the cathode in order to prevent their chemical interaction as 

well as electrolytes or components of composites for intermediate-temperature SOFC elec-

trodes and oxygen separation membranes [33,36,39,53,54,58,69,70,107,220]. For using ceria 

as electrode or membrane material itself, the electronic component of conductivity should 

be increased. This can be achieved by doping with cations possessing redox activity such 

as Pr4+/3+ and Tb4+/3+ [70,220]. Doping with Pr leads to an increase in oxygen mobility and 

surface reactivity as well, due to the formation of ordered chains of Pr4+/3+ cations 

[69,221,222]. For Tb-doped ceria, it was demonstrated that it possesses a high oxygen het-

eroexchange rate comparable with that for Gd-doped ceria [220,222]. On the other hand, 

it was demonstrated that the oxygen mobility of Ce1−xTbxO2−δ (x = 0, 0.2 and 0.5) decreases 

with increasing Tb content, probably due to interaction between defects resulting in form-

ing local associates [223,224]. Nevertheless, the oxygen permeability of membranes based 

on some Pr- and Tb-doped ceria was comparable to that for similar membranes based on 

perovskites such as LFN and LSFC [70,220]. Figure 14 demonstrates comparison of the 

oxygen tracer diffusion coefficient values of MIEC-doped ceria materials. 

Figure 13. (a) Arrhenius plots of oxygen tracer diffusion coefficients and surface exchange constants
for rhombohedral Tm6MoO12−δ, rhombohedral Yb6MoO12−δ, and bixbyite Yb6MoO12−δ. Reprinted
with permission from Ref. [206]. Copyright 2019 American Chemical Society. (b) Arrhenius plots of
oxygen tracer diffusion coefficients for Nd5.5WO11.25−δ (1) [216] and Nd10Mo2O21 (2) [163].

Membranes 2023, 13, x FOR PEER REVIEW 26 of 56 
 

 

1.2 1.6 2.0 2.4 2.8 3.2

–20

–18

–16

–14

–12

–10

–8

–6

lo
g

(D
*  (

cm
2
 s

1
))

1000/T (K1)

800 600 400 200

T (°C)

1
2

3

 

Figure 14. Arrhenius plots of oxygen tracer diffusion coefficients for Ce0.9Pr0.1O2−δ (1) [221], 

Ce0.65Pr0.25Y0.1O2−δ (2) [69] and Ce0.8Tb0.2O2−δ (3) [224]. 

6.2. Pyrochlores 

The pyrochlore structure A2B2O7 is a derivative of the fluorite structure in which  

half of the cubes are replaced by octahedra (more precisely, it consists of the alternating 

AO8 polyhedra and BO6 trigonal antiprisms). Pyrochlores possessing a highly mixed 

ionic-electronic conductivity such as doped Pr2Zr2O7, Gd2Ti2O7, Er2RuMnO7, etc., are used 

in SOFC cathodes [164,225,226], oxygen [83,227,228] and hydrogen separation membranes 

[229,230]. They contain high amounts of oxygen vacancies providing fine oxygen 

transport characteristics. Some pyrochlores contain interstitial oxide anions formed due 

to Frenkel disordering (Equation (77)) 

   
O O ( 48 ) i (8 )

O V O
f a

 (77)

involved in the oxygen diffusion as well [137]. There are two forms of oxygen in the py-

rochlore structure (O, O’), of which the content ratio is 6:1. However, according to TPIE 

C18O2 studies [56,58,164,228,231–233], the oxygen bulk mobility is uniform, or, in the case 

of its nonuniformity, the ratio of various oxygen forms differing in their mobility differs 

from 6:1. This is evidence that the oxygen migration mechanism is rather complex and 

includes the oxygen of both O- and O’-subla�ices. It was proposed as well that the oxygen 

forms differing in their mobility can be associated with A–O–A, A–O–B and B–O–B mi-

gration pathways with their fraction depending on the partial disordering of the pyro-

chlore structure [164,228]. The other feature of some pyrochlores (Mg-doped Sm and Gd 

zirconates) is the fast oxygen transport along grain boundaries being characterized by a 

very high mobility (D* ~10−7 cm2 s−1 at 1000 K) [164]. The comparison of the oxygen mobil-

ity of some pyrochlores is given in Figure 15. 
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6.2. Pyrochlores

The pyrochlore structure A2B2O7 is a derivative of the fluorite structure in which
half of the cubes are replaced by octahedra (more precisely, it consists of the alternating
AO8 polyhedra and BO6 trigonal antiprisms). Pyrochlores possessing a highly mixed
ionic-electronic conductivity such as doped Pr2Zr2O7, Gd2Ti2O7, Er2RuMnO7, etc., are
used in SOFC cathodes [164,225,226], oxygen [83,227,228] and hydrogen separation mem-
branes [229,230]. They contain high amounts of oxygen vacancies providing fine oxygen
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transport characteristics. Some pyrochlores contain interstitial oxide anions formed due to
Frenkel disordering (Equation (77))

O×O = V••O (48 f ) + O′′ i (8a) (77)

involved in the oxygen diffusion as well [137]. There are two forms of oxygen in the
pyrochlore structure (O, O′), of which the content ratio is 6:1. However, according to
TPIE C18O2 studies [56,58,164,228,231–233], the oxygen bulk mobility is uniform, or, in
the case of its nonuniformity, the ratio of various oxygen forms differing in their mobility
differs from 6:1. This is evidence that the oxygen migration mechanism is rather complex
and includes the oxygen of both O- and O’-sublattices. It was proposed as well that the
oxygen forms differing in their mobility can be associated with A–O–A, A–O–B and B–
O–B migration pathways with their fraction depending on the partial disordering of the
pyrochlore structure [164,228]. The other feature of some pyrochlores (Mg-doped Sm and
Gd zirconates) is the fast oxygen transport along grain boundaries being characterized by
a very high mobility (D* ~10−7 cm2 s−1 at 1000 K) [164]. The comparison of the oxygen
mobility of some pyrochlores is given in Figure 15.
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Shimura et al. [234] studied the proton conductivity of Ln2Zr2O7-based (Ln = La, Nd,
Sm, Gd и Er) pyrochlore oxides and found that the conductivity of the Ln2Zr1.8Y0.2O7−δ
(Ln = La, Nd, Sm, Gd и Er) solid solutions in a hydrogen atmosphere at T > 600 ◦C was
comparable to that of perovskites. The effect of alkaline earth cation (Mg, Ca, Sr, and
Ba) and Y substitutions for both the La and Zr sites in pyrochlore La2Zr2O7 on its proton
conductivity was studied in detail in [188,189,234,235]. The highest proton conductivity
was obtained by substituting La with Ca and Sr. The conductivity of (La1.97Ca0.03)Zr2O7−δ
between 600 and 700 ◦C was determined to be 4× 10−4 S cm−1 [188]. It is important to note
that the degree of Ca substitution in such solid solutions is low, and not higher than x = 0.05
in (La2−xCax)Zr2O7−δ. Eurenius et al. [236,237] recently studied the proton conductivity
of rare-earth stannates and titanates with the pyrochlore structure A2−xCaxSn2O7−x/2
(A = La, Sm, Yb) and Sm2Ti1.92Y0.08O7−δ, Sm1.92Ca0.08Ti2O7−δ. The conductivity of the
A-site acceptor-substituted pyrochlores was about one order of magnitude higher than that
of the B-site substituted materials. On the other hand, the conductivity clearly depended
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on the nature of the B-site cation: an increase in the ionic radius and electronegativity of the
B-site cation was accompanied by the increase in conductivity. The proton conductivity of
the samarium titanate-based solid solutions, and especially that of the rare-earth stannates,
was found to be lower than that of the Ca-doped La2Zr2O7.

Calcium- and strontium-doped lanthanum zirconates, La2−xDxZr2O7−δ (x = 0.05, 0.1;
D = Ca, Sr), were extensively studied as electrolyte materials for proton-conducting solid
oxide fuel cells (PC-SOFCs) [188,235,238–240]. Calcium appears to be the most promising
dopant because strontium doping results in the formation of a second phase, SrZrO3 with
a perovskite structure, on the surface of strontium-containing zirconate ceramics [239]
and, more importantly, because the overall conductivity of strontium-containing ceram-
ics is an order of magnitude lower than that of calcium-containing ceramics. It was
reported that pyrochlore solid solutions La1.95Ca0.05Zr2O6.95 and La1.9Ca0.1Zr2O6.9 were
almost identical in proton conductivity [188,238]: 7.0 × 10−4 S cm−1 at 600 ◦C. As was
shown earlier [241], the proton conductivity of Sm2−xCaxZr2O7−δ (x = 0.05) at 600 ◦C is
~7.5 × 10−4 S cm−1 [241].

Gas-tight proton-conducting Nd2−xCaxZr2O7−δ (x = 0, 0.05) ceramics were prepared
for the first time via mechanical activation of the oxide mixture, followed by the single-step
firing at 1600 ◦C for 3 or 10 h [242]. Like in the case of (Ln1−xCax)2Zr2O7−x (Ln = La,
Sm; x = 0.05) pyrochlore solid solutions, the unit-cell parameter of the Ca-doped material
Nd2−xCaxZr2O7−δ (x = 0.05) was smaller than that of the undoped Nd2Zr2O7. The Rietveld-
refined XRD data demonstrated that Ca substitutes on both cation sites of zirconate and
that most of the Ca cations resides in the Zr sublattice. As a result, the total conductivity of
Nd2−xCaxZr2O7−δ (x = 0.05) in wet air was lower than that of the (Ln1−xCax)2Zr2O7−x (Ln
= La, Sm; x = 0.05) pyrochlores, where Ca substituted predominantly on the Ln site. The
proton conductivity in wet air was 3 × 10−4 S cm−1 at 500 ◦C (7 × 10−4 S cm−1 at 600 ◦C)
in (La1−xCax)2Zr2O7−x (x = 0.05), 7 × 10−5 S cm−1 at 500 ◦C (~2 × 10−4 S cm−1 at 600 ◦C)
in (Nd1−xCax)2Zr2O7−x (x = 0.05), and 1 × 10−4 S cm−1 at 500 ◦C (7.5 × 10−4 S cm−1

at 600 ◦C) in (Sm1−xCax)2Zr2O7−x (x = 0.05). Even though the total conductivity of the
Ca-doped zirconate Nd2−xCaxZr2O7−δ (x = 0.05) was an order of magnitude higher than
that of Nd2Zr2O7, predominant Ca substitution on the Zr site leads to a lower proton
conductivity in comparison with that of (Ln1−xCax)2Zr2O7−x (Ln = La, Sm; x = 0.05), where
all of the Ca cations resided on the Ln site. It is also possible that this result was due to the
higher firing temperature: the (Ln1−xCax)2Zr2O7−x (Ln = La, Sm; x = 0.05) materials were
prepared by firing at 1550 ◦C for 10–50 h [188,241], whereas a higher firing temperature
of 1600 ◦C (3 and 10 h) was chosen for (Nd1−xCax)2Zr2O7−x (x = 0.05) in order to obtain
gas-tight ceramics.

6.3. Perovskites

Perovskite-like oxides are widely used materials for SOFC and permselective mem-
branes components due to their typically high electronic or mixed ionic-electronic con-
ductivity [55,99,107,128,129,131,152,243–245]. The general oxygen transport mechanism in
perovskites is a vacancy mechanism (Figures 7a and 16). Hence, increasing the oxygen
vacancy content can increase the oxygen mobility, which can be achieved by doping A- and
B-sites with various aliovalent cations [131,246]. The creation of an A-site deficiency also
allows for an increase in the oxygen vacancy content; however, it may result in a decrease
in their mobility due to their binding to defect complexes such as [ V′′′ La −V••O ] [131].
For some oxides with distorted perovskite structure, it was demonstrated that significant
deviation from oxygen stoichiometry in such materials is accompanied by nanostructuring;
at the same time, grain boundaries become fast channel of oxygen transport, while oxygen
transport within the grain bulk is slower (Figure 17) [118–123].
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Conventional strontium-doped lanthanum manganite (LSM) materials have poor
oxygen mobility (Figure 18), which limits their application as air electrodes in SOFCs with
decreased operating temperatures that are being intensively developed [69,247,248]. How-
ever, they can be successfully used in the composite electrodes in combination with different
ionic conductors [249–251]. Lanthanum ferrite-nickelates (LNF), being predominantly elec-
tronic conductors, demonstrate low oxygen diffusion and, as a result, oxygen permeation
properties [252–255]. Nevertheless, LaNi0.6Fe0.4O3, as the most stable in the series, found
widespread application in SOCs due to its superior conductivity, low thermal expansion
coefficient value, and tolerance to chromium poisoning [256]. It is also successfully used in
different composite electrodes for intermediate-temperature SOFCs [257–260], and as cath-
ode contact materials [261,262]. Materials with mixed oxygen ion and electron conductivity
(MIECs), such as Sr-doped lanthanum ferrites-nickelates/cobaltites (LSFN, LSFC) possess
much higher oxygen mobility (Figure 18) enabling the O reduction reaction (ORR) along
both triple- and double-phase boundaries, thus improving cathode performance, as well as
oxygen permeation fluxes across oxygen-separation membranes [69,128,129,247,248,263].
The other state-of-the-art MIEC materials based on Sr-doped La cobaltites (LSC), showing
a high catalytic activity in the ORR reaction and a high performance as SOFCs/SOECs air
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electrodes, demonstrate a high oxygen mobility and surface reactivity as well; moreover,
it was reported that LSCs have higher D* values compared to those for LSFCs (D* up to
2 × 10−7 cm2 s−1 at 700 ◦C, Figure 18) [264–268]. Pr-nickelate-cobaltites (PNC) are stable
to carbonation and interaction with electrolytes, which is a well-known issue for Sr-doped
perovskites with an La-occupying A-site, possess total conductivity and oxygen diffusivity
properties comparable or even exceeding those for LSFN and LSFC [55,58,69,243,269].
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Ni0.3O3 [263], 5—LaNi0.6Fe0.4O3 [252], 6—PrNi0.5Co0.5O3 [269], 7—La0.91Sr0.09ScO3 [245].

Mixed protonic-electronic or triple (H+/O2−/e−)-conductive perovskites and their
composites based on compositions, such as doped Sr/Ba cerates/zirconates, are the ma-
terials for proton-conducting SOFCs (H-SOFC), including high-performance electrodes
with triple-conducting behavior [55,111,113,167,183–186,270–273], as well as hydrogen sep-
aration membranes [55,99,107,139]. Protons in such perovskites are formed due to the
hydrogenation or hydration of oxygen vacancies (Equations (40)–(44)). Therefore, one
of the factors providing fine protonic transport properties is a high content of oxygen
vacancies. Typical values of the hydrogen tracer diffusion coefficient for doped Ba and Sr
cerates are ~10−6–10−5 cm2 s−1 at 700 ◦C (Figure 19) [272–276].
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The group of promising materials recently studied in applications as low- and inter-
mediate-temperature SOFC cathodes (including H-SOFC), as well as oxygen separation
membranes, are double perovskites A2B2O6−δ or A2B2O5+δ (A = La, Pr, Ca, Ba, etc., B = Mg,
Mo, Sn, Fe, etc.) [55,60,69,243,244,272,277–279]. Double perovskites are attractive because
they can accommodate a large amount of nonstoichiometric oxygen, as well as having a
wide variation in the effective charge of the B-site cations, and having high redox stability
and moderate values of the thermal expansion coefficient. Along with this, they possess
very high oxygen (D*~10−8–10−7 cm2 s−1 at 700 ◦C) and, in some cases, hydrogen mobility
(D*~10−6 cm2 s−1 at 500 ◦C) [63,272,280]. The other promising perovskite-based layered
materials to be mentioned here are triple [281,282], quadruple [283] and even quintuple
perovskites [284].

6.4. Ruddlesden–Popper Phases

The Ruddlesden–Popper (RP) phases with the general formula of (AO)(ABO3)n or
An+1BnO3n+1 consist of the perovskite layers ABO3−δ alternating with the rock salt layers
A2O2+δ [58,60,63,69,129,159,285–290]. The important feature of RP phases, which makes
them attractive SOFC cathodes and oxygen-separation-membrane materials, is a fine
oxygen transport provided via the cooperative mechanism of oxygen migration. In this
case, both lattice and interstitial oxide anions accumulating at a high level are involved
in the process of oxygen transport (Figure 20) [55,58,60,63,69,159,285,288,291–297]. This
allows them to reach superior oxygen mobility compared to other MIECs (Figure 21). On
the other hand, doping with alkaline earth metals (Ca, Sr, Ba), which significantly improves
total conductivity, leads to an apparent decrease in the oxygen tracer diffusion coefficient
values due to a decrease in the interstitial oxygen content and a larger size of dopant
cations resulting in steric hindrances for the oxygen transport [287,288,292,298–300]. In
some cases, it leads to the formation of slow diffusion channels with complicated pathways
(Figure 21). The fraction of oxygen involved in the oxygen slow diffusion channel increases
with the increasing cation-dopant radius in a row of Ca, Sr, Ba. With a decreasing host Ln
cation size in the row of Ln = La, Pr, Nd, this effect becomes less pronounced. Introducing
A-site deficiency can slightly increase oxygen diffusivity [55,69,292,301–303]. Doping
La2NiO4+δ with other lanthanides (Nd, Sm, Gd, Eu, etc.) can slightly increase or decrease
the oxygen mobility as well [177,304]. The information on the effect of doping RP nickelates
in the B-site with such cations as Cu on the oxygen transport properties is still lacking
and controversial. The oxygen diffusivity can increase while doping with Cu due to the
elongation of Ni/Cu–O bonds [305,306] and anomalous grain growth can occur due to
Cu-rich liquid phase presence during sintering [307]; it can decrease due to decreasing
the oxygen content [308,309], and a non-monotonous dependence can be observed as
well [310].

The RP phases of higher orders, different from the first-order ones being overstoi-
chiometric and accumulating large amount of highly mobile interstitial oxygen, tend to be
hypostoichiometric. Hence, they contain less amounts of interstitial oxygen in the rock salt
layers and more oxygen vacancies in the perovskite layers. As a result, the oxygen diffusiv-
ity of the higher-order RP phases is lower compared to that of the first-order RP phases
(Figure 22). For these materials, the contribution of the oxygen vacancy migration in the
perovskite layers into the diffusion mechanism becomes predominant [108,288,311–314].

It was also reported [108] that some RP phases possess proton mobility, which results
in accelerating the cathodic reaction process in H-SOFCs. Proton migration is believed
to be implemented via the Grotthuss mechanism (Figure 8b). It includes two main path-
ways, namely, the inner-layer migration within the perovskite structure and the inter-layer
migration between neighboring perovskite layers across the rock salt layer [108].
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Figure 21. Arrhenius plots for oxygen tracer diffusion coefficient of first-order RP phases:
1—La2NiO4+δ [291], 2—La1.7Ca0.3NiO4+δ [291], 3—Pr2NiO4+δ [299], 4—Pr1.7Ca0.3NiO4+δ [299],
5—Nd2NiO4+δ [300], 6—Nd1.7Ca0.3NiO4+δ [300], 7—La2Ni0.5Cu0.5O4+δ [286], 8—La2CuO4+δ [286],
9—Pr1.75Sr0.25Ni0.75Co0.25O4+δ [287].
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6.5. Composites

A promising approach in the design of materials for SOFC and permselective membranes
is the synthesis of composites comprising both an electronic-conductive or MIEC material
and an ionic conductive material [55,58,91,216,248,269,315]. The ionic-conductive component
applied can be fluorite [55,60,244,316–321], pyrochlore [55,60,69], spinel [55,322], etc. Such an
approach allows one to combine the features of the components, such as a high electronic
conductivity of one component and a high ionic conductivity of another component, and
even acquire new characteristics due to the synergetic effect of both phases, such as a fast
oxide ionic transport across the interfaces or fast diffusion channels (Figure 23) [55,69,269].
For example, for PrNi1−xCoxO3–Ce0.9Y0.1O1.95 (x = 0.4–0.6), such a fast channel corresponds
to the interfaces and the fluorite-like phase due to the redistribution of cations, namely, the
incorporation of Pr3+/4+ cations into the doped ceria structure [55,60,69,269,321].

However, using composites not always results in improving all transport properties.
Thus, for the composites based on Pr1.9NiO4+δ and solid electrolytes (Ce0.9Gd0.1O1.95,
Y2(Ti0.8Zr0.2)1.6Mn0.4O7−δ) a decrease in the oxygen tracer diffusion coefficient values
compared to the individual Pr1.9NiO4+δ material was reported, which is probably explained
by the incorporation of the cations from the electrolyte into the RP structure leading to
hampering the cooperative mechanism of oxygen migration mentioned above [58]. For the
composites (Nd,La)5.5(W,M)O11.25−δ–Ni0.5Cu0.5O, a decrease in the oxygen tracer diffusion
coefficient values compared to the individual defective fluorites was probably due to
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blocking the fluorite phase surface by Ni (II)–Cu (II) oxide nanoparticles possessing a low
oxygen mobility, as well as the formation of admixture phases [216].
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6.6. Other Materials

Some MIEC spinels such as MnxCo3−xO4 [55,323], Fe0.6Mn0.6Co0.6Ni0.6Cr0.6O4 [324],
and LaFe2O4 [225] can be utilized as cathode materials for SOFCs, including proton-
conducting cells, due to a high activity in the oxygen reduction reaction (ORR). MnFe2O4
spinel and its composite with Gd-doped ceria are used for the fabrication of the oxygen-
permeable protecting (buffer) layer of asymmetric supported oxygen separation mem-
branes [53,55,56,69,321].

Various types of oxide materials, which possess ionic conductivity due to coopera-
tive oxygen migration mechanisms involving the cooperative motion of some forms of
oxygen, can be used as SOFC electrolytes or, as a composite with electronically conduc-
tive or MIEC materials, as SOFC electrodes and oxygen separation membranes (or their
permselective layers). Amongst these materials, doped La silicates/germanates with the ap-
atite structure [58,69,107,134,325] (Figure 24), alkaline-earth-metal-doped La gallates with
β-K2SO4 structure (Figure 25) [107,134,326], alkaline-earth metal ferrites, cobaltites, alumi-
nates, gallates and indates with a brownmillerite structure (Figure 26) [107,134,327,328],
M3−xM’xTi2NbO10−δ (M = Na, Ca, Cs; M = Bi, Ln, Rb) with a Dion–Jacobson-type layered
perovskite structure [329–331], etc. [55,58,60,69] are to be mentioned. Mayenites based on
Ca12Al7O33, possessing a high oxygen mobility due to the fast transport of weakly bound
intracellular ‘free’ oxygen (Figure 27), are to be mentioned as well [107,134–136,332]. Dop-
ing with Si mayenite possessing in general oxide-ionic type of conductivity allows one to
increase the electronic conductivity, which is necessary for the cathode application [55,333].
It is to be noted that these materials, including apatites, brownmillerites, mayenites, etc.,
possess a high protonic conductivity [107,327,334,335]; hence, they can be used in H-SOFCs
and hydrogen separation membranes as well. E.g., mayenites possess a high hydrogen
diffusivity which is implemented by vehicle and Grotthuss mechanisms, including OH−

migration and the reorientation of O–H bonds to jump between neighboring oxygen species
in (O–H–O)3− transition states (Figure 28), as well as hydrogen jumps in a form of hydride
H− (Figure 29) and non-charged H0 [335].



Membranes 2023, 13, 698 34 of 53

Membranes 2023, 13, x FOR PEER REVIEW 35 of 56 
 

 

in H-SOFCs and hydrogen separation membranes as well. E.g., mayenites possess a high 

hydrogen diffusivity which is implemented by vehicle and Gro�huss mechanisms, in-

cluding OH− migration and the reorientation of O–H bonds to jump between neighboring 

oxygen species in (O–H–O)3− transition states (Figure 28), as well as hydrogen jumps in a 

form of hydride H− (Figure 29) and non-charged H0 [335]. 

 

Figure 24. Cooperative oxygen transport mechanism in apatites [325]. (a) Two different conduction 

pathways along the c axis. The blue and green spheres represent trajectories of the interstitialcy and 

the interstitial mechanisms, respectively. The number beside each sphere corresponds to the image 

number in the calculated energy profiles. (b) A conduction pathway in the ab-plane. Yellow spheres 

represent trajectories of three O ions from O5b-4 to O5b-5. (c) Local atomic structures in the initial 

and final states of the pathway from O5b-4 to O5b-5. Reprinted with permission from Ref. [325]. 

Copyright 2020 Elsevier. 

Figure 24. Cooperative oxygen transport mechanism in apatites [325]. (a) Two different conduction
pathways along the c axis. The blue and green spheres represent trajectories of the interstitialcy and
the interstitial mechanisms, respectively. The number beside each sphere corresponds to the image
number in the calculated energy profiles. (b) A conduction pathway in the ab-plane. Yellow spheres
represent trajectories of three O ions from O5b-4 to O5b-5. (c) Local atomic structures in the initial
and final states of the pathway from O5b-4 to O5b-5. Reprinted with permission from Ref. [325].
Copyright 2020 Elsevier.
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Figure 26. Cooperative mechanism of oxygen migration in SrCoO2.5 with brownmillerite structure.
(a) Trajectory of interstitial oxygen migration through the vacancy channel within the tetrahedral
layer from site A to site B. The interstitial oxygen atom moves towards the cobalt atom during its
transport to site B. (b) Interstitial oxygen migration perpendicular to the vacancy channel along the a
axis. Reprinted with permission from Ref. [328], Copyright 2014 AIP Publishing.
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in the mayenite structure [335]. Reprinted with permission from Ref. [335]. Copyright 2020 American
Chemical Society.
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Figure 29. Hydrogen diffusion path in the mayenite structure and the transition state configuration.
The intercage opening involved during hydrogen hopping as H− hydride is highlighted [335].
Reprinted with permission from Ref. [335]. Copyright 2020 American Chemical Society.

Swedenborgite-like RBaCo4−xMxO7 (R = Y, Ca, In, Lu, Yb, etc., M = Co, Zn, Fe,
Al, Ga) phases were demonstrated to be potential cathodes for low-temperature SOFCs
due to their low thermal expansion and excellent electrochemical performance; how-
ever, their phase decomposition at elevated temperatures of 700–800 ◦C limited their
application [60,244,336,337].

Other materials with low thermal expansion coefficient values, high total conductivity
and fine oxygen transport properties to be mentioned as candidate SOFC cathodes are
yttrium iron garnet Y3Fe5O12 [55,244,338], misfit layered Ca3Co4O9-based phases [339–344],
and Aurivillius oxides (Bi2O2)(Am−1BmO3m+1) (A = Na+, K+, Ca2+, Sr2+, Pb2+, Bi3+, etc.;
B = Ti4+, Nb5+, Ta5+, etc.) [345,346]. The Aurivillius oxide Bi2Sr2Nb2MnO12−δ notably
demonstrates an excellent chemical stability (including CO2 tolerance) as well. Ca3Co4O9
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demonstrates fast surface-exchange kinetics (k* = 1.6 × 10−7 cm s−1 at 700 ◦C to be com-
pared to 1.3 × 10−7 cm s−1 for the nickelate) [347], and is promising for air cathodes
used in all type SOFCs, H-SOFCs and reversible cells, individually or in composites with
protonics [348], ionics [349] and MIECs [350].

Alkaline-earth-metal-doped lanthanide niobates with sheelite, defective perovskite,
monoclinic and tetragonal structures possess ionic (protonic and/or oxide-ionic), electronic
or mixed ionic-electronic conductivity [58,351–357]. They can be used as a component
of the composites for hydrogen separation membranes such as (La,Ca)NbO4–La3NbO7,
(La,Ca)NbO4–LaNb3O9 and (La,Ca)NbO4–NiCu [58,351–357].

Figure 30 demonstrates the oxygen mobility of some non-conventional materials for
SOFCs and permselective membranes.
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Figure 30. Arrhenius plots for oxygen tracer diffusion coefficient for various materials for
SOFCs and permselective membranes: 1—PrBaCo2O6−δ [280], 2—La9.83Si5Al0.75Fe0.25O26.5 [58],
3—Ca12Al7O33 [332], 4—La0.99Ca0.01NbO4—LaNb3O9 [356], 5—Y3Fe5O12 [338].

Metals and their alloys which can intercalate and transport protons as a defect (Figure 8a)
are widely used for hydrogen separation membranes. Precious metals such as Pt, Pd, Ru,
Ag and their alloys are conventionally used as hydrogen separation membrane materials.
They possess absolute selectivity with respect to hydrogen; however, they are too expensive
and have issues with stability under operating conditions [49,55,56,84,85,99,139,358]. As an
alternative to precious metals, Ni and its alloys, being cheap but also possessing a high
mixed protonic-electronic conductivity, can be used in hydrogen separation membranes
in an individual form or as a component of cermet composites [55,56,132,216,359,360]. V
and its alloys with Ni, Cu, V, Nb, Ta and other metals are promising materials showing
high hydrogen permeation fluxes exceeding those for Pd-based membranes and having a
lower cost [55,359–361]. The comparison of the hydrogen self-diffusion coefficient values
of various metals and alloys is given in Figure 31.
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7. Conclusions and Perspectives

In this review, the importance of oxygen and hydrogen mobility for the perfor-
mance of solid oxide fuel cells, oxygen and hydrogen separation membranes was high-
lighted. Detailed studies of ionic transport characteristics using modern techniques such
as temperature-programmed isotope exchange of oxygen with C18O2, ECR technique,
etc., were shown to widen the possibility of the design of advanced materials for these
applications. Analysis of the modern literature of isotope-exchange methods demonstrated
the necessity of the further development of isotope-exchange techniques, including the
usage of new labelled oxygen or hydrogen containing molecules to study the bulk diffusion
and the surface exchange processes. The development of new approaches for such data
analysis or improving the existing ones in combination with the data acquired by relaxation
techniques, structural and spectroscopic methods will help to elucidate atomic-scale factors
controlling the mechanisms of diffusion and surface exchange properties.

Moreover, a lack of data should be noted regarding the oxygen and hydrogen trans-
port properties of many functionally attractive and promising materials for electrochem-
ical devices with decreased operating temperature, which requires their further study.
One of the interesting approaches in creating the materials for these devices is related to
triple-conductive (H+ + O2− + e−) oxides and composites, which may demonstrate better
characteristics compared to the conventional mixed O2− + e− or H+ + e− conductive mate-
rials. Studying the oxygen-transport properties of the proton conductors and vice versa
would allow us to expand the known number of triple-conductive materials and find new
applications for these materials. Selecting solid oxide fuel cell materials with a high oxygen
and/or hydrogen mobility and surface reactivity allows to decrease the fuel cell operating
temperature and increase its power density due to reducing the electrolyte resistance and
enabling the electrode processes to take place on the electrode–gas phase double-phase
boundary not to be limited by the electrode–electrolyte–gas phase triple-phase boundary.
This opens new perspectives in the solid oxide fuel cells design and manufacturing.

Mixed ionic-electronic conducting materials for permselective membranes with a
high oxygen and hydrogen mobility and surface reactivity, as well as a high electronic
conductivity, allows the obtaining of high permeation fluxes of oxygen and hydrogen,
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respectively. Along with this, the presence of oxygen component of the conductivity of
hydrogen separation membrane materials allows us to increase the hydrogen yield. This
opens the opportunity for creating new membrane materials followed by their selection for
the prospective practical use based on their superior transport properties.
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