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Abstract: Mesoporous materials based on lyotropic liquid crystal templates with precisely defined
and flexible nanostructures offer an alluring solution to the age-old challenge of water scarcity. In
contrast, polyamide (PA)-based thin-film composite (TFC) membranes have long been hailed as the
state of the art in desalination. They grapple with a common trade-off between permeability and
selectivity. However, the tides are turning as these novel materials, with pore sizes ranging from 0.2 to
5 nm, take center stage as highly coveted active layers in TFC membranes. With the ability to regulate
water transport and influence the formation of the active layer, the middle porous substrate of TFC
membranes becomes an essential player in unlocking their true potential. This review delves deep
into the recent advancements in fabricating active layers using lyotropic liquid crystal templates on
porous substrates. It meticulously analyzes the retention of the liquid crystal phase structure, explores
the membrane fabrication processes, and evaluates the water filtration performance. Additionally, it
presents an exhaustive comparison between the effects of substrates on both polyamide and lyotropic
liquid crystal template top layer-based TFC membranes, covering crucial aspects such as surface
pore structures, hydrophilicity, and heterogeneity. To push the boundaries even further, the review
explores a diverse array of promising strategies for surface modification and interlayer introduction,
all aimed at achieving an ideal substrate surface design. Moreover, it delves into the realm of cutting-
edge techniques for detecting and unraveling the intricate interfacial structures between the lyotropic
liquid crystal and the substrate. This review is a passport to unravel the enigmatic world of lyotropic
liquid crystal-templated TFC membranes and their transformative role in global water challenges.

Keywords: lyotropic liquid crystal; nanofiltration; interfacial structure; surface modification

1. Introduction

The reduction in the supply of freshwater has prompted governments and scientists to
develop water purification technologies [1]. As seawater makes up 96.5% of the total global
water supply, seawater desalination is the most promising way to increase potable water
supplies [2]. However, desalination consumes 6–7 times more energy than conventional
water treatment methods to purify an equivalent amount of water [3]. In a common desali-
nation plant, the membrane unit accounts for 85% of the overall energy consumption [4].
Therefore, improving membrane efficiency is crucial in reducing overall desalination energy
consumption and further popularizing desalination techniques.
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Thin-film composite (TFC) membranes, consisting of an active separation layer, porous
support, and polyester non-woven backing layer, are considered a state-of-the-art design
for seawater desalination membranes [5–7]. The active layer of commercial TFC membranes
is typically a nonporous aromatic cross-linked polyamide (PA) [8]. Although this type of
TFC is widely used, it is limited by its low permeability (<1 Lm−2 h−1 bar−1 µm) [9,10],
non-uniform pore size [11], and low fouling resistance [7]. Lyotropic liquid crystals (LLCs)
are promising templates for active layer materials due to their inherently uniform and
controllable pore size, ranging from 0.2 to 5 nm [9,12–16]. Membranes formed by LLC
template materials possess low surface roughness and high hydrophilicity, which result
in higher membrane-fouling resistance [17]. Moreover, mesophases such as hexagonal
and lamellar are reorientable, enabling water channels to align perpendicularly to the
membrane surface and increasing water permeance.

Current studies on fabricating TFC membranes based on the LLC template active
layer all directly form the LLC mesophase on substrates since this method guarantees
interface [10]. However, research has shown that the surface properties of the substrate,
including hydrophilicity and heterogeneity, could significantly affect the types and shapes
of surfactant mesophases [18]. As LLCs are also formed by surfactants, it is reasonable
to wonder about the accurate structures at the LLC/substrate interface. However, this
essential part has been overlooked.

Studies on the conventional PA-based active layer show that the middle porous
substrate of TFC not only regulates the water transport path but also interferes with the
structure formation of the active layer [19]. For example, the funnel effect leads to a
longer transport pathway of water on the substrate with low porosity [20,21]. Regarding
structure formation interferences, the nanovoids formation on the PA surface has been
effectively controlled by the surface pore size of the substrates, which can be explained
by a volcano-like model [22] and the confinement effect [23,24]. In addition, the infusion
depth of the PA layer in the substrate was found to be altered by both surface pore size
and hydrophilicity [25–27]. Commercial polymer substrates are usually limited by their
material nature, which is hydrophobic, has less porosity, and cannot enable the top layer to
exert functions effectively.

Fortunately, the limitations of polymer substrates can be remedied by emerging surface
modification and by introducing an interlayer between the substrate and top layer [28,29].
Surface modification methods, including surface deposition and surface grafting, usually
focus on tackling the polymer surface hydrophobicity [29], while introducing an interlayer
could bring additional benefits, such as adjusting the overall water channel [30], restricting
the active layer infusion, and facilitating the formation of a uniform and defect-free top
layer [31].

In addition to optimizing the surface properties of the substrates, accurately detecting
the LLC/substrate interfacial structures is also of great importance for optimizing the
interface. Microscopic methods such as scanning electron microscopy and transmission
electron microscopy are usually destructive to the membranes and limited to probing small
sample areas. X-ray and neutron techniques are more promising in non-destructively
observing the buried LLC/substrate interfacial structures. The grazing incidence mode
scattering technique is the most direct tool to identify the LLC phase structure at the
interface by choosing a suitable beam incident angle [32], while neutron enables localization
of the monomer molecules at the interface by contrast matching the deuterated amphiphile
molecules and the mixtures of deuterated and hydrogen solvents [33].

While the use of LLC mesophases in advanced materials has been observed in various
fields, the effects of the bottom substrate on the formation and dimensions of the LLC phase
structure have not been systematically discussed. Moreover, there is a lack of discussion on
the design of the LLC/substrate interface and the accurate detection of this interface. To ad-
dress this gap in knowledge, this review aims to critically examine and evaluate the effects
of substrates on both active layer formation and the TFC water path, and to systematically
summarize the related mechanisms. Specifically, we compare the conventional PA active
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layer and LLC active layer and provide an optimized substrate recommendation for both
cases. We also suggest the corresponding substrate modification methods and interfacial
characterization tools to support the administration of the interfacial layer.

2. Fabrication of LLC Active Layer with Suitable Structure Retention

The structure of TFC membranes based on the LLC template active layer typically
consists of a top LLC template layer and a porous substrate. The porous substrates are
typically commercially purchased microfiltration or ultrafiltration membranes or self-
prepared (phase inverse method) porous membranes. This section presents the main
efforts made in the fabrication of the LLC active layer on porous membranes, focusing on
LLC phase behavior, structure retention, and a comparison of the resulting membranes
structures and performances.

2.1. LLC Precursor on Porous Substrates
2.1.1. LLC Phases

LLCs are assemblies composed of amphiphilic molecules that contain a hydrophilic
headgroup and a hydrophobic organic tail in the presence of a polar solvent, usually
water. The amphiphilic nature of these molecules drives them to phase separation upon
the addition of polar solvent, resulting in the formation of ordered hydrophobic and
hydrophilic domains with water–oil interfaces determined by hydrophilic headgroups.
The most common phases of LLC are lamellar (L), hexagonal (H), bi-continuous cubic
(Q), and discontinuous cubic (I). Among these, the normal hexagonal phase (HI), inverted
hexagonal phase (HII), and normal bi-continuous cubic (QI) are most commonly used as
the template for fabricating top layers [10,16,34,35], as shown in Figure 1. Saadat and
his coworkers have summarized the reactive and non-reactive surfactants that have been
used to form these mesophases [17]. Compared to other mesophases, the hexagonal
mesophase template materials are more promising for fabricating top layers with pores
parallel to the macroscopic transport direction, i.e., vertical to the membrane surface. Such
a tubular HLLC domain was verified to be reoriented using several up-to-date techniques,
including magnetic field [14,36–39], electrical fields [40–42], shear force [10,12,43–46], and
confinement methods [13,47].
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2.1.2. LLC Phase Behavior

A lipid monolayer possessing a spontaneous curvature can be bent with a concave
surface to form cylinders, which is the basis of the LLC phase transition. The free energy of
bending a thin surfactant layer can be calculated by [48]:

E = (kc/2)(C1 + C2 − C0)
2 + kgC1C2 (1)

where E is the energy per lipid area, C1 and C2 are the principal curvatures, kc and kg are
constants called the rigidity and Gaussian curvature constants, and C0 is referred to as the
spontaneous curvature. C1, C2, and C0 are zero for the lamellar phase, and C1 + C2 = 0 for
the bi-continuous cubie phase, while in the hexagonal phase, one of the principle curvatures
is zero [2,48]. Therefore, for the cylinder phase, the free energy of bending a thin surfactant
layer can be transferred to [48]:

E = (kc/2)(C− C0)
2 (2)

where lower free energy of bending a thin layer corresponds to a higher spontaneous
C0. However, this theory cannot explain the energy changes during the phase transition
between the lamellar and hexagonal phases since the C0 is zero for the lamellar phase. In
this case, the hydrocarbon packing energy theory was introduced [49–51]. The lamellar
phase possesses a low hydrocarbon packing energy and a high bending energy, which
means that the lower hydrocarbon packing energy drives the phase transition from the
lamellar to the hexagonal phase when increasing the C0 of the flat layer. Therefore, the
competition between the curvature on the interface of the mesophases and hydrocarbon
packing mainly determines the structure of the LLC phase [48]. The temperature [52],
pressure [53,54], pH value [55], and introducing agents such as inorganic salts [56,57] and
alkanes [58] have been found to modulate the packing and bending energies of the LLC
system. For instance, the decrease in temperature was found to increase the radius of
the water core of the HII, which increases the hydrocarbon packing energy and forms a
cylinder with a lower spontaneous curvature of the system. In this case, the introduction
of a long-chain alkane can decrease the packing energy and increase the spontaneous
curvature of the system, which stabilizes the LLC phase [48]. Efforts to control the LLC
phase structure, LLC unit cell size, and diameter of the water phase in LLC have been
motivated by many applications, including drug release and protein loading [59–61].

2.1.3. Polar Solvent

Water is the most typical polar solvent used in LLC mesophase. However, the in-
evitable evaporation of water limits the retention of LLC phase structures. This problem
can be addressed by replacing the water with other polar organic solvents with lower
volatility, such as glycerol, ionic liquids, ethylene glycol, N-methylsydone, formamide and
its derivatives, and propylene carbonate [62–64]. These solvents have been studied to form
LLC phases with alternative surfactants.

2.2. Ultrathin LLC Film Formation on Porous Substrates
2.2.1. LLC Templating

LLC mesophases suffer from poor mechanical and thermal properties, which limit their
applications. Therefore, they are often used as templates to be polymerized into polyLLCs
to overcome these limitations. Two common routes can be implemented to achieve robust
polyLLCs: synergistic and transcriptive templating. The synergistic method is more direct
since it cures the polymerizable surfactant directly, while the latter one cures the introduced
monomers or crosslinkers in the confined area in the LLC template. Generally, self-assembly
is a process by which molecules move to minimize their free energy. When transferring the
LLC parent template to the polymer, the entropy of the system decreases, while the enthalpy
of the isolated system commonly undergoes almost no change during the polymerization.
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Therefore, an increase in the free energy of the system will inevitably occur, leading to the
collapse of the template structure. Two strategies can be used to avoid the loss of the parent
structure [65]:

• Establishing strong enough thermodynamic interactions between the surfactant tem-
plate and polymer;

• Increasing the system viscosity and chain entanglement by forming covalent and
limiting species diffusion.

The fast formation of covalent bonds between monomers and the increase in the viscos-
ity of the system by polymerization are reported to be the best strategies to retain the LLC
structure, which restricts the diffusivity of the objects in the system constantly. Compared
to synergistic templating, retaining the structure during the curing is more challenging for
transcriptive templating since there are more movable objects in the transcriptive systems.
Even so, a suitable choice of chemistry structure for monomers and initiators and the
introduction of crosslinkers, polymerizable surfactant [66], silica network [67], and block
copolymer [68] can increase the possibility of structure retention.

2.2.2. Fabrication Process

Roll-casting, hot or cold pressing, and spin-coating were used to fabricate LLC-based
TFC membranes, as shown in Figure 2A. To fabricate a robust LLC-based TFC membrane,
the inverse hexagonal (HII) phase was first roll-cast onto the commercial microporous poly-
sulfone (Psf) support. Although this fabrication method is facile, the inevitable evaporation
of water causes limited retention of HII phase structures. The use of alternative solvents
has been discussed in Section 2.1.3.
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The pressing method was developed to prevent solvent evaporation, as shown in
Figure 2B. This method effectively reduces the possibility of water evaporation affecting
TFC performances, but it leads to the infusion of the active layer into the porous support,
making the active layer as thick as the support. This problem can be resolved by reduc-
ing the pore size of the porous support, improving the hydrophilicity of the substrate,
decreasing the pressing temperature (need to ensure the phase formation in the specific
temperature), and introducing a sacrificial layer. The sacrificial layer method has been
developed to fabricate thin free-standing films and avoid infusion of LLC mesophase
into the substrate. Generally, water-soluble polymers, such as polyvinyl alcohol (PVA),
poly (vinylpyrrolidone) (PVP), poly (4-vinylphenol), and dextran, act as the sacrificial
layers [10,12,69,70]. The main drawback of this method is water solvent absorption from
the water-soluble polymer during the fabrication process, which can greatly influence the
LLC phase structures. Thus, this method is only suitable for LLC systems with selective
polar organic solvents.

Spin-coating (Figure 2C) is a straightforward method for producing ultrathin and
uniform films, with membrane thickness controlled by solution concentration and spin
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speed [71]. However, for the fabrication of LLC membranes, it is crucial to maintain
control over the LLC phase structure during the high spin speeds [10]. The structures and
alignment [72] can be significantly altered by changes in spin speed, solvent, and even
airflow direction for solvent evaporation. Moreover, a low-volatility polar organic solvent
is necessary to form the LLC phase using this method.

Economic costs and life-cycle emissions are important in chemical use, fabrication,
and operation needs for application [73]. Herein, economic costs and life-cycle emissions
during the membrane fabrication process play important roles in future applications. From
an economic cost perspective, interfacial polymerization can be a more complex and spe-
cialized process. It often requires specific equipment, chemicals, and controlled reaction
conditions, which can contribute to higher upfront costs and investment in infrastructure.
The cost of raw materials and the complexity of the production process can affect the
overall economic feasibility of interfacial polymerization-based applications. Compared to
the interfacial polymerization of PA-based TFC, the fabrication of LLC-based TFC can be
more cost-effective. The three methods discussed above require less specialized equipment.
Chemicals used in LLC systems are of fewer types and possess higher stability than that
used in PA. Additionally, solid-like LLC precursor usually forms before membrane fabrica-
tion. This pre-polymerization process determines better reaction conditions controlled by
free-radical polymerization than interfacial polymerization. From a life-cycle emission per-
spective, both interfacial polymerization and free-radical polymerization process produce
emissions, including volatile organic compounds, greenhouse gases, and other chemical
pollutants. These emissions can be mitigated by various strategies, such as optimizing
reaction conditions and introducing efficient catalysts or initiators.

2.3. Performance of TFC Membranes with LLC as the Active Layer

Many LLC template membranes currently outperform the previous ones limited by
trade-off, and their performances are comparable to commercial membranes (Table 1).
Studies have mainly focused on building the outperformed TFCs with LLC active layers
using hexagonal columnar LLC and cubic LLC. Gin and his coworkers reported a TFC
with an inverted hexagonal (HII) phase as the active layer and polysulfone (Psf) UF as the
substrate [34]. This HII active layer with 0.6 µm possesses a molecular separation pore
size of about 1.2 nm. However, the isotropic cylindrical nanochannels without alignment
presented a very low pure water flux of 0.053 Lm−2 h−1 bar−1 µm. Osuji et al. [10] reported
a TFC membrane with a parallel aligned hexagonal (HI) phase active layer. In this study,
a spin-coated ultrathin (200 nm) active layer provided a relatively high water flux of
2 Lm−2 h−1 bar−1 µm. The molecular weight cutoff (MWCO) of this TFC membrane is
300 Da for charged organic solutes and 600 Da for neutral organic solutes (1.2 nm PEG).
The salt (MgCl2 and CaCl2) rejection of this membranes is more than 80%.
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Table 1. Summary of the reported results for TFC membranes based on LLC template active layer.

Ref. LLC Phase Porous
Substrate

Fabrication
Process Solvent Reactive

Temp (◦C)
Pore Size in

Diameter (nm) Thickness Pure Water Flux Rejection (%)

[34] HII PSf MF Roll-casting H2O RT 1.2 0.6 µm 0.053 Lm−2 h−1 bar−1 µm

Na-TSO (60)
Na-NpSO (73)
Na-AnSO (89)
Na-PySO (94)
PEG600 (25.7)
PEG5000 (96.1)
PEG20000 (99.6)

[16] QI PE MF Hot-pressing H2O 65 0.75 40 µm 0.086 Lm−2 h−1 bar−1 µm

Ethidium Red (99.9)
PEG-600 (99.9)
Sucrose (99.9)
Glucose (96)
Glycerol (53)
EG (38)
NaCl (95)
MgCl2 (99.3)
CaCl2 (99.3)

[35] QI PE MF Hot-pressing H2O 60 0.86 40 µm 0.054 Lm−2 h−1 bar−1 µm

NaCl (94)
KCl (92)
MgCl2 (95)
CaCl2 (96.9)
Sucrose (97.9)
Glucose (95)
Glycerol (45)
Ethylene glycol (38)

[9] QI PE MF Hot-pressing H2O 65 0.75 40 µm
Using Ref. [16]’s LLC membrane. Water filtration performances
in between that of commercial RO membranes and
NF membranes

[63] QI PES UF Rod-coating Glycerol 70 0.96 3 µm 0.054 Lm−2 h−1 bar−1 µm

Sucrose (97)
Glucose (87)
Glycerol (45)
EG (24)
NaCl (98)
MgCl2(99)
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Table 1. Cont.

Ref. LLC Phase Porous
Substrate

Fabrication
Process Solvent Reactive

Temp (◦C)
Pore Size in

Diameter (nm) Thickness Pure Water Flux Rejection (%)

[74] QI PES UF Rod-coating Glycerol 70 ≈1 3 µm Using Ref. [63]’s LLC membrane. Anion exchange in the pores
can adjust the flux with little change in rejection performance

[75] QI PES UF Rod-coating Glycerol 70 ≈1 3 µm

Using Ref. [63]’s LLC membrane. TFC QI possesses a similar
performance as commercial RO and NF membranes in treating
hydraulic fracturing flowback water. Controllable DOC
recovery can be adjusted by pH

[76] QI PES UF Rod-coating Glycerol 70 ≈1 3 µm

Using Ref. [63]’s LLC membrane. The 66 h cross-flow filtration
of hydraulic fracturing produced water was conducted. Better
performance than NF90 in portion of organic compounds, water
flux, and fouling resistance

[68] HII
Lα

PE MF
(recovered) Hot-pressing H2O

RT
(UV-curing) +
70 (thermal-

curing)

4 nm (HII)
3 nm (Lα) 10 µm

These LLC membranes possess better permeability and
antifouling performances than commercially UF membranes.
BSA rejection higher than 95%

[12] HI PAN UF Pressing H2O RT 1–2 nm 3–30 µm 10 Lm−2 h−1 bar−1 µm

Methylene blue (90)
Crystal violet (90)
Alcian blue (90)
Charged solutes (~350 Da)
Neutral solutes (~4 kDa)

[10] HI
PAN UF and

PVDF UF Spin-coating Glycerol RT ~1 nm ~200 nm 2 Lm−2 h−1 bar−1 µm

PEG600(>94)
Methyl orange (91)
Methylene blue (95)
CaCl2 and MgCl2 (>80)
LiCl, NaCl, and KCl (>40)

[72] HI PVDF UF Spin-coating Glycerol RT 0.6–1.5 nm 170–200 nm
10–30 Lm−2 h−1 bar in water

2–8 Lm−2 h−1 bar−1 µm
in methanol

4 HI membranes possess
various performances. Only
list the maximum
performances here. PEG 600
(100%)
Acid Fuchsin 585 Da (> 95%)
Methyl Orange 327 Da
(100%)
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The standard for salt rejection for drinkable desalinate seawater is more than 95% [77],
and the hydrated Na+ is about 0.72 nm [5,78]. However, it is very challenging to fabricate a
hexagonal mesophase with continuous and uniform nanopores in a diameter range smaller
than 1 nm. Gin and his coworkers reported TFC membranes based on the bi-continuous
cubic (QI) phase [16,35]. The effective pore size of the active layers was found to be
0.75–0.96 nm, which allows for a 95% NaCl rejection. By replacing the water solvent with
organic solvent glycerol, NaCl rejection was improved to 98% by significantly decreasing
the defects in the active layer. However, the low effective pore size (<1 nm) of the QI
mesophase leads to low water flux (<0.1 Lm−2 h−1 bar−1 µm) [63].

3. Effect of Substrate on TFC’s Structures and Performance

The porous substrate plays an important role in not only mechanically supporting
the active layer but also exerting great effects on its structural control and filtering per-
formance. Porous substrates are usually fabricated from polymer materials with various
properties [79,80]. Polymers such as polysulfone (Psf) and polyether sulfone (PES) are
most widely used as substrate materials in TFC membranes. They possess relatively high
hydrophilicity and suitable thermal properties, but their relatively low mechanical strength
and solvent sensitivity limit their application. Polyacrylonitrile (PAN) possesses higher
hydrophilicity compared to other materials, but its relatively low mechanical strength is
a limitation. Materials such as polyvinylidene fluoride (PVDF) and polypropylene (PP)
possess high resistance to various chemicals, but they suffer from high hydrophobic sur-
faces. Polyvinyl chloride (PVC) possesses high mechanical strength but poor thermal
stability [46,81]. The performance of TFC was reported to be greatly influenced by the
surface pore structures, hydrophilicity, and roughness of the support.

3.1. Substrate’s Effect on Traditional TFC’s Structures and Performances
3.1.1. Pore Structures

The porosity and pore size of the substrate have significant effects on the permeance
of TFC. On the one hand, the porosity of the substrate can greatly regulate the water
transport pathway [19,82,83]. The cylinder pores model [7] for porous membranes and
the solution-diffusion (S-D) model [84] for nonporous membranes are only suitable for
free-standing active layers where the solvent transport is in the perpendicular direction.
However, for a TFC membrane, the solvent needs to seek ways to enter the discrete pores
of the substrate when leaving the top active layer, which results in a longer transport
pathway compared to the intrinsic thickness. This phenomenon is referred to as the funnel
effect [20,21]. Models indicate that the real permeance (Areal) could approach the ideal
permeance (Aideal) when the porosity of the substrate is high enough (approximately
100%), as shown in Figure 3A. Furthermore, the funnel effect is more severe for thinner
active layer thicknesses, as the model shows that the larger l/R2 results in greater scaled
permeance [19]. On the other hand, the pore size of the substrate can effectively regulate
the structure of the active layer [23,85]. During the process of fabricating the cross-linked
PA active layer, substrates with a larger pore size were reported to store greater amounts
of amine, and more amine can participate in the reaction [85]. Moreover, larger pore
sizes were also found to facilitate the formation of the PA active layer with a rougher
surface [86], which increases the permeance [87–89]. This phenomenon was explained by a
model called the volcano-like conceptual model [22]. In this model, the eruption of amine
solution from the pores during the interfacial polymerization results in rougher PA film,
as shown in Figure 3B. However, larger pore sizes could also decrease the performance
of the TFC membranes [23,24,26,27,90]. The nanovoids formed in the PA active layer are
beneficial for solvent transportation [87]. These voids were shown to be produced by an
interfacial degassing mechanism, caused by the interfacial degassing of some gases (CO2
or other volatile organic solvents) produced during the interfacial polymerization [90–93].
Substrates with smaller pore sizes were demonstrated to retain more released bubbles
for creating nanovoids in the PA active layer, which was referred to as the confinement
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effect [23,24] (Figure 3C). Another origin of the nanovoids was explained by localized
heating produced during the polymerization, where smaller pores can hinder heat transfer
and facilitate the formation of a crumpled film [20,94]. In addition, a relatively large pore
size of the substrate was reported to lead to the infusion of the active layer material into the
pores, resulting in a poor permeance [26,27]. Based on the above discussions, a substrate
with high porosity and moderate pore size could realize a TFC with high permeance.
Furthermore, the substrate can also affect the rejection of the TFC membranes. Studies have
found that a substrate with a very large pore would increase the possible defect formation
in the active layer and its effects of defects on rejection [86,95], as shown in Figure 3D.
Additionally, the intrinsic properties of the active layer, such as crosslink degree and surface
uniformity, can be adjusted by the pore size and porosity of the substrate, which also exerts
great effects on rejection [96,97]. Modifying the porosity and pore size of bulk substrate to
enhance the fabrication of a superior active layer often entails compromising the filtration
performances of the substrate. However, selectively adjusting the pore structures solely on
the substrate surface [98] or implementing an interlayer (as discussed in Section 4) becomes
possible to preserve the substrate’s performance more effectively.
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Figure 3. (A) The relationship between the permeance of the TFC membranes and the porosity of
the substrates. (l: intrinsic thickness of the active layer, leff: effective transport length, ε: porosity,
R1: mean pore radius, and R2: mean half-distance between pores) [19]; (B) the relationship between
the pore size of the substrate and roughness of the resulting PA active layer [86]; (C) confinement
effect [24]; (D) thinner PA layer formed on the substrate with larger pores and increased in the possible
defects’ effect on the rejection of the TFC membrane [95]; (E) hydrophilicity effects of substrate on the
formation of PA active layer [22]; (F) pattern replication represented by AFM cross-sectional profiles
for patterned TFC membranes [99].

3.1.2. Hydrophilicity

Generally, a hydrophilic substrate can store a higher content of monomers for inter-
facial polymerization. A conceptual model proposed by Ghosh and his coworkers [22]
illustrated that the aqueous solution meniscuses in the hydrophilic and hydrophobic sub-
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strate pores are concave and convex, respectively, and therefore, more polyamide is formed
in the pores of a hydrophilic substrate, as shown in Figure 3E. The advantage of using a
hydrophilic substrate for PA TFC is exhibiting better substrate/active layer adhesion, but
a substrate that is too hydrophilic could lead to a thick PA layer and more penetration of
PA in the pores [25]. Additionally, choosing a hydrophobic substrate has limitations due
to poor quality layer formation and very low storage of amine monomer on the substrate,
which usually exhibits very low rejection [100,101]. The optimum water contact angle
values could be between 40◦ and 60◦ [102].

3.1.3. Roughness

In general, surface roughness can enhance the hydrophilicity or hydrophobicity of
the substrates [103]. Studies have also focused on improving the roughness of the porous
substrate by surface patterning techniques [99,104,105]. One such technique is nanoimprint
lithography (NIL), which is used to impart sub-micro surface patterns onto the porous
substrate [104]. The interfacial polymerized PA layer can typically replicate the pre-formed
pattern on the substrate. Such modification can not only improve the real separation area
of the active layer but also alleviate the formation of solute concentration polarization on
the surface, effectively enhancing the permeance and antifouling performance of the TFC
membranes, as shown in Figure 3F.

3.2. Substrate’s Effect on LLC-Based Active Layer

Several models and theories that were developed to explain the effects of substrates
on PA-based TFC membranes can also be applied to LLC-based TFC membranes. Among
these models, the funnel effect and confinement effect suggest that the substrates with
high porosity and small pore size may be preferable for supporting the LLC active layer.
Moreover, a smaller pore size substrate can prevent the infiltration of LLC mixtures into the
pores. However, unlike interfacial polymerization, where amine monomers quickly diffuse
from the pores during the reaction, the volcano-like conceptual model may not be suitable
for the LLC system, which is typically driven by free-radical photopolymerization [65]. Ad-
ditionally, the membrane formation mechanism indicates that a flat substrate with suitable
hydrophilicity is required to form a uniform and flawless LLC-based active layer. Unlike
the PA active layer, which forms membrane structures after interfacial polymerization,
the final structure of the LLC active layer is significantly influenced by the formed LLC
mesophase before photopolymerization. As the LLC mesophase contact with the substrates
before polymerization, this section discusses the substrate’s effects on the LLC mesophase.

Section 2.1.2 shows that the behaviors of the LLC phase, such as phase structure and
unit cell dimension, which are determined by both interfacial curvature and hydrocarbon
packing energy, can be easily altered by a variety of external conditions. Therefore, the
effects of substrate on the LLC phase structure and unit cell size cannot be ignored. Nu-
merous studies have investigated surfactant mesophases formed on solid substrates, and it
has been demonstrated that the surface properties of substrates, including hydrophilicity
and heterogeneity, can modify the interfacial curvature of surfactant mesophases formed
on them [18]. Moreover, Grady et al. [106] directly probed the surfactant mesophases on
nanoscopic trenches and pillars using an atomic force microscope. They found that the
effect of surface physical heterogeneity on the structure of surfactant mesophases extends
to lengths much longer than those of individual surfactant molecules (approximately 50 nm
vs. 2 nm). Given that the promising thickness of the LLC active layer is around 200 nm, the
phase structure of the LLC can be significantly influenced by the substrate.

3.2.1. Effects of Substrate Hydrophilicity on the Structure of LLC Mesophases

The hydrophilicity of the substrates can significantly alter the structure of LLC
mesophases. Several studies have investigated surfactant adsorption at the hydrophilic
or hydrophobic solid–water interface [18,107–111]. The relatively weak bond between the
substrate surface and solvent causes the surfactants to replace solvent molecules at the sur-
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face. Typically, cylindrical, spherical, and bilayer mesophases form on hydrophilic surfaces,
whereas hemicylindrical, hemispherical, and monolayer mesophases form on hydrophobic
surfaces, as shown in Figure 4A [18]. In hydrophobic systems, the hemi- and mono-behavior
is related to lower free energy and minimal contact between the hydrophobic substrate and
water [112].

Membranes 2023, 13, x FOR PEER REVIEW 13 of 38 
 

 

layer is around 200 nm, the phase structure of the LLC can be significantly influenced by 
the substrate. 

3.2.1. Effects of Substrate Hydrophilicity on the Structure of LLC Mesophases 
The hydrophilicity of the substrates can significantly alter the structure of LLC 

mesophases. Several studies have investigated surfactant adsorption at the hydrophilic or 
hydrophobic solid–water interface [18,107–111]. The relatively weak bond between the 
substrate surface and solvent causes the surfactants to replace solvent molecules at the 
surface. Typically, cylindrical, spherical, and bilayer mesophases form on hydrophilic sur-
faces, whereas hemicylindrical, hemispherical, and monolayer mesophases form on hy-
drophobic surfaces, as shown in Figure 4A [18]. In hydrophobic systems, the hemi- and 
mono-behavior is related to lower free energy and minimal contact between the hydro-
phobic substrate and water [112]. 

 
Figure 4. (A) Schematic of typical surfactant mesophases formed on substrate with various hydro-
philicity. Blue spheres are the hydrophilic surfactant headgroups, and black curves are hydrophobic 
tail groups [18]; (B) AFM images for gold surfaces in contact with SDS solutions at 10 mM concen-
tration. (a) Oriented parallel hemicylinders SDS were observed on flat flame-annealed gold surface 
(yellow arrows highlight the micelles are oriented in one of three preferred orientations on large 
and flat areas, and blue arrows and ellipses highlight that micelles exhibit orientations in different 
directions only at topographic steps). (d) No orientation order can be observed on the even rougher 
gold surface (orange arrows indicate areas where the micelles entwine around the grains) [113]; (C) 
surfactant mesophases were absorbed on a flat substrate with hydrophobic stripes. The hydropho-
bic and hydrophilicity surfaces are shown as dark and light gray, respectively. Surfactant head and 
tail groups are shown as red and cyan spheres [114]; (D) surfactant mesophases were absorbed on 
steps. The hydrophobic and hydrophilicity surfaces are shown as green and light gray. Surfactant 
head and tail groups are shown as red and blue spheres [115]. 

3.2.2. Effects of Substrate Heterogeneity on the Structure of LLC Mesophases 
Surface heterogeneity can have a significant impact on surfactant adsorption and 

phase formation, as reported in previous studies [18,116]. The surface heterogeneity can 
be categorized as either chemical, physical, or a combination of both. Most computational 
studies have focused on flat surfaces with chemical heterogeneity [114,117]. Surfactant 
adsorption is based on the interaction between the hydrophobic tail of surfactant and hy-
drophobic areas, which can effectively alter the interfacial curvature of formed 
mesophases through lateral confinement. Surfactant mesophases with higher interfacial 
curvature can be achieved by forming mesophases on a narrower hydrophobic strip or 
two closer adjacent strips, as shown in Figure 4B [114,117]. Physical heterogeneity also has 

Figure 4. (A) Schematic of typical surfactant mesophases formed on substrate with various hy-
drophilicity. Blue spheres are the hydrophilic surfactant headgroups, and black curves are hydropho-
bic tail groups [18]; (B) AFM images for gold surfaces in contact with SDS solutions at 10 mM
concentration. (a) Oriented parallel hemicylinders SDS were observed on flat flame-annealed gold
surface (yellow arrows highlight the micelles are oriented in one of three preferred orientations
on large and flat areas, and blue arrows and ellipses highlight that micelles exhibit orientations in
different directions only at topographic steps). (d) No orientation order can be observed on the
even rougher gold surface (orange arrows indicate areas where the micelles entwine around the
grains) [113]; (C) surfactant mesophases were absorbed on a flat substrate with hydrophobic stripes.
The hydrophobic and hydrophilicity surfaces are shown as dark and light gray, respectively. Surfac-
tant head and tail groups are shown as red and cyan spheres [114]; (D) surfactant mesophases were
absorbed on steps. The hydrophobic and hydrophilicity surfaces are shown as green and light gray.
Surfactant head and tail groups are shown as red and blue spheres [115].

3.2.2. Effects of Substrate Heterogeneity on the Structure of LLC Mesophases

Surface heterogeneity can have a significant impact on surfactant adsorption and
phase formation, as reported in previous studies [18,116]. The surface heterogeneity can
be categorized as either chemical, physical, or a combination of both. Most computational
studies have focused on flat surfaces with chemical heterogeneity [114,117]. Surfactant
adsorption is based on the interaction between the hydrophobic tail of surfactant and hy-
drophobic areas, which can effectively alter the interfacial curvature of formed mesophases
through lateral confinement. Surfactant mesophases with higher interfacial curvature
can be achieved by forming mesophases on a narrower hydrophobic strip or two closer
adjacent strips, as shown in Figure 4B [114,117]. Physical heterogeneity also has significant
effects on surfactant mesophases. Sodium dodecyl sulfone (SDS) mesophases with lower
interfacial curvature were formed on a rougher gold substrate, as shown in Figure 4C [113].
Furthermore, the interfacial curvature of adsorbed surfactant mesophases decreases with
the increasing length of the hydrophobic strip on steps, as shown in Figure 4D [115]. Addi-
tionally, the effects of physical heterogeneity on the surfactant mesophases are associated
with surfactant concentration [118], electric charge [119], and the existence of co-adsorbents
(monomers or crosslinkers) [120].
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4. Substrate Surface Modification
4.1. Ideal Substrate Surface Structure and Properties

In order to achieve high water permeance and rejection in both PA-based and LLC-
based TFC membranes, it is important to choose substrates with high porosity (around or
above 10%) and small to moderate pore size [19]. For PA-based TFC membranes, substrates
with suitable surface hydrophilicity enhance the rejection properties and improve adhesion
between the top layer and substrate without decreasing water permeance. In contrast,
substrates with suitable surface heterogeneity provide higher antifouling ability and a more
effective separation area. Regarding LLC-based TFC membranes, the surface properties of
the substrate play a crucial role in achieving a uniform and thin LLC active layer, regardless
of the LLC phase structure. Specifically, substrates with higher surface hydrophilicity
and lower surface roughness are preferred. On the other hand, LLC active layer with
a suitable phase structure and unit cell dimension can be achieved by controlling the
interfacial curvature of LLC mesophase, which can be accomplished by altering the surface
hydrophilicity and heterogeneity of the substrate.

4.2. Surface Modification

Porous substrates, such as MF and UF membranes, which are commonly prepared by
the phase inversion method, are used to support the active layer to build thin-film compos-
ites. However, controlling the structure formation of such substrates is challenging due to
multiple factors during the phase inverse process. UF membranes usually have smooth and
dense surfaces but are limited by their low porosity (<10%), while MF membranes usually
have oversized porous structures that decrease the stability of the active layer [121,122].
Moreover, polymeric porous membranes are often not hydrophilic enough, leading to an
uneven distribution of monomer solvent on the substrate surface and an unstable interface
between the active layer and the substrate, which may result in potential detachment.
Therefore, finding suitable surface modification strategies is crucial to design the interfacial
surface between LLC active layer and substrate. The main motivation of the reported
surface modification techniques is to enhance the hydrophilicity of membranes and thus
improve their antifouling performance [29]. For LLC thin-film composite membranes, mod-
ified substrates with high hydrophilicity and smooth surface are promising. Two surface
modification strategies can help us obtain substrates with ideal surface properties:

• Surface deposition;
• Surface grafting.

4.2.1. Surface Deposition

Deposition methods can be categorized into mussel-inspired deposition, atomic layer
deposition, initiated chemical vapor deposition, and bioinspired mineralization (Figure 5).

Among these methods, mussel-inspired deposition has gained popularity in recent
years, and dopamine and polyphenol tannic acid are two common materials for this
purpose. These materials are inspired by the 3,4-dihydroxyphenylalanine found in mussel
food proteins and can be oxidized and self-polymerized to create a uniform coating on
polymer materials, enhancing the hydrophilicity of the membrane surface [29]. The detailed
reaction mechanism can be found in previous literature [123,124]. The widespread use of
this deposition method is due to the following reasons:

• This modification occurs in mild and wet conditions, which prevents membrane pore
collapse during drying [125] and avoids degradation caused by some other methods,
such as plasma or irradiation methods [126];

• No special reaction is required between the deposition layer and membrane sur-
face since the deposition material interacts with hydrophobic and hydrophilic mem-
branes through π–π stacking/hydrophobic interactions and electrostatic/hydrogen
bonds/covalent bonds interaction, respectively [127,128];
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• The coating layer thickness can be easily adjusted by varying the deposition time and
solvent concentration, which prevents pore size blocking, especially for UF [129];

• Further functionalization can be achieved since the deposition layer introduces amino
and hydroxyl groups onto the membrane surface [130].

The three main disadvantages of the deposition method are long time consump-
tion, unstable coating, and environmental pollution caused by suspended deposition
particles. However, emerging methods such as co-deposition [131–133], introducing oxi-
dants [134,135], and applying irradiation [136,137] have been developed to improve depo-
sition efficiency and stability.
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Compared to mussel-induced deposition, initiated chemical vapor deposition (iCVD)
is better at forming a uniform organic coating on various substrates. During the iCVD
process, the substrate is exposed to a volatile initiator and one or two vinyl monomers,
on which the initiator is decomposed to radicals and initiates the radical polymerization
and creates organic coating in one step [138]. This method is easy to use to fabricate
homopolymer or copolymer coatings in nanometer thickness on polymer substrates. The
substrate’s surface can be kept at a relatively low temperature (<40 ◦C) [138] during the
process because the initiator is decomposed by a resistively heated filament array, which
makes it possible to coat some polymers such as PTFE that requires a high-temperature
sintering step (400 ◦C) [139]. Since this process occurs at the gas–solid interface and in a
vacuum chamber, membranes with nanopores sensitive to capillary forces during drying
are not suitable to be treated [125]. Conversely, this solvent-free method can effectively
avoid the potential damage brought by the solvent to the membrane, such as swelling, acid
corrosion, and shrinkage [140].
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Compared to forming organic coatings by mussel-inspired deposition and iCVD,
atomic layer deposition (ALD) is better at forming nanosized conformal inorganic coatings
on various polymer substrates, which is also a vapor-phase (inorganic precursor vapors)
conformal deposition process occurring at the solid–gas interface [141]. However, ALD is
an alternate deposition method rather than a one-step deposition method. This method can
form more uniform coatings on polymers with polar surface since they provide enough
nucleation site, while form discrete particles on nonpolar polymers [142]. The method is
limited by the vapor pressure of the precursors, as many precursors need high temperature
to be vaporized. This can reach the melting point of polymers, which is why Al2O3, TiO2,
and ZnO, which possess precursors with high vapor temperature at low temperature, are
the most commonly used inorganics in ALD [143].

Another strategy to deposit an inorganic coating on the membrane surface is bioin-
spired mineralization. In this process, an interlayer (e.g., poly (acryl acid) or PDA/PEI)
needs to be pre-created on the hydrophobic membranes. Subsequently, carboxyl-induced
calcification, amino-induced silicification, or catechol groups-induced metal ions chelation
will form corresponding CaCO3 [144], SiO2 [145], TiO2 [146], or ZrO2 [147] mineral coating.
Compared to the ALD, this method can be conducted at ambient temperature and does not
depend on the equipment.

4.2.2. Surface Grafting

Surface grafting involves covalently linking polymer chains onto the membrane sur-
face This process can be achieved through two strategies: “grafting to” and “grafting from”
(Figure 6). Compared to the “grafting to” method, the “grafting from” method is more
attractive due to its high grafting density. Surface grafting techniques can be categorized
as either chemical or physical. Physical techniques involve grafting induced by plasmas,
UV light, and high-energy irradiation. Chemical techniques include natively initiating,
surface-initiated atom transfer radical polymerization (SI-ATRP), click chemistry, and ozone
oxidation (Table 2).

Membranes 2023, 13, x FOR PEER REVIEW 17 of 38 
 

 

 
Figure 6. Emerging strategies of surface grafting. 

 
Figure 6. Emerging strategies of surface grafting.



Membranes 2023, 13, 549 16 of 36

Table 2. Surface grafting techniques.

Physical Techniques

Techniques Principle Features

Plasma
Interactions between ionized gas with polymer surface
atoms, inducing the homolytic bond cleavage, and creating
free radicals.

1. Hydrophobic recovery on a low-surface-energy polymer after simple
treatment [148].

2. The energy required for bond cleavage in the substrate’s material inversely is
correlated with the plasma modification efficacy (e.g., C-S is easier than
C-C) [149,150].

3. Hydrophilic modification permanence is correlated with the polymer backbone
rigidity (e.g., PES is longer than PE) [149,151].

4. The grafting efficiency of plasma-induced surface grafting is higher than that of
ATRP and thermally induced [152].

UV light
Activating the membrane surface and inducing radical
formation by UV irradiation, forming hydrophilic groups
with oxygen.

1. Requiring relatively low mild reaction conditions and low cost equipment [153].
2. Radical can be directly formed on PES and PSf without a photo-initiator, but a

higher degradation degree occurs on these materials [154].
3. Except for PSf and PES, most of other materials are not photosensitive enough

and thus need initiator to form radicals. (e.g., PAN, PP, PE, PVDF and PET) [155].
4. Grafting can be implemented in both liquid and vapor phases [156].

High-energy irradiation
Activating the membrane surface and inducing radical
formation by X-ray, γ-ray and electron source
[157,158].

1. Requirement of radiation source.
2. No requirement of initiator.
3. Grafting occurs within the pore of substrate due to the high penetration [159].

Chemical techniques

Natively initiating Grafting small molecules with the left free amine and
carboxylic acid groups on polyamide membrane.

1. This grafting can only be used in polyamide NF and RO membranes.

Surface-initiated atom transfer radical
polymerization (SI-ATRP)

Initiator moieties covalently attaches the substrate surface
and reacts with the dormant species and induces the ATRP

of monomers [160] (grafting from).

1. Simple experimental setup with easily available initiators.
2. Initiators must be covalently attached on surface first.
3. This method is suitable for growing polymer chains on a variety of material

surfaces, including polymers, metals, silicon, metal oxides biologicals species.
4. One can precisely control the grafting density and polymer brushes’ topology

and composition [161,162].
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Table 2. Cont.

Physical Techniques

Techniques Principle Features

Click chemistry
Facilitating the alkyne-azide, thiol-vinyl addition, thiol-yne,
etc., reaction to effectively functionalize the membrane
surface (grafting to).

1. Catalyst-free, high-efficiency reaction, which promotes the grafting efficiency of
the “grafting to” method [163].

2. Installation of clickable function groups on the substrate surface is the
first concern [164].

3. Mild reaction temperature (25–70 ◦C) [165].

Ozone oxidation Ozone induces the peroxide formation on polymer surface,
whose decomposition brings radicals to the surface.

1. Not suitable for the materials with low surface energy (e.g., PTFE) [166].
2. Decreasing the membranes’ robustness after long ozone treatment [167].



Membranes 2023, 13, 549 18 of 36

4.3. Interlayer

In addition to the surface modification mentioned above, introducing an appropriate
interlayer on MF or UF membranes offers a method for manipulating the porous structure
and other surface properties of the substrate. This assists with active layer formation and
improves the performance of TFC membranes. Interlayer materials can be divided into
polymeric materials and nanomaterials (Figure 7). Various methods have been developed
for fabricating interlayers, including dip-coating, vacuum filtration, co-deposition, in situ
synthesis, spin-coating, electrospray-coating, spray-coating, and brush-coating [168].

Membranes 2023, 13, x FOR PEER REVIEW 20 of 38 
 

 

4.3. Interlayer 
In addition to the surface modification mentioned above, introducing an appropriate 

interlayer on MF or UF membranes offers a method for manipulating the porous structure 
and other surface properties of the substrate. This assists with active layer formation and 
improves the performance of TFC membranes. Interlayer materials can be divided into 
polymeric materials and nanomaterials (Figure 7). Various methods have been developed 
for fabricating interlayers, including dip-coating, vacuum filtration, co-deposition, in situ 
synthesis, spin-coating, electrospray-coating, spray-coating, and brush-coating [168]. 

 
Figure 7. Constructing interlayers with various materials. 

4.3.1. Polymeric Interlayer 
Polydopamine possesses suitable reactivity and stability driven by both covalent and 

non-covalent interactions, making it promising for forming interlayers. The co-depositing 
method has been used to fabricate interlayers by combining dopamine with other amine-
rich polymers, such as PEI, to suppress self-polymerization [169]. Additionally, the 
CuSO4/H2O2-triggered method has been used to improve the reaction rate [133,170–172]. 
Beyond PDA-based polymeric materials, Polyvinyl alcohol (PVA) [173,174] and tannic 
acid (TA) [31,175,176] have gained attention due to their being more cost-effective and 
environmentally friendly. These interlayers are commonly dip-coated and co-deposited 
on porous substrates, are usually hydrophilic, and improve compatibility between the 
substrate and active layer material. This improves the homogeneous dispersion of the pre-
polymerization solvent, forming a more uniform and stable active layer [121]. Polymeric-
based interlayers are commonly more environmentally friendly compared to the nano-
materials, and TFCs based on polymeric interlayers are more robust with stronger adhe-
sion force and higher rejection properties than that of the one based on nanomaterials 
interlayers. 

4.3.2. Nanomaterial as Interlayer 
Nanomaterials can be differentiated by various dimensions. One-dimensional (1D) 

nanomaterials, such as Cd(OH)2 nano-strand [20], covalent organic framework (COF) nan-
ofiber (high porous structure, low density, and cationic feature) [177], carbon nanotubes 
(usually coated with PDA) [168,178–181], and cellulose nanocrystal (CNC) (non-toxic and 
environmental friendly) [182] and 2D nanomaterials, such as graphene oxide (GO) [183], 

Figure 7. Constructing interlayers with various materials.

4.3.1. Polymeric Interlayer

Polydopamine possesses suitable reactivity and stability driven by both covalent and
non-covalent interactions, making it promising for forming interlayers. The co-depositing
method has been used to fabricate interlayers by combining dopamine with other amine-rich
polymers, such as PEI, to suppress self-polymerization [169]. Additionally, the CuSO4/H2O2-
triggered method has been used to improve the reaction rate [133,170–172]. Beyond PDA-
based polymeric materials, Polyvinyl alcohol (PVA) [173,174] and tannic acid (TA) [31,175,176]
have gained attention due to their being more cost-effective and environmentally friendly.
These interlayers are commonly dip-coated and co-deposited on porous substrates, are usually
hydrophilic, and improve compatibility between the substrate and active layer material.
This improves the homogeneous dispersion of the pre-polymerization solvent, forming a
more uniform and stable active layer [121]. Polymeric-based interlayers are commonly more
environmentally friendly compared to the nanomaterials, and TFCs based on polymeric
interlayers are more robust with stronger adhesion force and higher rejection properties than
that of the one based on nanomaterials interlayers.

4.3.2. Nanomaterial as Interlayer

Nanomaterials can be differentiated by various dimensions. One-dimensional (1D)
nanomaterials, such as Cd(OH)2 nano-strand [20], covalent organic framework (COF)
nanofiber (high porous structure, low density, and cationic feature) [177], carbon nanotubes
(usually coated with PDA) [168,178–181], and cellulose nanocrystal (CNC) (non-toxic and
environmental friendly) [182] and 2D nanomaterials, such as graphene oxide (GO) [183],
covalent organic framework (COF) nanosheets [184], and MXene [185], are commonly
vacuum filtrated, sprayed, or brushed onto the porous substrate to form a uniform and
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continuous interlayer with closely packed structure. However, 3D nanomaterials, such
as metal organic framework (MOF) [186,187] materials, cannot use the vacuum filtration
method to form interlayers directly due to their less uniform steric configurations. In this
case, new methods such as in situ synthesis [187] and Langmuir–Schaefer (LS) [186] have
been developed to form a continuous MOF interlayer. Compared to polymeric interlayer-
based TFCs, those based on nanomaterials possess higher permeance.

4.3.3. The Effect of Interlayer on the Interface of Interlayer/Substrate and
Interlayer/Active Layer

The introduction of an interlayer alters the interface between the interlayer and sub-
strate, as well as interlayer and active layer. On the one hand, the interlayer/substrate
interface plays a significant role in the adhesion forces between them. For instance, when a
polymeric interlayer is dip-coated onto a porous substrate, the infusion of polymers into
the pores is inevitable due to the possible interactions between them, such as hydrogen
bonds, electrostatic interactions, van der Waals forces, and π–π conjugation. This improves
the adhesion forces between the interlayer and substrate but can lead to permeability
loss. Therefore, it is crucial to choose a coating solution with suitable viscosity to prevent
excessive penetration. Moreover, nanomaterials typically form interlayers with the aid
of polymer materials since they cannot adhere firmly to the substrate due to the limited
contact area. On the other hand, the interlayer/active layer interface significantly affects
the thickness and structure formation of the active layer.

I. Reducing the surface pore size and roughness and increasing surface hydrophilicity
can improve the dispersion of the pre-polymerization solvent, resulting in an active
layer with minimal defects.

II. Enhancing surface wettability and altering surface charge can control the diffusion of
monomers and adjust the thickness and crosslinking degree of the active layer [31].

III. Introducing an interlayer can improve the confinement effect for interfacial degassed
nanobubbles, increasing the surface roughness of the active layer, and enhancing
permeability.

IV. Functional groups on the interlayer can participate in the formation reaction of the
active layer, and thereby improving membrane rejection.

V. Overall permeability can be improved by shortening the water path in the less-
permeable active layer and increasing the water path in a more permeable inter-
layer [30].

4.3.4. Machine Learning for Interlayer Material Choose and Prediction of Modified
Surface Performance

There is a plethora of materials available for constructing the interlayer, each exhibiting
unique performance characteristics and dimensions. Therefore, the task of identifying the
most optimal interlayer material and maximizing the surface performance of the substrate
proves to be a challenging endeavor. Artificial intelligence technologies are assuming
ever-expanding roles in the domains of engineering design and scientific research. Machine
learning has the capability to extend the scope of tasks, thereby offering promising prospects
for advancing modeling techniques in system prediction and optimization [188]. The
general steps of using machine learning for selecting a suitable interlayer material for
surface modification and predicting surface properties could follow these general steps:

1. Data preparation: Gathering a dataset that includes information about various inter-
layer materials, their properties, and the corresponding surface modifications process
and substrate surface properties. These data should cover a diverse range of materials
and surface characteristics.

2. Data preprocessing and feature engineering: Cleaning and preprocessing the collected
data. This involves handling missing values, normalizing or scaling the data, and
encoding categorical variables if necessary, then extracting relevant features from the
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dataset that can effectively capture the characteristics of interlayer materials and their
impact on surface properties.

3. Model training: Selecting an appropriate machine learning algorithm, such as regres-
sion and classification, depending on the specific prediction task. Splitting the dataset
into training and testing sets and training the model using the training data.

4. Model evaluation: Evaluating the trained model’s performance using the testing
dataset. Using appropriate evaluation metrics.

5. Predictions and model optimization: Once the model is trained and evaluated, utiliz-
ing it to make predictions on new, unseen data. Inputting the relevant features of an
interlayer material and modification process and the model will provide predictions
for substrate surface properties. Then, fine-tuning and optimizing the machine learn-
ing model to enhance its predictive accuracy. This may involve a hyperparameter
tuning model.

5. Characterization of LLC Phase/Substrate Interface

Effective characterization methods need to be developed for studying the substrate’s
effect on LLC phase structure and thus better facilitating the substrate’s control over the
LLC active layer structure. Promising techniques are described as follows for studying the
interface between LLC and the substrate (Figure 8).
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5.1. X-ray and Neutron Techniques for the Characterization of the Structures of LLC Films
5.1.1. Small-Angle Scattering Technique

Elastic scattering produces an interference phenomenon and therefore carries the
structure information of LLCs. Small-angle scattering (SAS) techniques can capture the
elastic scattering information of LLCs. The actual size of the lattice or object determines
the chosen light source with a specific wavelength. Small-angle (2θ < 5◦) X-ray/neutron
scattering (SAXS/SANS) is the optimal tool to study objects in the size range of 1–100 nm
since the q-range related wavelength of X-ray and neutron covers this range. The incidence
X-ray wave interacts with electrons for X-ray scattering, while the scattering occurs between
the incidence neutron and nucleus for neutron scattering. The contrasts of X-ray and
neutron scattering are from electron density and nuclear scattering length density (SLD),
respectively. The diffraction pattern of elastic scattering can be exhibited by a q-vector. The
relationship between the incidence angle and q-vector can be presented by [189]:

q =
4πsin θ

λ
(3)

where λ is the wavelength of the light source, and θ is half of the angle between the
incidence wave and the scattering wave. λ is fixed for the common mode while the θ is
fixed and λ is variant for the time-of-flight (TOF) mode [32].

The distance between repeated planes in the lattice of matter is the most important
structure factor to be studied. The relationship between the distance dhkl and scattering
angle can be given by [189]:

nλ = 2dhklsin θ (4)
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where n is the reflection order.
Therefore, the relationship between the d and q-vector can be given by:

dBragg =
2π

qPeak
(5)

5.1.2. Small-Angle X-ray Scattering

SAXS is the most direct tool to identify the LLC mesophases before and after UV-curing.
In addition to phase identification, SAXS can also provide accurate spatial information,
including size, shape, and arrangement of the nanostructure. Foudazi et al. have summa-
rized multiple structural parameters of LLC mesophases that can be calculated from the
position of Bragg peaks [17].

5.1.3. Small-Angle Neutron Scattering

SANS has three special features that make it complementary to SAXS:

1. Neutron is neutrally charged and non-destructive to costly samples, and they can
deeply penetrate into the atom to interact directly with nuclei;

2. The scattering power of neutrons is not related to the number of atoms, making lighter
elements such as hydrogen more distinctive;

3. Sample contrast can be altered to suit specific needs by partial deuteration.

The contrast of scattering length density (SLD) can be enhanced by the isotope in
neutron scattering, which makes various ingredients in the sample more distinctive. This
technology is known as contrast variation. The SLD can be given by [190]:

SLD =
ρNa∑N

i=1 bi

∑N
i=1 Mi

(6)

where ρ, Nα, Mi, and bi are the bulk density of the molecule, the Avogadro constant, the
atomic molar mass for each element, and the scattering length contribution from N atoms
with the unit cell or molecule, respectively.

Moreover, neutron scattering has the ability to detect the exact location of movable
monomers and crosslinkers within the lyotropic liquid unit cell [191–193]. Leonie et al.
reported that the lipid LLC phases can be contrast-matched, and the scattering from en-
capsulated peptides and proteins can be isolated. This enables them to better understand
the location of the desired molecules during LLC structure evolution and phase transi-
tion [191,192]. Since the locations of monomers and crosslinkers during polymerization
directly determine the pore structure of the as-synthesized LLC-templated materials, and
the locations of these molecules could be very different at LLC/substrate interface, contrast
matching the deuterated amphiphile molecules with solvents (a mixture of d-solvent and
h-solvent) makes it possible to better detect and control the interface structures.

5.1.4. Grazing Incidence Small-Angle Scattering (GISAS)

Bulk samples of LLC before and after UV-curing can be studied very well using trans-
mission geometry techniques, such as SAXS and SANS, while reflection geometry using
grazing angles is necessary for studying thin-film samples with a reduced scattering vol-
ume. GISAS studies the surface or interface of film nanostructures under grazing incidence
geometry. Specular reflectivity of the incident beam occurs when the film is absolutely
smooth, while off-specular reflectivity occurs when the film is rough and inhomogeneous.
Figure 9 is the schematic geometry of specular and GISAS experiments. xy is the sample
surface plane. x axis is the projection of incidence beam with an incident angle of αi on the
sample surface. αf and 2θf are the exit angle and out-of-plane angle, respectively. ki and kf
are the wavevector of incident and exit beam, respectively. The wave vector transfer can be
given by q − kf-ki. For specular reflection, αf = αi and 2θf = 0, so qx = qy = 0 and only qz > 0.
In this case, the scattering vector q = qz = 4πsinαi/λ.
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For off-specular scattering (αf 6= αi and 2θf 6= 0), the components of the scattering
vector can be given as [32,194]:

qx = 2π
λ

(
cos α f cos 2θ f − cos αi

)
qy = 2π

λ

(
cos α f sin2θ f

)
qz =

2π
λ

(
sin 2θ f + sin α f

) (7)

The 2D detector mainly probes the information of qz and qy, since qz, qy >> qx. The
scattering intensity of I(qy, qz) is commonly detected for studying films’ structure in the
y axis and z axis.

The intensity of the wave scattering from the LLC top layer can be given by [195–197]:

IGISXS =
dσ

dΩ
= A

π2

λ4

(
1− n2

)2
|T(ki)|2

∣∣∣T(k f

)∣∣∣2F(q) (8)

where dσ/dΩ is the differential cross-section of the film, which is expressed by the frame-
work of the distorted-wave Born approximation (DWBA). A is the illuminated area. T(k) is
the Fresnel transition function, whose maximum corresponds to the Yoneda peak of the
differential scattering when the incident angle αi equals the critical angle αc of LLC film. n
is the refractive index of the beam in the medium, which can be given by [198]:

n = 1− δ + iβ (9)

where δ and β are the dispersion and absorption of the beam inside the medium, respectively.
In the case of GISAXS, the dispersion can be given by [198]:

δx =
λ2ρelr0

2π
(10)

where the ρel and r0 are the electron density and the classical electron radius (2.82× 10−13 cm),
respectively.

The absorption can be given by:

βx =
µλ

4π
(11)

where µ is the linear absorption coefficient.
In the case of GISANS, the dispersion can be given by [32]:

δN =
λ2SLD

2π
(12)

The absorption can be given by:

βN =
Nαaλ

4π
(13)
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where N and αa are the atomic number density and absorption cross-section for neutrons,
respectively. The βN is not necessary to consider in most cases.

The n and T act only as overall scaling factors since αi and αf are fixed for GISAS ex-
periments. The detected scattering intensity is mainly determined by the diffuse scattering
factor F(q). For N identical and centro-symmetrical objects with a random orientation in
the LLC system, the F(q) can be approximated by:

F(q) ∼ NS(q)P(q) (14)

where S(q) and P(q) are the structure and form factors of individual objects, respectively.
The S(q) yields information on object positions, such as the interparticle distance, while the
P(q) provides information about the shape and size of the objects [195,196].

The scattering depth is another essential point for GISAS, which is given by [32,33,199]:

D =
λ

√
2π
(

li + l f

) (15)

where the li and lf depend on the incident angle and exit angle of the beam, and absorption
and critical angle of the medium.

For X-rays:

li, f =

sin αc
2−sin αi, f

2 +

√(
sin αi, f

2−sin αc
2
)2

+

(
µλ

2π

)2
1/2

(16)

For neutrons:

li, f =

sin αc
2−sin αi, f

2 +

√(
sin αi, f

2−sin αc
2
)2

+

(
Nαaλ

2π

)2
1/2

(17)

In general, neutrons have a higher scattering depth than X-rays due to their lower
absorption by the medium. However, the flux limitation of GISANS can result in smearing
in scattering depth, while GISAXS typically has a high wavelength resolution. For both
beams, it is possible to obtain both near-surface and bulk LLC mesophase structures by
measuring at αi < αc and αi > αc (Figure 10). Generally, the thickness of the active layer is
around 200 nm. The interfacial structure can be identified by comparing the near-surface
and bulk LLC structure of this thin layer.
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5.1.5. X-ray and Neutron Reflectivity

GISAS is sensitive to the lateral structure of the LLC active layer, while X-ray and
neutron reflectivity can be used to study the structural properties along the normal surface
(Figure 11). The evolution of the LLC active layer structure can be assumed to comprise
different LLC layers of varying thicknesses (Figure 12), and reflectivity techniques can be
used to detect the thickness of each layer. In specular reflectivity, the angle of incidence and
departure are equal, so only the z component of momentum transfer (normal to a surface)
is of interest, which is given by [198]:

kz,0 = (2π/n)sin θ (18)

where λ and θ are the wavelengths of the incident beam and the angle of incidence,
respectively. The subscript 0 represents vacuum. For the LLC top layer 1, the z component
of the momentum transfer is given by:

kz,1 =
√

k2
z,0 − 4πρ (19)

where ρ is the electron density for X-ray or scattering length density for the neutron of
the layer.

For the air or vacuum interface with LLC top layer, the reflection coefficient can be given by:

r0,1 = (kz,0 − kz,1)/(kz,0 + kz,1) (20)

The reflection coefficient ri,r+1 of the two separated LLC layers i and i + 1 can be given by:

ri,i+1 = (kz,i − kz,i+1)/(kz,i + kz,i+1) (21)

The connection between r and layer thickness d can be given by:

r0,1 =
r0,1 + r1,2exp(2id1kz,1)

1 + r0,1r1,2exp(2id1kz,1)
(22)

The reflection coefficient ri,i+1 can be given by:

ri,i+1 =
ri,i+1 + ri+1,i+2exp(2idi+1kz,i+1)

1 + ri,i+1ri+1,i+2exp(2idi+1kz,i+1)
(23)

The reflectance at the air/LLC film interface r0,1 can be calculated by following the
recursion through the i interfacial layer adjacent to the substrate.

The reflectivity R is given by:

R(kz,0) = 1 (kz,0 ≤ kc,1) (24)

R(kz,0) =
r2

0,1 + r2
1,2 + 2r0,1r1,2cos(2kz,1d)

1 + r2
0,1r2

1,2 + 2r0,1r1,2cos(2kz,1d)
(kz,0 > kc,1) (25)

Generally, the thickness of the interface layer can be approximated by the separation
distance of the minima (∆kz,0) in the reflectivity profile, d = π/∆kz,0.

When kz,0 � kc,1, an alternative method has been used to analyze the reflectivity data.
In this method, theoretical reflectivity can be expressed as [201]:

R(kz,0) =
k4

c

k4
z,0

∣∣∣∣∫ ρ(z)exp(2ikz,0z)dz
∣∣∣∣2 (26)
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where ρ(z) is the normalized electron or scattering length density gradient along the z
depth in the LLC active layer. k4

c /k4
z,0 is the Fresnel reflectivity RF (kz,0) of an LLC layer

with an average scattering length density with an infinitely sharp interface. Therefore,

R(kz,0)

RF(kz,0)
=

∣∣∣∣∫ ρ(z)exp(2ikz,0z)dz
∣∣∣∣2 (27)

where the Fresnel normalized reflectivity is the Fourier transform of the electron or scatter-
ing length density gradient. In applying this equation, one can approximate the density
gradient along the z depth by fitting a model (Figure 13) [201].
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5.1.6. SAS Application in LLC Template Film

Powder X-ray diffraction was used to roughly identify the phase structures of LLC
template film [16,34]. Afterward, 2D SAXS is commonly used to study the oriented bulk
HLLC template films [12,47,203]. The 2D SAXS pattern will vary significantly when altering
the incident angle direction of the X-ray beam on oriented LLC films, which identifies the
orientation of hexagonal cylinders by analyzing the azimuthal distribution of scattered
intensity. A uniform distribution of scattered intensity indicates that the alignment of the
hexagonal is random along the incident direction. In contrast, a non-uniform azimuthal
intensity means the alignment of the hexagonal cylinder is anisotropic [203]. Osuji et al. [10]
used 2D GISAXS to investigate the in-plane morphology in the HLLC films. In this study,
they found that the long axes of the hexagonal cylinders lie in the x–y plane by analyzing
the intensity of specular and off-specular spots (Figure 14).
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5.2. Deuterium NMR Spectroscopy

Deuterium NMR can provide in-depth structural and dynamic information on ly-
otropic liquid crystals by detecting the anisotropic mobility and corresponding symmetry
of individual surfactant molecules [204]. Deuterium can be isotopically replaced as a
probe in hydrogenated surfactant chains, and various lyotropic phases can correspond
to characteristic NMR line shapes. The distinctive differences in the LLC phases’ NMR
line shape make it possible to distinguish individual phase spectra in a multiple-phase
sample (Figure 15A) [205]. Additionally, deuterium NMR can detect the unit cell size of
the LLC phase. The unit cell size of the Lα phase can be evaluated by the average length
of the carbon tail of the surfactant. The average length of the carbon tail in surfactant can
be deduced from segmental order parameters, which can be directly obtained from the
quadrupolar splitting. The average shape of a surfactant in the HII phase can be approxi-
mated as a frustum, as shown in Figure 15B. One can use the cone height d to evaluate the
unit cell size [206]. Furthermore, the quenching method used in NMR techniques to probe
the evolution of crystallization can also be used to retain the phase structure of LLC after
being separated from the substrate [207].
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Figure 15. (A) Deuterium NMR line shapes of lyotropic liquid crystalline phases of cesium or sodium
n-tetradecanoate-D2O [205]; (B) cross-sectional surface of the reverse hexagonal (HII) phase where
the average lipid shape corresponds to a frustum of a right circular cone.

6. Conclusions and Future Perspectives

This review highlights the interfacial design between LLC and substrate regarding
the fabrication of LLC template-based TFC membranes, a comparison of the substrate’s
effect on the active layer structure formation and water filtration performances of both
LLC- and PA-based TFC membranes, the introduction of suitable modification methods
and interlayers, and techniques for interfacial characterization. In general, synergistic
templating based on polymerizable amphiphiles is easier to retain LLC template structures
during polymerization than the transcriptive method for the construction of LLC template-
based TFC membranes. TFC with the best rejection properties has been achieved by an
active layer based on a cubic phase with the synergistic templating method, while the
highest permeance has been achieved by an active layer based on a parallel-oriented
hexagonal phase with the synergistic templating method. Substrates with high porosity
(>10%) and small to moderate pore sizes result in high TFC permeance, while a substrate
with higher surface hydrophilicity and lower roughness leads to the formation of a more
uniform and thinner LLC active layer on it. Several surface modification methods are
introduced for improving surface hydrophilicity, while the introduction of an interlayer
could control the interface structure formation (e.g., pore size) and shorten the water path.
For interfacial characterization techniques, GISAXS is the most direct method to identify
the LLC phase structure at the LLC/substrate interface before and after polymerization,
while GISANS possesses the ability to localize the monomers at the interface.

Despite some progress that has been achieved in the last 10 years, LLC template
TFCs are still in their infancy stage. Significant efforts need to be taken to understand
and facilitate the substrates’ effect on the LLC phase, as discussed above. Moreover, the
following concerns need to be addressed.

1. Substrate’s effects on LLC phase structures: Although many studies have reported the
potential effects of solid substrates on the types and shapes of surfactant mesophases,
there has not been a comprehensive analysis of the LLC mesophase structures before
and after polymerization at the LLC/substrate interface using SAXS and SANS tech-
niques. To construct GI-mode measurements, ultrathin and uniform LLC membranes
must be formed on substrates with varying surface hydrophilicity and roughness, and
suitable conditions must be established (e.g., choosing a suitable beam incidence angle
to detect the interfacial structures). To conduct neutron measurements, appropriate
deuterated ingredients must be introduced to increase the system contrast;

2. Structure retention of LLC parental structure on various substrates (substrate’s effect
on polymerization): The retention of LLC parental structure is crucial to avoid phase
separation, especially for the transcriptive templating system, and can be achieved by
strong interaction between the surfactant template and polymers, as well as timely
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increase system viscosity and entanglement of polymer chains. In an individual
system, the former factor is not easily affected by small changes in interfacial curvature
induced by substrates, but changes can occur in the latter factor, which is determined
by the polymerization rate. An increase in polymerization rate leads to an increase
in the system’s viscosity and chains’ entanglement, which can counterbalance phase
separation caused by the increase in free energy. However, the polymerization kinetics
are determined by the segregation and diffusion behavior of monomers and initiators
during polymerization. The curvature variation induced by substrates changes the
LLC order, and for hydrophilic monomers, the polymerization rate increases with
an increase in LLC order, while the rate decreases for hydrophobic monomers. In
addition, the efficiency of a hydrophilic initiator decreases with an increase in LLC
order, whereas it is the opposite for a hydrophobic initiator. Therefore, the substrate
is indicated to influence the structure retention of LLC parental structure during
polymerization, and a systematic study of this will undoubtedly help to fabricate the
high-fidelity LLC-based TFC membranes;

3. Substrate’s effect on reorientation: The substrate’s effect on the reorientation process
of LLC cannot be ignored. Achieving less tortuosity in inner porous structures and
high permeance of HLLC template membranes is possible through reorientation.
However, the HLLC phase typically needs to be heated to a liquid-like isotropic
phase during the reorientation process under a magnetic field and electric field, which
causes the infusion of the LLC in the substrate. The surface properties of the substrate
can interfere with the formation of the HLLC phase during this process. Therefore,
designing the surface properties of the substrate suitably and studying the phase
formation process in situ during the reorientation is essential for exploring LLC active
layers with pores perpendicular to the surface;

4. Substrate’s effect on mechanical properties: The mechanical properties of the LLC
template material are significantly associated with the defects and durability of the
membrane, which are determined by the width of the continuous phase and the
crosslink density of the system. Curvature variation can lead to a wider continuous
phase and decrease the crosslink density. Additionally, the substrate’s effect becomes
more significant when the active layer’s thickness decreases. Therefore, to fabricate
TFC with an ultrathin and flawless LLC active layer, it is essential to address the issue
of maintaining or improving the robustness of the LLC template material.
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