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Abstract: The food industry is increasingly interested in using active edible packaging to address
environmental problems caused by conventional synthetic polymers, such as pollution and degra-
dation. The present study took advantage of this opportunity to develop active edible packaging
using Hom-Chaiya rice flour (RF), incorporating pomelo pericarp essential oil (PEO) at varying con-
centrations (1–3%). Films without PEO were used as controls. Various physicochemical parameters,
structural and morphological observations were examined in the tested films. Overall, the results
showed that the addition of PEO at varying concentrations significantly improved the qualities of the
RF edible films, particularly the film’s yellowness (b*) and total color. Furthermore, RF-PEO films
with increased concentrations significantly reduced the film’s roughness and relative crystallinity,
while increasing opacity. The total moisture content in the films did not differ, but water activity
was significantly reduced in the RF-PEO films. Water vapor barrier properties also improved in the
RF-PEO films. In addition, textural properties, including tensile strength and elongation at break,
were better in the RF-PEO films compared with the control. Fourier-transform infrared spectroscopy
(FTIR) revealed strong bonding between the PEO and RF in the film. Morphological studies showed
that the addition of PEO smoothed the film’s surface, and this effect increased with concentration.
Overall, the biodegradability of the tested films was effective, despite variations; however, a slight
advancement in degradation was found in the control film. Lastly, the antimicrobial properties of the
RF-PEO films exhibited excellent inhibitory effects against various pathogens, including Staphylococ-
cus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes), Escherichia coli (E. coli), and Salmonella
typhimurium (S. typhimurium). This study demonstrated that RF and PEO could be an effective
combination for developing active edible packaging that delivers desirable functional properties and
excellent biodegradability.

Keywords: rice flour; essential oil; pomelo pericarp; edible; active film; physicochemical; pathogens

1. Introduction

Currently, food waste presents a major issue in maintaining the quality and safety of
food products, leading to negative impacts on a country’s resources and economic growth.
Furthermore, oxidation in food results in decreased quality due to its harmful effects,
including a reduction in nutritional value and flavor, increased toxicity, color changes, and
altered textural properties. As a result, the food industry’s primary objective is to preserve
the quality and wholesomeness of food products to ensure consumer acceptance [1]. Plastic
has gained popularity as a material for films and coatings because of its versatile proper-
ties. However, it poses considerable environmental concerns since it takes a long time to
decompose, leading to pollution and other negative effects on ecosystems. To address these
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challenges, there is a growing interest in developing affordable, eco-friendly, non-toxic,
and biodegradable alternatives derived from natural sources [2]. These sustainable alter-
natives present a valuable option for replacing conventional plastics. Specifically, using
natural ingredients derived from resources such as proteins, lipids, or polysaccharides
offers great potential for producing biodegradable films. Key polysaccharide components
used in preparing edible films include rice flour or starch, chitosan, pullulan, alginate,
carrageenan, modified cellulose, pectin, gellan gum, xanthan gum, and others [3]. Among
these polysaccharides, rice flour and starch have emerged as appealing options for creating
environmentally friendly films. Historically, polysaccharide-based edible packaging has
been employed to preserve the appearance and nutritional value of food products [4].
Edible films possess barrier properties and mechanical strength, which help regulate the
transfer of food components and their surrounding environment. This contributes to ex-
tending the shelf life of food products while improving their quality and appearance [5].
Rice-based materials can provide similar functional properties to traditional plastic films
while offering the added benefit of being biodegradable and environmentally friendly [6].
Incorporating plant extracts, particularly essential oils, into edible films can significantly en-
hance their functionality. By transforming these films into active edible films, they not only
serve as a barrier but also exhibit antioxidant and antimicrobial properties. These properties
help to control oxidation, which can cause a decline in food quality, and they effectively
inhibit the growth of spoilage-causing and pathogenic microorganisms. This results in
extending the shelf life and improving the safety of food products while maintaining their
sensory attributes [7].

HomChaiya (Oryza sativa L. cv. HomChaiya) is a unique native rice variety originating
from Chaiya District, Surat Thani Province in Thailand. The grains are short and exhibit
a distinct pale brown color, and when cooked under optimal conditions, they exhibit
a sticky, soft texture with a delectable fragrance [8]. HomChaiya rice is highly nutritious,
containing 18.82% amylose and 8.66% protein [9]. The grains are rich in vitamins (A, E, B1,
and B2), minerals (iron, zinc, and calcium), gamma oryzanol, gamma-aminobutyric acid
(GABA), and various phytochemicals [10]. Due to its quality, HomChaiya rice has been
utilized as a raw material for developing products such as beer [11], yogurt [12], and ice
cream [13]. Pomelo (Citrus maxima), a fruit belonging to the Rutaceae family, is the largest
citrus fruit in terms of size. It comprises 89% water, 10% carbohydrates, 1% protein, and
small amounts of fat and vitamin C, similar to other citrus fruits. The essential oil extracted
from pomelo pericarp contains key chemical constituents, including limonene, beta-linalool,
neral, beta-myrcene, and nootkatone [14]. Pomelo pericarps are abundant by-products
with a fascinating chemical composition. Phytochemicals derived from pomelo pericarp
essential oil demonstrate various biological effects, such as antioxidant, anti-inflammatory,
antimicrobial, anti-pigmentation, anti-hypertensive, anticoagulant, and cytoprotective ac-
tivities [15]. Edible films and coatings made from biopolymers have attracted considerable
attention due to their ability to prevent food spoilage during handling, transportation,
and storage, which helps to extend the shelf life of food products. To the best of our
knowledge, no studies have been conducted on the development of HomChaiya-rice-flour-
based edible films or on the incorporation of pomelo pericarp essential oil (PEO) into such
films to produce functional packaging. Therefore, an interesting approach for developing
biodegradable, cost-effective, and environmentally friendly films involves combining rice
flour with essential oil extracts from pomelo pericarp. The aim of this research was to
study the impact of pomelo pericarp essential oil on the physicochemical properties and
antimicrobial activity of HomChaiya rice flour films. Furthermore, the insights gained
from this research can add value to HomChaiya rice flour as an agricultural product and to
by-products from the pomelo pericarp. These findings can be applied to the production of
films for food packaging, catering to the needs of industry and consumers in the future.
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2. Materials and Methods
2.1. Materials and Film Formation

De-husked HomChaiya rice was obtained from a local producer in the Chaiya district
of Surat Thani province. Upon arrival at the university laboratory, the rice grains were
milled into flour using an electric grain mill. The flour was then manually sifted through
a 44-mesh sieve. The resulting HomChaiya rice flour (RF) was collected, stored in an
airtight container, and used within a week of milling. The proximate composition of RF
was analyzed using the Association of Official Analytical Chemists (AOAC) [16] method,
yielding the following results: 75.85% carbohydrate [calculation], 9.78% protein [981.10],
9.01% moisture [925.10], 2.13% fat [922.06], 1.89% fat [922.06], and 1.34% fiber [985.29].
All of the chemicals and reagents used in this study were obtained from Sigma-Aldrich,
St. Louis, MO, USA. Pomelo fruit (Citrus grandis Osbeck, Khao-nahm-peung variety) was
purchased from a local market; then, the pericarp was collected and the essential oil was
produced using the extraction method proposed by Zhang et al. [17], to be used in the
rice film. Pathogenic bacterial strains, including S. aureus, L. monocytogens, E. coli, and S.
typhimurium, were acquired from the Department of Medical Sciences, Ministry of Public
Health, Nonthaburi, Thailand. All of the media for microbial analysis used in this study
were obtained from HiMedia, Mumbai, India.

The RF films were prepared using a casting technique based on the method of Dias
et al. [5] with some modifications. To prepare the edible film, 5% RF (5 g) was mixed with
distilled water (pH 10, adjusted using 0.1 N NaOH). The mixture was continuously stirred
at 4000 rpm for 15 min. Next, plasticizers including 0.3% glycerol (0.3 g), 0.1% sorbitol
(0.1 g), and 0.1% Tween 80 (0.1 g) were added to the film-forming solution, followed by the
addition of pomelo pericarp essential oil (PEO) at different concentrations (1%, 2%, and 3%,
corresponding to 1.0, 2.0, and 3.0 g, respectively). The volume of the distilled water was
adjusted to maintain a total volume of 100 mL for each essential oil concentration (94.5 mL
for 0% (control), 93.4 mL for PEO 1%, 92.3 mL for PEO 2%, and 91.2 mL for PEO 3%
essential oil, respectively). The mixture was then heated to between 85 ◦C and 90 ◦C using
a thermal water bath and continuously stirred for an hour to initiate starch gelatinization.
The temperature of the film-forming solution was brought down to ambient conditions
(~27 ◦C) and poured homogeneously onto plexiglass plates. Then, the film solutions on
the plates were dried at 40 ◦C for 8–10 h in a hot air oven. The films were peeled off of the
plexiglass plates and stored in a low-density polyethylene (LDPE)-based Ziplock bag in
a desiccator at ambient temperature with 30% relative humidity. The RF films with PEO
at different concentrations were designated as treatments and named as follows: RF-PEO
1%, RF-PEO 2%, and RF-PEO 3%. The infographic of the preparation of RF-PEO films is
shown in Figure 1. All films in this study were subjected to various determinations as
described below.

2.1.1. Optical Properties

The color properties of the examined films, including lightness (L*), redness (a*), and
yellowness (b*), were assessed using a Hunter Lab colorimeter (MiniScan EZ, HunterLab,
Reston, VA, USA). The total color (∆E) values of the film samples were measured using the
following Equation (1):

Toal color (∆E) =
√

∆L∗2 + ∆a∗2 + ∆b∗2 (1)

In this formula, ∆L*, ∆a*, and ∆b* represent the differences in the lightness, redness,
and yellowness of the color characteristics of the examined films, respectively.

Film roughness was evaluated using atomic force microscopy (diMultitude V, Veeco,
Santa Barbara, CA, USA) and NanoScope analysis software (version 1.20, Veeco, Santa
Barbara, CA, USA) using the method of Escamilla-Garcia et al. [18]. The opacity of the
film samples (5 cm × 2 cm) was examined using a UV spectrophotometer (Shimadzu,
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UV-1800, Kyoto, Japan). The study was conducted at a wavelength of 600 nm to assess light
transmission. The following formula was employed to determine the film’s opacity (2):

Opacity
(

A600

mm

)
=

Absorbance at 600 nm
Thickenss of film (mm)

(2)Membranes 2023, 13, 435 4 of 23 
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2.1.2. Relative Crystallinity

The film samples were measured using an X-ray diffractometer (BRUKER, D2 PHASER,
Karlsruhe, Germany). Scan data were collected from a diffraction angle 2θ, ranging from
4 to 50◦, in accordance with the method described by Akhila et al. [19]. The TOPAS software
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(version 5.0, Bruker AXS GmbH, Karlsruhe, Germany, 2012) was employed to compute the
relative crystallinity of the films. The formula for estimating the relative crystallinity (3) of
the starch granules was as follows:

Relative crystallnity =
Crystalline Area

Total area
× 100 (3)

2.1.3. Moisture, Solubility, and Water Vapor Permeability (WVP)

To determine the moisture content, the initial weight of a test film (50 mm × 20 mm)
was measured using a four-scale electronic weighing balance. The film was then dried at
105 ◦C until a constant weight was reached. The moisture content of the film was calculated
using Equation (4), with the results presented as percentages.

Moisture content (%) =
W0 − W1

W0
× 100 (4)

In this formula, W0 represents the initial weight of a test film, while W1 represents the
final constant weight of the same test film.

To determine the film solubility in water, film samples were cut into 2 cm × 2 cm
pieces, dried at 105 ◦C for 24 h, and weighed. Each film was placed in a 50 mL beaker
containing 20 mL of distilled water, which was sealed and stored at 25 ± 1 ◦C for 24 h.
Afterward, the film pieces were removed and dried at 105 ◦C for an additional 24 h to
determine the final dry matter weight. The results were expressed as percentages.

Water vapor permeability was determined using an adapted gravimetric cup technique.
Cylindrical test cups with a diameter of 40 mm were filled with 35 mL of distilled water
to maintain 100% relative humidity. Subsequently, the film was applied to the cup, and
the cap ensured a tight surface and sealed edges, facilitating water vapor permeation. The
initial weight was documented, and the cups were placed in a pre-conditioned desiccator
(10–25% relative humidity) with silica gel. The weight of the cups, relative humidity, and
temperature were monitored every 2 h for a duration of 24 h. The water vapor permeability
(WVP) of the film was computed using a specific Formula (5):

WVP
(

Kg Pa−1s−1m−1
)
= (G × X)[ t × A × S × (R1 − R2)] (5)

In this formula, G denotes the water vapor mass (kg), X symbolizes the film thickness
(m), t corresponds to the elapsed time (s), A signifies the area (m2), and S represents
the saturated water vapor pressure (Pa) at the observed temperature. Additionally, R1
refers to the relative humidity inside the cup, while R2 stands for the relative humidity in
the desiccator.

2.1.4. Thickness and Textural Properties

The film thickness was measured using a handheld digital micrometer (Mitutoyo
Series 293 Digimatic Micrometer, Williston, VT, USA), with an accuracy of 0.0025 mm, at
six randomly chosen points.

Textural properties, such as tensile strength and elongation at break, were assessed
using a texture analyzer. Film samples were prepared by cutting them into 2 cm × 6 cm
pieces prior to analysis. Tensile strength was determined at a speed of 0.30 mm/s with
a preload of 0.1 N, and the test concluded when the film was torn into two sections. The
tensile strength, reported in MPa, was calculated as the ratio of the peak load to the film’s
cross-sectional area. Elongation at break was computed as a percentage by dividing the
film’s length at the breaking point by its original length (6 cm).

2.1.5. Microstructural Analysis

The microstructure of the films was studied using a scanning electron microscope [20]
(JOEL JSM-5410LV, Tokyo, Japan). Prior to analysis, the films were placed in desiccators
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containing P2O5 to remove any lingering moisture, achieving a theoretical 0% relative
humidity inside the desiccator. The SEM investigation focused on the surface sections of
the film samples. To ready the samples for observation, they were fastened to copper stubs,
coated with gold for 1.5 min to attain conductivity, and directly viewed at an accelerating
voltage of 5 kV and at 1000× magnification.

2.1.6. FTIR

The films were analyzed using FTIR spectroscopy (Thermo Electron Corp., Madison,
WI, USA) by following the method described by Lekjing and Venkatachalam [8]. The films
were combined with potassium bromide at a 1:100 ratio and subsequently ground into a fine
powder before being compressed into a pellet. The analysis aimed to examine potential
interactions between rice flour and pomelo pericarp essential oil. Scanning was performed
16 times within a wavelength range of 500–4000 cm−1 for each spectrum captured.

2.1.7. Biodegradability Test

The process for assessing film sample biodegradation was based on the technique
proposed by Oluwasina et al. [21] with some modification. Initially, 2 cm × 2 cm film
sections were prepared and dried in a hot air oven for 3 h. Post-drying, the samples were
weighed, with the starting weight marked as W0. The samples were then positioned in
perforated plastic containers and buried at a depth of 3.5 cm in soil. After 24 h, the samples
were retrieved, cleaned, and subjected to a second drying phase in a hot air oven at 105 ◦C
for another 3 h. The samples were then re-weighed, and this value was recorded as W1.
The samples were buried again, with 10 mL of distilled water applied to the soil above
them. During the 30-day research period, the samples were removed from the soil every
three days, and the weight loss was documented. The biodegradation percentage for each
film sample was determined using a specific Formula (6).

Biodegradability (%) =
(W0 − W1)

W0
× 100 (6)

The film biodegradation was represented as a percentage of weight loss corresponding
to the duration of storage days.

2.1.8. Antimicrobial Analysis

The antimicrobial properties of the films were examined using a modified method
based on the work of Seydim and Sarikus [22]. Test organisms, including S. aureus, L.
monocytogens, E. coli, and S. typhimurium, were grown in tryptic soy broth at 37 ◦C for
24 h. The inhibitory zone test on solid media was utilized to assess the films’ antimicrobial
effects. Edible film samples were cut into 10 mm diameter discs, and two discs were gently
placed in separate petri dishes filled with a solid medium. For E. coli and S. typhimurium,
tryptic soy agar-based plates were employed, while brain heart infusion agar plates were
used for L. monocytogenes and S. aureus. These plates had been previously inoculated with
0.1 mL of seeding culture. The seeding cultures for all organisms had a concentration of
2 × 108 CFU/mL. After preparing the plates, they were incubated at 37 ◦C for 24 h in the
appropriate chamber. Once the incubation was completed, the plates were examined to
identify any inhibition zones surrounding the film discs. The diameters of these zones were
measured using a sliding caliper, and the total zone area was subsequently calculated.

2.1.9. Statistical Analysis

Each experiment in this study was performed in triplicate. Data from each analysis
were subjected to one-way analysis of variance (ANOVA) and Duncan’s multiple range
test (DMRT) using IBM SPSS Statistics software Version 12 (IBM Corporation, Chicago, IL,
USA), version 6 for Windows. Experimental data are presented as the mean ± standard
deviation (SD), with a significance level of p ≤ 0.05.
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3. Results and Discussion
3.1. Optical Properties

The optical properties, including color characteristics and opacity, of the edible films
made from RF and PEO at specific concentrations are shown in Figure 2. Generally, the color
and transparency of edible films, which are used as wraps or coatings on food surfaces,
play a crucial role in determining the visual appeal and consumer acceptance of food
products [23]. This study demonstrated that incorporating essential oil into the RF-based
edible film formulations significantly impacted the overall color characteristics of the film
and these changes were observed regardless of variations in the PEO concentrations. As the
pomelo pericarp ripens, the chlorophyll content (green color) begins to decline while the
carotenoid content (yellow color) rises [24]. Therefore, an essential oil extract from pomelo
pericarp is a light-yellow liquid with an individual characteristic odor [25].
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Figure 2. Color characteristics (L* (A), a* (B), b* (C) and ∆E (D)) of edible films made of RF-PEO
at varying concentrations. The different letters of the alphabet shown on the bar diagram indicate
significant differences.

The film’s color appearance was a pale whitish-yellow, and the addition of PEO to the
film composition slightly decreased the lightness and redness values while significantly
increasing the yellowness. This is consistent with the findings of Sutput et al. [26], where
they discovered that the addition of essential oil significantly increased the yellowness
values of the film. Jouki et al. [27] reported that incorporating essential oil into edible film
formulations could result in higher positive values of the film, as indicated by increased
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film yellowness, and subsequently lead to the appearance of a light greenish-yellowish tone.
Kong et al. [7] reported that phenolic acid in the PEO influenced the film color characteristics.
The total color of the films was also somewhat affected by the PEO concentrations. Higher
concentrations of PEO led to increased total color values in the film.

3.2. Film Roughness, Relative Crystallinity, and Opacity

The roughness of the RF-based edible film incorporating PEO at different concen-
trations is shown in Figure 3A. Overall, a decrease in roughness was observed in the
PEO-added RF films upon increasing concentrations. The control film had the highest
roughness (19.64 nm), followed by the RF-PEO films (18.63 to 13.52 nm). In general, the
rice-flour- or rice-starch-based edible films exhibit a range of roughness characteristics,
specifically, from smooth to rough; this can be controlled by various factors including the
raw material source and processing conditions, film preparation method, and the addi-
tives and plasticizers used [28–30]. The present study showed that the control film had
a slightly higher roughness, which could be due to the impaired crosslinking, particularly
the covalent and noncovalent bonding between the polysaccharide-based polymers and
the additives and plasticizers. However, the addition of PEO in the RF film formation
improved the smoothness of the surface. Hosseini et al. [31] also found a similar finding
that adding PEO (Origanum vulgare L.) to the polymer-based film composition significantly
improved the film smoothness.

The addition of EO to the edible film, which contains Tween 80, could positively
improve the film surface smoothness by improving the dispersibility and stability of
the PEO, and crosslinking [32–34]. Similarly, the relative crystallinity of the RF-PEO-
based edible films also exhibited a decreasing trend upon increasing concentrations of
PEO (Figure 3B). The lowest crystallinity was observed in the RF-PEO 3% film, followed
by the others. Furthermore, the control films had a high level of relative crystallinity.
Although significant differences were observed among the samples, the overall range was
not substantial. The decrease in crystallinity suggests that the addition of PEO interfered
with film formation, inducing a plasticizing effect in the RF-based film. This interference
disrupted hydrogen bonding within the polysaccharide chain, leading to a reduction in
relative crystallinity in the film matrix. These findings align with the study by Jaramillo
et al. [35]. Furthermore, the degree of crystallinity in a material can affect its optical
properties, including opacity. In general, higher crystallinity can lead to increased opacity
due to the more ordered arrangement of the material’s structure, which can scatter light
more efficiently. The present study found that when the PEO concentration in the film
increased, the level of opacity of the analyzed films decreased significantly (Figure 3C).

Normally, the opacity value is an important factor to consider when developing or
designing food packaging using edible films [36]. This study showed that all the tested
edible films in this study exhibited a lower overall range of opacity values. Normally,
rice-flour- or rice-starch-based edible films tend to have lower opacity values because
the structural integrity of thermally processed rice is weaker. Among the film samples,
the control film had the lowest opacity, followed by the RF-PEO film samples, indicating
that the addition of essential oil adversely affected the transparency of the film. This
phenomenon might be attributed to the presence of essential oil droplets within the film
structure, potentially causing enhanced diffuse reflectance due to light scattering. Simona
et al. [37] reported that incorporating essential oils into polysaccharide-based edible films
resulted in a significant reduction in transparency levels. Similarly, Suptut et al. [26], and
Shojabee-Aliabadi et al. [38] found that the phenolic compounds present in essential oils
may absorb low-wavelength frequency light on the film surface, leading to decreased
transparency in edible films. Furthermore, the amount of amylose content, glycerol, and
lipid can alter the opacity level of the starch-based edible films [39]. Normally, the oxidative
process in the food product can be altered by controlling the light transfer through the
packaging film by enhancing the opacity level by adding essential oil [40].



Membranes 2023, 13, 435 9 of 20

Membranes 2023, 13, 435 10 of 23 
 

 

 
Figure 3. Roughness (A), relative crystallinity (B), and opacity (C) of edible films composed of RF-
PEO at varying concentrations. The different letters of the alphabet shown on the bar diagram indi-
cate significant differences. 

Normally, the opacity value is an important factor to consider when developing or 
designing food packaging using edible films [36]. This study showed that all the tested 
edible films in this study exhibited a lower overall range of opacity values. Normally, rice-
flour- or rice-starch-based edible films tend to have lower opacity values because the struc-
tural integrity of thermally processed rice is weaker. Among the film samples, the control 
film had the lowest opacity, followed by the RF-PEO film samples, indicating that the ad-
dition of essential oil adversely affected the transparency of the film. This phenomenon 
might be attributed to the presence of essential oil droplets within the film structure, po-
tentially causing enhanced diffuse reflectance due to light scattering. Simona et al. [37] 
reported that incorporating essential oils into polysaccharide-based edible films resulted 
in a significant reduction in transparency levels. Similarly, Suptut et al. [26], and Shojabee-
Aliabadi et al. [38] found that the phenolic compounds present in essential oils may absorb 
low-wavelength frequency light on the film surface, leading to decreased transparency in 
edible films. Furthermore, the amount of amylose content, glycerol, and lipid can alter the 
opacity level of the starch-based edible films [39]. Normally, the oxidative process in the 
food product can be altered by controlling the light transfer through the packaging film 
by enhancing the opacity level by adding essential oil [40]. 

Figure 3. Roughness (A), relative crystallinity (B), and opacity (C) of edible films composed of
RF-PEO at varying concentrations. The different letters of the alphabet shown on the bar diagram
indicate significant differences.

3.3. Moisture, Solubility, and Permeability

The moisture content of the RF-based edible films that incorporated PEO at differing
concentrations is shown in Figure 4A. Overall, the moisture content in the film ranged
between 19.1 and 18.5% and the incorporation of PEO in the RF edible film slightly de-
creased the moisture content; however, the differences were not significant. Incorporating
essential oil into rice-flour-based edible films may enhance the film’s hydrophobic proper-
ties, potentially increasing its resistance to water vapor transmission. Consequently, this
improved barrier performance against environmental moisture may result in a reduction in
the film’s moisture content. This is in accordance with the study of Song et al. [41], who
suggested that the swelling property of the edible film plays a crucial role in its overall
moisture content [42]. The study of Socaciu et al. [43] found that addition of essential
oil significantly reduced the swelling property of the film. Ojagh et al. [44] reported that
integrating essential oil into polysaccharide-based films results in a denser film network.
The addition of essential oil encourages covalent bonding between the polymer’s functional
groups, diminishing the availability of hydroxyl and amino groups. This mechanism limits
polysaccharide–water interactions through hydrogen bonding, consequently reducing the
edible film’s moisture content. Furthermore, water solubility is a key factor determining
the biodegradability as well as the food applications of edible films made from polysac-
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charides [7,45]. Water solubility depends on the film’s chemical composition and the
interactions between the film’s components and water molecules [46].
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Figure 4B presents the water solubility of the tested films. The differences in water
solubility between the control and PEO-containing RF films were significant. Among the
PEO-containing films, the increasing concentration significantly reduced the water solubil-
ity. Water insolubility of the films plays a crucial role in enhancing product integrity and
water resistance [47]. The addition of essential oils to a film can influence its water solubility
by altering the hydrophilic/hydrophobic balance, interacting with film components, and
modifying surface properties. However, the impact depends on the essential oil type and
concentration, film composition, and processing conditions [48,49]. In addition, the mois-
ture content and solubility of the film could also affect the water vapor permeability (WVP)
properties (Figure 4C). A lower WVP is one of the preferable parameters that accounts for
the extension of food shelf life [50]. The incorporation of PEO in the RF films significantly
controlled the WVP of the film. Sucheta et al. [51] reported that a lower WVP indicates the
homogeneity of the films and holds good potential to be utilized as a packaging material for
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food applications. A lower WVP in the RF-PEO films may have resulted from the effect of
the PEO, which can control water vapor permeability in polysaccharide-based edible films
by enhancing hydrophobicity, adjusting film network structure, altering surface properties,
and interacting with other film components.

3.4. Thickness and Textural Properties

The thickness of the packaging material is crucial for determining the shelf life, bio-
chemical changes, and physical and textural properties of food products [52]. Moreover,
Thakur et al. [53] noted that the thickness of a film can impacts its water vapor pressure and
transparency. Figure 5A presents the thickness of the edible films made from RF and PEO
at specific concentrations. Overall, the film thickness did not differ significantly among
samples, and the addition of PEO did not influence the film thickness, despite varying
concentrations. The thickness of the RF-PEO-based edible films ranged from 0.0753 to
0.0761 mm. Although a non-significant change in film thickness was observed, the addition
of PEO marginally increased the thickness, which could be due to the interaction and
physical bonding between PEO and RF. Valizadeh et al. [54] reported that an increase in
film thickness is indicative of the formation, interaction, and homogenization of PEO with
biopolymers. Several studies have found that increasing rice flour or starch in the film
composition increased the thickness of the film. In the present study, the RF concentration
was constant, with differences in PEO concentration, and this could provide the rationale
for the slight changes in the thickness of the film. Minimal changes in the film made
with a fixed starch content concentration may contribute to its swelling power, and the
addition of PEO could slightly induce swelling of the film [55]. Mechanical properties of
biopolymer films, such as tensile strength and elongation at break, are crucial as they ensure
the packaging material maintains sufficient mechanical strength to preserve its integrity
throughout handling and storage processes [56].

The tensile strength and elongation at break of the edible films made of RF-PEO at
specific concentrations are shown in Figure 5B,C. Overall, this study found that the addition
of PEO in the RF-based edible film resulted in a slightly decreased tensile strength and
enhanced level of elongation at break. Syafiq et al. [57] reported that incorporating PEO into
starch-based polysaccharide polymers negatively affected tensile strength but enhanced
elongation at break values. This can be explained by the higher PEO concentrations in
the film mixture diminishing the cohesive forces within the polymer chain. As a result,
a more heterogeneous matrix is formed, leading to reduced tensile strength and increased
elongation. Similar findings have also been reported in various studies by Song et al. [41],
Jamroz et al. [58], and Silveira et al. [59].

3.5. FTIR Spectrum

The FTIR spectra of an edible film made of RF and PEO at a specific concentration
is presented in Figure 6. In general, the infrared spectroscopy of edible films involves
analyzing the absorption of radiation and investigating the manner in which molecules
and multi-atomic ions vibrate [60]. The peak pattern analysis revealed that there was
a significant difference in peak patterns between the control film and the PEO-containing
films. However, no significant differences in peak patterns were observed among the
PEO-containing films regardless of the concentration used. Edible films made of starch and
non-starch polysaccharides with glycerol as a plasticizer typically display FTIR spectra in
the range of 558–2984 cm−1, regardless of whether they contain essential-oil-based active
ingredients or not [61]. This is in accordance with the observation of present study. This
study found major peaks in the FTIR spectra of the tested edible films in two regions:
zone I, which ranged from 900 to 1600 cm−1, and zone II, which ranged from 2900 to
3400 cm−1. Specifically, the FTIR spectra of RF-PEO edible films exhibited characteristic
peaks in zone I at specific wavenumbers: 900 cm−1 for C-F stretching, 1000–1200 cm−1 for
C-O stretching, 1400 cm−1 for C-F stretching, 1500 cm−1 for N-O stretching, and 1600 cm−1

for C-C stretching. Conversely, the peaks at 900 and 1000 cm−1 were not spotted in
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the control films. Compared to zone II, the PEO-containing edible films exhibited more
noticeable differences than the control samples in zone 1 based on the FTIR spectra peaks.
However, the peaks observed in zone II were almost identical in all PEO samples; however,
in the control films, the intensity of the peaks ranging between 3000 and 3200 cm−1 were
slightly low. A decrease in the intensity indicates the lack of PEO in the control film
and, consequently, weaker C-H stretching. The FTIR spectra peaks between 3300 and
3400 cm−1 represent the stretching vibration of OH and N-H in the samples, respectively.
Peaks in this range indicate the stretching vibration of hydroxyl group (OH) and amino
group (NH) symmetrical and asymmetrical CH bonds in the polymer structure. This is
in accordance with the study of Sihombing et al. [62], Asdagh et al. [60], and Bahram
et al. [63]. Furthermore, a reduction in the peak intensities of the hydroxyl group stretching
(approximate peaks in the range of 3300–3400 cm−1) was noted in both control and RF-PEO
edible films. In particular, low peak intensities were observed in the control film compared
with the PEO-containing films. This observation suggests that the higher peak intensity in
the PEO-containing films is an indication of the presence of crystalline and hydrophobic
regions in the film, leading to a higher tensile strength. This is in accordance with the study
of Sucheta et al. [51] and Liang and wang [64].
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Figure 6. FTIR spectrum of edible films composed of RF-PEO at varying concentrations.

3.6. Microstructural Observations

Figure 7 depicts the surface microstructure analysis of the edible film composed of
RF with varying concentrations of PEO. The microstructural distribution of the edible film
is a crucial factor that directly influences the film properties, including physical, optical,
mechanical, and barrier properties [20,65,66]. The present study found that microstructural
observation indicated a significant improvement in the surface appearance of the RF film
upon the addition of PEO compared with the control film. Furthermore, the concentration of
PEO had a discernible effect on the film’s appearance, with a higher concentration resulting
in a smoother and more cohesive surface, compared with lower PEO concentrations or the
control. In contrast to the PEO-containing films, the control film that lacked EO exhibited
a rough surface with numerous microcracks. Starch-based films tend to have naturally
uneven and rough microstructural surfaces in the absence of optimized additives, which
is consistent with the findings of Kang and Song [67] and Acosta et al. [20]. The reason
for the uneven surface structure of the edible film may be attributed to the migration of
plasticizers to the film’s surface during the drying process, leading to the accumulation of
excess plasticizers at the interface [41]. The reason for the smoother surface microstructure
observed in the PEO films could be the result of the dispersal effect. This phenomenon
occurs when the lipid droplets in the film emulsion create a continuous dispersion in
the film’s polymer network, leading to a smoother surface [68]. Syafiq et al. [57] found
that the formation of cracks and uneven surfaces on the film could be attributed to the
incomplete miscibility of starch in the film emulsion during processing, leading to increased
surface coarseness.

Furthermore, a similar effect was discovered on the PEO-containing films, primarily
due to the poor compatibility between the PEO and the film polymer that hindered the
interconnection of PEO with the film. Consequently, the PEO evaporated from the film
during the drying process of the film formation, causing similar surface irregularities.
Romani et al. [65] found that a smoother surface microstructure of the edible film could
improve mechanical and barrier properties. Their study also suggested that adding PEO
to the starch-based edible film helped to produce a continuous polymer matrix phase and
improved interfacial interactions. Martins et al. [40] discovered that incorporating PEO
into the edible film improved it’s resistance against moisture and water vapor pressure
compared with the control film. Their study suggested that this improvement was primarily
due to the strong formation of hydrogen bonding between the PEO and the polymer matrix,
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which enhanced interfacial adhesion and contributed to the desired resistance properties.
Zhou et al. [69] observed that incorporating PEO into the starch-based edible film resulted
in cracks and holes on the surface due to the coalescence, flocculation, and emulsification of
the essential oil during the drying process. This process led to the formation of oil droplets
on the film surface, which evaporated quickly due to the high volatility of essential oil,
leaving behind holes and cracks. Their study indicated that not all PEOs act as a beneficial
additive, and this is solely linked to the interfacial interaction of the PEO and the film.
However, the present study revealed that adding PEO to the HomChaiya RF edible film
resulted in good structural characteristics indicating that the PEO exhibited better suitability
with the tested RF.
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3.7. Biodegradability

Biodegradability analysis assesses the ability of biodegradable films to break down
when exposed to microorganisms in the soil, simulating degradation in a natural environ-
ment [70]. The degradation of RF films containing PEO was monitored for 30 days and
the results are shown in Figure 8. Within 15 days, over 60% of the samples had degraded,
and by 30 days all of the films had fully degraded. The films with lower concentrations of
PEO exhibited faster degradation compared with those with higher concentrations. This
may be because higher concentrations improved the stability and structural strength of
the films and natural plant extracts, particularly essential oils, are known to have strong



Membranes 2023, 13, 435 15 of 20

antimicrobial activity; this could negatively impact biodegradability by inhibiting microbial
growth, which is a key factor in biodegradability. This finding is consistent with the study
of Mir et al. [71]. Additionally, the hydrophilic nature of the RF film components promotes
an increase in water activity, which encourages the growth of microorganisms. According
to Dordevic et al. [72], natural polysaccharides, a key ingredient in films, have a more
significant role in biodegradation than other types of film-forming materials. Furthermore,
the presence of natural fibers in RF that are prone to biodegradation may contribute to the
degradation of the film; however, this process is dependent on the degradation of these
fibers and the loss of interfacial resistance between the fibers and the polymer matrix.
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According to the findings of Suriyatem et al. [73], incorporating plant extracts into
starch-based edible films can negatively affect their degradability due to the presence of
hydroxyl groups (OH) in the film matrix. A higher level of OH can increase the biodegrad-
ability of the film. According to Wittaya [74], various factors such as the amylose and
amylopectin content, type and concentration of plasticizers, and lipid content in rice-flour-
based edible films can negatively impact their biodegradability. The biodegradability of
starch-based edible films is significantly influenced by factors such as the type and moisture
content of the soil, microorganisms present in the soil, weather conditions, and various
film properties including water vapor pressure, water absorption, and thickness [75]. The
biodegradability results of the films indicate that RF films with PEO can be considered to
be biodegradable materials that can be returned to the environment without causing harm.

3.8. Antimicrobial Activity

Incorporating natural antimicrobial compounds into biopolymer-derived edible films
and coatings has greatly improved the effectiveness of active food packaging systems [76].
The antimicrobial activity against the S. aureus, L. monocytogens, E. coli, and S. typhimurium
by RF films containing PEO at different concentrations are shown in Figure 9. In comparison
with the control film, the PEO-containing RF films significantly controlled the growth of
the tested microorganisms. Furthermore, the effect of PEO against microbial growth
was influenced by its concentration; higher concentrations (>2%) demonstrated a better
inhibitory effect compared with the lower concentration and control. The control film was
the least effective against microorganisms due to the lack of antimicrobial compounds, and
the addition of PEO effectively improved the antimicrobial activity of the film. Chanthaporn
et al. [77] investigated the antimicrobial activity of pomelo pericarp extract and its essential
oil. Their research revealed that fresh pericarp had a stronger inhibitory effect against
S. aureus, L. monocytogenes, and E. coli. They also found that the minimum inhibitory
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concentration for PEO was >2.25 mg/mL, higher than for other essential oils such as kaffir
lime and lime. This aligns with the current study, where PEO combined with the RF film at
concentrations above 2% demonstrated improved antimicrobial activity against the tested
pathogens. Suklampoo et al. [78] found that the antimicrobial activity of pomelo pericarp
extract and its byproducts depends on the fruit variety and pericarp parts. The flavedo
extract from the Khao-nahm-peung variety exhibited stronger antimicrobial activity against
both Gram-positive and Gram-negative bacteria compared to the albedo part and the
Khao-paen fruit variety, which showed minimal or no effect. Palazzolo et al. [79] observed
that PEO typically has greater efficacy against Gram-positive bacteria than Gram-negative
bacteria. This is consistent with the current study, in which RF-PEO edible films were
more effective at reducing S. aureus and L. monocytogenes than E. coli and Salmonella species.
Barrion et al. [80] noted that the antimicrobial properties of pomelo pericarp are due to
its phytochemical composition, specifically tannins, flavonoids, and saponins. Sreepian
et al. [81] reported that PEO’s antibacterial effects result from its hydrophobic properties
and limonene content, and PEO targets the bacterial components such as membrane
fatty acids, proteins, and ATP/ATPases. Their hydrophobicity allows them to infiltrate
bacterial membranes, disrupt lipids, and alter permeability, causing cellular content leakage,
potassium ion reduction, and hindered respiration.
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4. Conclusions

The present study demonstrated the feasibility of creating edible films that are biodegrad-
able and gluten-free using HomChaiya rice flour and pomelo pericarp essential oil at
different concentrations. The results showed that these films were cohesive, visually uni-
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form, and flexible. The addition of the essential oil resulted in a smoother film that was less
transparent, with a distinctive yellowish tint and a stronger pericarp color. The structural
properties of the films with essential oil were similar in terms of uniformity, compactness,
and molecular structure, except for the control film, which had a rough surface. The
essential oil concentration impacted the films’ mechanical properties and water vapor per-
meability, enhancing the tensile strength and elongation at break. The films containing the
essential oil had improved water vapor barrier properties compared with the control film.
Additionally, the films with essential oil had a strong inhibitory effect against pathogenic
bacteria, which increased with the concentration of oil used. Our findings indicate that
pomelo pericarp essential oil at 2–3% can be used as a reinforcing additive in gluten-free
rice flour films, making these films a potential source of biodegradable and edible materials.
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