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Abstract: Mechanical deformation of lipid membranes plays important roles in various cellular 

tasks. Curvature deformation and lateral stretching are two major energy contributions to the me-

chanical deformation of lipid membranes. In this paper, continuum theories for these two major 

membrane deformation events were reviewed. Theories based on curvature elasticity and lateral 

surface tension were introduced. Numerical methods as well as biological applications of the theo-

ries were discussed. 
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1. Introduction 

Lipid membranes are two-dimensional fluid sheets composed of phospholipids in a 

bilayer structure [1]. The lipid membrane serves as a platform for cells to communicate 

with the outside world. Mechanical deformation of lipid membranes plays many im-

portant roles in cellular tasks, such as signal transduction, exo- and endocytosis, and cel-

lular remodeling. Continuum theories for lipid membranes were widely used to explain 

these biological processes [2–16]. By using elastic moduli, such as bending modulus, the 

continuum membrane models provided analytic solutions for long wavelength defor-

mation shapes of membranes as well as changes in forces, energies, and the number of 

lipids in continuous membranes. 

In this paper, theoretical backgrounds for continuum theories based on curvature 

elasticity [17,18] and lateral membrane surface tension [19,20] were reviewed. Elastic en-

ergy functionals and their components were discussed. In addition, previously intro-

duced numerical models, in particular finite element methods (FEMs), to use the contin-

uum theories were discussed. Finally, previous researches on the application of the con-

tinuum theories for cellular biological and physiological problems were introduced. 

Together with other reviews on the topic of continuum mechanics of lipid mem-

branes [21–24], this paper may provide in-depth insights into physical interpretations for 

the membrane curvature energy; a combined picture for the curvature deformation and 

lateral stretching of membranes; how the bending modulus and the surface tension of 

membranes can be defined; how the fluidity of lipid membranes was handled in numeri-

cal models; and how the continuum theories had been validated experimentally. 

2. Curvature Elasticity Theory 

The curvature elasticity theory of lipid membranes was proposed by Canham [17] 

and Helfrich [18]. The theory considers energies stored in a continuous membrane due to 

mean and Gaussian curvatures. 
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Ψ��������� = � (2κH� + κ�K)
�

dA (1)

In the energy functional Ψ���������, H is the mean curvature and can have both pos-

itive and negative values. The mean curvature energy density can be defined as a quad-

ratic form of the mean curvature H. κ is the bending modulus. K is the Gaussian curva-

ture. κ� is the Gaussian curvature (or saddle-splay) modulus. dA is area elements, and Ω 

indicates the domain of integration. 

Equation (1) can be also expressed as follows 

Ψ��������� = ∫ �κ
��

����������
�

�
+ κ�k�k��

�
dA , (2)

where k� and k� are two principal curvatures. From Equation (2), we can interpret the 

physical meaning of each term. First, when one principal curvature is zero, i.e., k� = 0, 

and the other is nonzero, i.e., k� ≠ 0, the Gaussian curvature is zero (see Figure 1a). There-

fore, the energy in this case is expressed only with respect to k�
�, i.e., the square of one 

principal curvature. Therefore, the mean curvature energy term may consider how the 

surface is curved into two principal directions. k�k� in the mean curvature energy term 

is identical to the Gaussian curvature expression. Now, let us consider k� = −k� (Figure 

1b). In this case, the mean curvature is zero while the Gaussian curvature is a nonzero 

negative value. These two principal curvatures with the same magnitude in opposite di-

rections represent saddle-like membrane surfaces. The energy is increased when the sad-

dle-like surface is stretched by holding k� = −k�. Therefore, the Gaussian curvature en-

ergy term may consider membrane lateral stretching. 

 

Figure 1. Illustrations for the curvature deformation of membranes. Surfaces shown with magenta 

and gray have the same surface area. k� and k� indicate principal curvatures at the marked point 

(red). Green regions illustrate the projected area. (a) The mean curvature at the red point can be 

changed without changing the Gaussian curvature with the given condition. (b) The Gaussian cur-

vature at the red point can be changed without changing the mean curvature with the given condi-

tion. 

In the three-dimensional space, the mean curvature H at a point of surfaces de-

scribed by coordinates X, Y, and the height function Z can be calculated from Equation (3) 

[22,25]. 

H =
����,�

� ��,�����,��,��,�������,�
� ��,��

������,�
� ��,�

� �
�

  . (3)

In Equation (3), a comma was used to indicate differentiation, e.g., 
��

��
= Z,�, 

���

��� =

Z,��. The Gaussian curvature can be written as follows [22,25]. 

K =
�,���,����,��

�

����,�
� ��,�

� �
�  . (4)



Membranes 2023, 13, 493 3 of 11 
 

 

For the rotational axisymmetric configuration, Equations (5) and (6) can be derived 

from Equations (3) and (4), respectively, by defining Z = h(r) = h�√X� + Y�� where r =

√X� + Y� [26]. 

H = 0.5 �
�,��

����,�
�

� +
�,�

�����,�
�

� , (5)

K =
�,���,�

�����,�
� �

� , (6)

where h indicates height with respect to radius r. Parametric derivatives can be used to 

express curvatures in Equations (3)–(6) with respect to parametric domains. This allows 

us to describe overhang geometries [26]. In the rotational axisymmetric case, parametric 

derivatives are h,� = h,�/r,�  and h,�� = h,��/r,�
� − h,�r,��/r,�

� , where s represents the para-

metric coordinate [26]. 

3. Lateral Strain Energy 

3.1. Surface Tension versus Lateral Strain Relations 

Lateral stretching of lipid membranes results in the expansion of their surface areas. 

Experiments were performed by Evans and his colleagues to investigate surface tension 

vs. lateral strain relations as well as to measure bending κ and apparent area stretching 

K��� moduli of lipid membranes [19,20]. Pressurization of giant vesicles by using micropi-

pettes was performed. The equilibrium of forces provided surface tension σ  of lipid 

membranes with the applied pressure [19,20]. 

σ =
∆��������������

����
�������������

��������
�
 . (7)

In Equation (7), r������������ is the radius of the micropipette, ∆P is the applied pres-

sure to the vesicle, and R������� is the radius of the vesicle [19,20]. The area expansion was 

determined from projected surface areas of the vesicle membrane. The observed surface 

tension vs. lateral strain relation demonstrated two physically distinctive responses in lat-

eral stretching of the membrane [19,20]. In refs. [13,16,26], constitutive equations were de-

fined for the surface tension as follows by using the results of refs. [19,20]. 

σ = σ�exp(c�α) for α ≤ α���������, (8)

σ = K���(α − α�������) for α > α���������, (9)

where 

c� = 8πκ (k�T)⁄ . (10)

Here, α is the membrane lateral strain. α��������� and α������� are crossover and cut-

off strains, respectively. Continuity conditions for two Equations (8) and (9) give values 

for α��������� and α�������. σ� is surface tension with the zero strain. k� is the Boltzmann 

constant and T is temperature. Experimental data directly demonstrated that the surface 

tension vs. strain relation in semi-log scales is linear with a slope c� in the low-strain re-

gime [19,20]. Data also directly showed the linear surface tension vs. strain relation with 

a slope K���  in the high-strain regime [19,20]. An example for the surface tension vs. 

strain relation is shown in Figure 2a (see comparison between green data points and the 

red curve). A scatter plot for two important membrane parameters κ and K��� is shown 

in Figure 3. 
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Figure 2. Responses due to membrane lateral stretching. (a) The surface tension σ vs. strain α and 

Τ� vs. strain α responses. (b) The strain energy density U vs. strain α response. κ = 0.9 × 10���J, 

σ� = exp (−5.7) × 10��N/m, K��� = 208 × 10��N/m were used. Red and blue circles indicate the 

crossover strain. Data points shown with green diamonds were obtained from ref. [20]. 

 

Figure 3. A scatter plot for apparent area stretching modulus K��� vs. bending modulus κ rela-

tions. Data points were obtained from refs. [19,20]. Second order (purple) and linear (yellow) fitting 

functions are 
����

����
= 0.1675 �

�

kBT
�

�

− 1.972
�

kBT
+ 166.1 and 

����

����
= 8.899

�

kBT
+ 42.55, respectively. 

In the low-strain regime, i.e., α ≤ α���������, stretching of entropic, i.e., non-determin-

istic, undulations is mainly responsible for the generation of tension (membrane thickness 

changes or stretching of intermolecular distances might be negligible in this regime). The-

oretical investigations had been conducted to understand underlying mechanics in the 

low-strain regime. In refs. [21,22,27], the ratio between the excessive area due to undula-

tions and the projected area was derived by using membrane energies expressed up to 

quadratic order, a square area of membranes with undulations expressed in the form of 

waves, and the equipartition theorem. The resulting equation was as follows. 

�����

�� =
���

���
ln �

���

�� ��

���

�� ��
� , (11)
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where A� is the total material area in the square region defined by side length L. l is the 

minimum length scale. τ is the chemical energy per area. By using Equation (11), strain 

α� in stretching the membrane in the square region can be defined as follows [21]. 

α� ≡
��|������|�

��
≈

���

���
ln �1 +

���

����    for τ ≪
���

��
 . (12)

A�|��� and A�|� are A� when τ = 0 and τ ≠ 0, respectively. In this formulation, 

the possibility that the bilayer thickness (or intermolecular distances) can be changed was 

not ruled out. 

In the high-strain regime, i.e., α > α���������, bilayer thickness changes or the direct 

expansion of intermolecular distances might be mainly responsible for the expansion of 

the area. The bending modulus in this regime can be smaller than the value for the low-

strain regime. According to an elasticity theory, the bending modulus is proportional to 

the cubic of the bilayer thickness [17,28]. 

According to a review by Morris and Homann [29], surface tension values measured 

from living cell membranes can range from 0.003 mN/m to 0.04 mN/m. Adherent cells in 

a resting configuration are tensed, i.e., stretched in general, therefore, surface tension of 

membranes with the zero strain, i.e., σ�, in this case, is smaller than the observed values. 

In ref. [16], σ� = exp(−10) mN/m was used to generate σ = 0.0612 mN/m for resting 

cells on elastic substrates. This σ� value is within an order of magnitude (smaller by a 

factor of 2.9948) with respect to the value calculated from κπ�/A��������� (see Equation 

(12)), where A��������� is the area of lipid reservoirs [16]. 

Mechanical properties of lipid membranes might be also estimated from the extrac-

tion of membrane tethers by using rheological methods, such as atomic force microscopy 

[30,31]. According to a theoretical investigation that modeled liquid membranes, the 

bending modulus κ of membranes and the radius of tethers satisfy a relation in Equation 

(13) [32]. 

�

�������
=

�������  

��
 , (13)

where R������ and f������ are the radius and pulling force of membrane tethers, respec-

tively. 

3.2. Lateral Strain Energy 

From Equations (8) and (9), a strain energy Ψ������� stored in the membrane can be 

formulated as follows [16,26]. 

Ψ������� = ∫ U(α)dA
�

 , (14)

where 

U(α) = ∫ σ(α�)dα� =
��

��

�

�
exp(c�α) −

��

��
   for   α ≤ α��������� , (15)

U(α) = ∫ σ(α�)dα� =
����

�
α� − K���α�������  α +

�

�
c�   for   α > α��������� , (16)

c� =
��

��
exp(c�α���������) −

��

��
− �

����

�
α���������

� − K���α������� α���������� . (17)

The lateral strain energy density U(α) in Equations (15) and (16) were derived by 

integrating the surface tension vs. membrane strain relation. See Figure 2b for an example 

of strain energy density U vs. strain α relation using Equations (15) and (16). 
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4. The Superposition of Curvature and Lateral Strain Energies 

4.1. An Energy Functional 

Two main modes in mechanical deformation of lipid membranes are curvature gen-

eration and lateral area stretching. For this reason, an energy function where these two 

energy contributions are linearly combined can be considered. The superposition of 

Ψ���������  in Equation (1) and Ψ�������  in Equation (14) were made as in Equation (18) 

[16,26]. In this case, the total number of lipids in the domain Ω is fixed. 

Ψ����� = Ψ��������� + Ψ������� 

= ∫ (2κH� + κ�K)
�

dA + ∫ U(α)dA
�

 . 
(18)

In Equation (18), the long wavelength membrane curvature was considered in the 

term Ψ��������� and the short wavelength curvature was considered in the term Ψ�������. 

As demonstrated in Figure 4a and discussed in the previous sections, the shape func-

tions of membranes do not represent the exact material shape of membranes if there are 

surface undulations. In this case, the shape functions represent apparent or projected ar-

eas, while the undulations are not reflected in the shape functions. In other words, when 

solving a boundary value problem, calculated shapes are long wavelength projected areas 

of membranes. Note that when the membrane lateral strain is close to the crossover strain, 

the calculated shape might be close to the membrane material shape. 

 

 

Figure 4. Illustrations for possible membrane configurations when membranes are point loaded. 

Red and blue lines represent membranes located outside and inside of the region of interest (ROI), 

respectively, in the resting configuration. Black lines represent the projected area of membranes 

with undulations (blue and red). (a) Closed lipid reservoir. The membrane located outside of ROI 

does not flow into ROI. The level of surface undulation in ROI is decreased in mechanical stretching. 

(b) Open lipid reservoir. The membrane located outside of ROI can flow into ROI. 

4.2. Bending Energy Renormalization in the Low-Stain Regime 

As depicted in Figure 4a, biological membranes are not smooth in long wavelength 

scales but show undulations on their surface. Theoretical works had been conducted to 

account for the effect of these entropic undulations, i.e., excessive areas, in the curvature 

deformation and to obtain the renormalized bending modulus of coarse-grained lipid 

membranes in longer wavelength scales [33–36]. According to previous works, the bend-

ing modulus with respect to projected areas (Figure 4a black curve) of a membrane with 

undulations can be expressed as follows [33–36]: 

κ����������� ≅ κ −  
�

��
k�T ln

����

����
 . (19)

In Equation (19), the renormalized bending modulus can be determined by the max-

imum and minimum wavenumber q of membranes. 
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As similarly conducted for deriving Equation (11), planer membranes parameterized 

as waves, the curvature energy expressed up to quadratic order, and the equipartition 

theorem were used to derive the energy functional with respect to the renormalized bend-

ing modulus κ����������� [35,36]. As discussed in ref. [36], the change of the bending mod-

ulus with different levels of undulations might not be significant. For example, 
�

��
k�T ln

����

����
 is 0.1655k�T, 0.5497k�T, 1.0994k�T, and 1.6491k�T when 

����

����
 is 2, 10, 

100, and 1000, respectively. These values might be small compared to bending moduli 

which are 10k�T to 60k�T (Figure 3). 

4.3. A simplified Energy Functional 

The energy functional in Equation (18) can be simplified when the strain of mem-

branes is consistent. According to Kim (see Appendix A in supplementary information of 

ref. [26]), the variation of membrane strain energy, i.e., δΨ�������, can be expressed as fol-

lows. 

δΨ������� = �σ�(α + 1)exp(c�α) +
��

��
exp(c�α) −

��

��
� δA   for α ≤ α��������� , (20)

δΨ������� = �K���(α + 1)α − K���α������� (α + 1) + 0.5K���α� − K���α�������α +

c��δA   for α > α��������� . 
(21)

Therefore, when strain α  is consistent during mechanical deformation, Ψ�����  in 

Equation (18) can be expressed as follows: 

Ψ����� = Ψ��������� + Ψ������� 

= ∫ (2κH� + κ�K)
�

dA + Τ� ∫ dA
�

, 
(22)

where the constant Τ� is 

Τ� = σ�(α + 1)exp(c�α) +
��

��
exp(c�α) −

��

��
 for α ≤ α��������� , (23)

Τ� = K���(α + 1)α − K���α�������(α + 1) + 0.5K���α� − K���α������� α + c�   for α >

α��������� . 
(24)

The form in Equation (22) is similar to an energy functional employed in many pre-

vious works using constant surface tension [2,5,12]. However, Τ� is not the tension σ of 

lipid membranes. Nevertheless, values for σ and Τ� are similar to each other as demon-

strated in Figure 2a. 

In ref. [26], membranes with closed lipid reservoirs were solved by using Equation 

(22). A predictor–corrector scheme was used for the condition of a fixed total lipid num-

ber. The continuum theory was validated in the low-strain regime from experiments by 

using nanoscale vesicles and magnetic tweezers [26]. Nanomechanical responses meas-

ured by modulating the interaction between the vesicles and substrates were reproduced 

by using the continuum theory. Complex nonlinear mechanical responses, including bi-

stable behaviors observed from the vesicles were directly compared with calculations [26]. 

5. Numerical Methods 

Numerical methods to find the equilibrium configuration of lipid membranes de-

scribed by continuum theories have been investigated in numerous previous works. Dif-

ferent branches of numerical methods are available. First, there are investigations where 

the Euler–Lagrange equation of the membrane energy functional was derived and solved 

numerically [8,37]. For example, in a work by Powers et al. [37], ordinary differential equa-

tions of the membrane in the rotational symmetric configuration were solved by using 

relaxation methods to calculate the equilibrium configuration of membrane tethers. In ref. 

[8], the Euler–Lagrange equation was solved numerically for conical anchor problems as 
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well as the mechanical deformation of vesicles. Secondly, there are numerous works that 

used finite difference-type schemes [38–40]. These works employed triangular surface dis-

cretization where values for the differential geometry were calculated. In this paper, the 

review was focused on numerical methods based on finite element methods (FEMs). For 

the case of Galerkin FEMs, the validity of numerical results might be supported by the 

best approximation property of FEMs [41]. In the following paragraphs, several previous 

methods are introduced. 

FEM-style calculations were introduced in works by Feng, Ma, and Klug [42,43]. In 

the works, the shape of membranes was parameterized by using C1-conforming elements. 

Based on the curvature elasticity theory, the membrane energy was minimized to calculate 

the equilibrium configuration of membrane vesicles and tethers. Fluid membranes do not 

have lateral shear elasticity. Therefore, instabilities, i.e., zero-energy modes, can be in-

voked for nodal motions to the tangential direction of surfaces. In ref. [43], to avoid the 

distortion of meshes that can be generated due to the zero-energy mode, Hookean springs 

were considered within finite element meshes. However, the addition of this artificial 

shear elasticity might need further physical validation for fluid membranes. 

Rangarajan and Gao introduced a Galerkin variational method to calculate the equi-

librium configuration of lipid membranes [44]. They employed normal offset coordinate 

systems in deriving variational equations to avoid the zero-energy mode. The shape of 

lipid membranes was parameterized by using B-spline functions. This nonlinear finite el-

ement method used the Newton–Raphson method. Rotational axisymmetric analyses on 

the adhesion of vesicles, membrane wraps, and membrane tethers were performed. Three-

dimensional calculations were also tried in this work [44]. 

Sauer et al. introduced a method using thin shell elements and the Canham–Helfrich 

energy functional in modeling lipid membranes [45]. The method used iso-geometric ap-

proaches to parameterize the surface of lipid membranes. Quasi-static calculations by us-

ing the model were stabilized by adding stiffness components or employing a normal 

projection method. The model was extended for the calculation of the axis asymmetric 

membrane [45,46]. However, approaches in modeling thin shells might not be the best to 

model fluid membranes as they can show unnecessary solid-like behaviors. 

Kim introduced an axisymmetric finite element method for lipid membranes [26]. 

Variational equations were derived for the two-dimension system. However, the motion 

of nodal degrees of freedom was constrained into the normal direction of reference sur-

faces to avoid the zero-energy mode. The work also utilized the B-spline function and the 

Newton–Raphson method to solve nonlinear equations iteratively. Using differential ge-

ometry formulas in the Monge patch and parametric derivatives, the derivation of varia-

tional equations and the tangential matrix for the Newton–Raphson method is straight-

forward in this Galerkin FEM [26]. 

A combined model where the curvature elasticity theory is coupled with a model for 

the dissipative flow of membranes was introduced [47]. In this work, instead of investi-

gating the variational shape optimization, the time-dependent flow of energies was stud-

ied to determine membrane shapes. B-spline functions were used to parameterize the ro-

tational axisymmetric membrane configuration and the Galerkin method was used for the 

equation system. The approaches presented in this work were extended for the three-di-

mensional mechanical relaxation of vesicles [48]. 

6. Biological Applications 

The curvature elasticity theory and surface tension of lipid membranes were used in 

various biological problems alone or in combination with other biophysical equations. 

Those theoretical investigations, together with cumulated biological data on cell mem-

branes, have provided invaluable insight into various cellular physiologies, including 

membrane remodeling, exo- and endocytosis, the deformation of nuclear pores, the acti-

vation of ion channels, and membrane receptor-mediated mechanotransduction. In the 
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following paragraphs, previous works on these cellular processes using the continuum 

theories were reviewed. 

Calculations for membrane remodeling were performed for the cell surface mem-

brane as well as the membrane of cellular organelles. For example, Atilgan et al. investi-

gated the protrusion of membranes driven by dynamic actin filaments [2]. Membrane en-

ergies defined by the mean curvature and surface tension were used to predict how the 

number and arrangement of actin filaments, the thermal fluctuation of membranes, and 

the tethering of membranes to cytoskeletons affect the protrusion dynamics [2]. Mechan-

ical deformation of membranes was investigated for cellular organelles as well. For exam-

ple, a membrane squeezing problem was addressed by using a combined equation for 

membrane curvatures, surface tension fields, and a volume constraint to investigate the 

fission of mitochondria [3]. According to the work, membrane proteins and conical lipids 

can together trigger buckling instability and generate an extreme fission neck radius. In 

addition, by combining the curvature energy and ultra-low membrane tension, and using 

the surface evolver program [4], the nanostructure of the endoplasmic reticulum was cal-

culated [5]. Mechanical responses of nuclear pore-like structures were also investigated 

by using the continuum membrane theories [6,7]. 

The fusing and fission of membrane vesicles are crucial in the exo- and endocytosis 

processes, respectively. By introducing the membrane curvature energies, the surface ten-

sion fields, and the volume constraint as similarly conducted in previous works [3,8], 

membrane invagination shapes were calculated to investigate the growth of vesicles 

driven by actins [49]. In a work by Irajizad et al., membrane remodeling driven by clathrin 

proteins was investigated by using the Canham–Helfrich theory [9]. 

The interaction between mechanosensitive (MS) ion channels and lipid bilayers had 

been investigated in numerous previous works by using the continuum theories. For ex-

ample, Wiggins and Philips investigated the interaction between lipid bilayers and the 

mechanosensitive channel of large conductance (MscL). They calculated free energies gen-

erated by the lipid–channel interaction that is on the same order of measurements [11]. 

The membrane resultant calculated by using the Canham–Helfrich model was used to 

investigate the activation of hair cell MS channels [12]. Similarly, membrane free energies 

at the tip of stereocilia calculated by using the curvature elasticity and surface tension 

were able to activate hair cell MS channels [13]. More recently, the curvature elasticity 

theory reproduced membrane shapes around Piezo channels inserted in vesicles [14]. In 

addition, the theory predicted responses for the activation of Piezo channels [15]. 

Mechanical deformation of membranes was also investigated for responses mediated 

by cell surface receptors. Mechanical switches in cell membranes that modulate hair-cell 

and integrin-mediated mechanotransduction processes were identified from membrane 

calculations in the low-strain regime [13,16]. In addition, nanomechanical responses meas-

ured by pulling the membrane-proximal ectodomain of cadherins in living cell surfaces 

were directly analyzed by using the continuum theory in the low-strain regime [26]. 

7. Conclusions 

The curvature elasticity theory originally introduced by Canham [17] and Helfrich 

[18] and the constitutive relation between surface tension and strain investigated by Evans 

and his colleagues [19,20] have been central for many mechanobiological problems. In this 

paper, previous works on theoretical formulations, numerical methods, and biological ap-

plications of the continuum theories for the mechanical deformation of lipid membranes 

were reviewed. 

Despite many successful applications of the theories and methodologies in describ-

ing biological membranes, the following topics can be further investigated as future works 

to improve current approaches. First, continuum theories that can describe details of real 

cell membranes, such as lipid sorting, lateral strain gradients, and mobile transmembrane 

and crosslinker proteins can be further investigated. Second, theoretical methods to fully 

couple molecular models into continuum frameworks can be developed. This might be 
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particularly important as protein structural models can be simulated within the contin-

uum model frameworks. The development of fully coupled and realistic membrane-cyto-

skeleton models is also important. Similarly, the development of continuum models for 

the full nuclear envelope and the endoplasmic reticulum with greater molecular and na-

nomechanical detail might be also crucial. Together with super resolution, nanoscale, and 

single-molecule experimental methods, these theoretical improvements can stimulate the 

limit of biological membrane sciences and technologies. 
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