
Citation: Uzdenova, A. Ion Transport

in Electromembrane Systems under

the Passage of Direct Current: 1D

Modelling Approaches. Membranes

2023, 13, 421. https://doi.org/

10.3390/membranes13040421

Academic Editors: Lasâad Dammak

and Natalia Pismenskaya

Received: 18 March 2023

Revised: 5 April 2023

Accepted: 7 April 2023

Published: 8 April 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

membranes

Article

Ion Transport in Electromembrane Systems under the Passage
of Direct Current: 1D Modelling Approaches
Aminat Uzdenova

Department of Computer Science and Computational Mathematics, Umar Aliev Karachai-Cherkess State
University, Karachaevsk 369200, Russia; uzd_am@mail.ru

Abstract: For a theoretical analysis of mass transfer processes in electromembrane systems, the
Nernst–Planck and Poisson equations (NPP) are generally used. In the case of 1D direct-current-
mode modelling, a fixed potential (for example, zero) is set on one of the boundaries of the considered
region, and on the other—a condition connecting the spatial derivative of the potential and the given
current density. Therefore, in the approach based on the system of NPP equations, the accuracy of
the solution is significantly affected by the accuracy of calculating the concentration and potential
fields at this boundary. This article proposes a new approach to the description of the direct current
mode in electromembrane systems, which does not require boundary conditions on the derivative
of the potential. The essence of the approach is to replace the Poisson equation in the NPP system
with the equation for the displacement current (NPD). Based on the system of NPD equations, the
concentration profiles and the electric field were calculated in the depleted diffusion layer near the
ion-exchange membrane, as well as in the cross section of the desalination channel under the direct
current passage. The NPD system, as well as NPP, allows one to describe the formation of an extended
space charge region near the surface of the ion-exchange membrane, which is important for describing
overlimiting current modes. Comparison of the direct-current-mode modelling approaches based
on NPP and NPD showed that the calculation time is less for the NPP approach, but the calculation
accuracy is higher for the NPD approach.

Keywords: ion-exchange membrane; electromembrane system; ion transport; galvanodynamic mode;
direct current mode; space charge; desalination; mathematical modelling; Nernst–Planck–Poisson
equations; displacement current

1. Introduction

Electromembrane systems are the basis of electrodialysis, nano- and microfluidic de-
vices which are used for water purification, processing of agricultural products (milk, wine,
etc.), performing chemical analyses and other types of human activity [1–6]. One of the
electrical modes in which such systems are operated and investigated is galvanodynamic,
that is, the mode where the current density in the system is set. In this case, the current
density can be constant (for example, chronopotentiometric studies [7–9]), a linear function
of time (voltammetry [10]), a periodic function of time (pulsating electric field [11,12],
impedance spectroscopy [13]), or another time function.

Mathematical modelling is an important component of membrane systems research,
supplementing experimental knowledge. For the mathematical description of the phe-
nomena of mass transfer in electrolyte solutions, several relationships are described in the
literature, detailed reviews of which are given in [14–16]. The most complete description
of transport phenomena in multicomponent electrolyte solutions is based either on the
so-called Stefan–Maxwell approach, or on the thermodynamics of irreversible processes,
which relates the flows of heat, electricity, momentum, and individual components with
the corresponding driving forces in a system of phenomenological equations.
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A more simplified approach to describing mass transfer in an electrolyte solution is
provided by the Nernst–Planck transfer equation, which takes into account diffusion, mi-
gration and convection of ions. The Nernst–Planck equation is derived for dilute solutions
and requires only a limited number of parameters, such as diffusion coefficient and ion
mobility, which are assumed to be constant. A detailed review of other limitations of the
Nernst–Planck equations can be found in [14].

The Nernst–Planck equations are easily combined with other equations describing
coupled chemical reactions, concentration polarization and its coupled phenomena [14–18].
The Nernst–Planck equations, together with the Poisson equation for the electric potential,
form a system of coupled equations (NPP), which is widely used in studies of electromem-
brane systems [14–19]. This system makes it possible to describe the violation of the
electroneutrality of the solution and the formation of a space charge region (SCR) near the
membrane surface, due to its permselectivity [19]. The NPP equations, together with the
Navier–Stokes equations describing the hydrodynamics of an electrolyte solution near the
membrane surface, make it possible to build mathematical models devoted to studying the
effect of the SCR and its associated phenomena on the efficiency of mass transfer [20,21].

The electric mode is defined by setting the boundary conditions of the Poisson equation
for potential. In the 1D case, to model the potentiodynamic mode at the boundaries of the
region under consideration, the values of the electric potential are set, the difference of
which is equal to the required voltage. In the galvanodynamic mode, a fixed (for example,
zero), potential is set on one of the boundaries, and on the other—a boundary condition on
the spatial derivative of the potential. J. Manzanares and co-authors [22] used a 1D system
of NPP equations with a boundary condition connecting the derivative of the potential and
the given current density to describe the galvanodynamic mode. This boundary condition
was obtained by expressing the term of the displacement current from the equation for the
total current density. On the basis of this boundary condition, studies were successfully
carried out for the galvanodynamic mode of the evolution of the structure of diffusion layers
adjacent to the ion-exchange membrane [22], the impedance of the membrane system [23];
the differential capacitance of the electric double layer in the diffusion boundary layer of
the ion-exchange membrane was calculated in [24].

In [25], a similar boundary condition was proposed, also obtained from the equa-
tion for the total current density, but the spatial derivative of the potential was expressed
from the term of the conduction (faradaic) current. Due to the simplicity of implemen-
tation of this form of the boundary condition, 2D models were built on it, which made
it possible to theoretically study the chronopotentiograms of homogeneous [26,27] and
heterogeneous [28] membranes, taking into account the development of electroconvection,
as well as to investigate the process of development of the electroconvective flow in the
electrodialysis desalination channel under the action of intense direct current [29]. In recent
works [12,30], this boundary condition was used to construct a galvanodynamic model of
mass transfer in the mode of a pulsating electric field.

When using the boundary condition on the derivative of the potential, the accuracy
of the entire calculation is significantly affected by the error in calculating the derivatives
of the concentration and potential fields at the boundaries of the area under considera-
tion. The physical essence of the problem of the ion transport in membrane systems is
such that the distributions of the concentration of counterions and the potential near the
solution/membrane interface are characterized by large gradients (this region is called the
quasi-equilibrium part of the EDL), which increase with an increase in the concentration of
the electrolyte solution [31]. Therefore, the computational complexity of calculating the
NPP equations when such a boundary condition is specified at the solution/membrane
interface is much higher than when it is used at the outer edge of the diffusion layer [25].

This article proposes a new approach to modelling ion transport in the electromem-
brane system in the galvanodynamic mode, taking into account the formation of SCR
at intense currents, which does not require setting boundary conditions for the electric
potential. The essence of the proposed approach is to replace the Poisson equation in the
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NPP system with equations for the displacement current (NPD). Mathematical models are
constructed and numerical solutions are obtained for the problem of the non-stationary
ion transport for the most common variants of the geometry of the system under con-
sideration in the literature: a depleted diffusion boundary layer near the surface of an
ion-exchange membrane; a section of the desalination channel from the anion-(AEM) to
cation-exchange membrane (CEM). The ion transport models under the direct current
based on the NPP and NPD equations are compared in terms of the accuracy of the solution
and the calculation time.

2. Ion Transport in the Depleted Diffusion Layer near the Surface of the
Ion-Exchange Membrane
2.1. Mathematical Model

Suppose that in the electrodialysis desalination channel formed between the AEM
and CEM there is a laminar flow of a diluted binary electrolyte. Since the main subject of
this study is the ways of description of mass transfer, taking into account the formation of
an SCR that develops in the electrolyte layer near the membrane surface under the action
of an overlimiting direct current, we will consider a depleted diffusion layer formed near
the surface of a CEM. The ion-selective properties of the membrane to which the diffusion
layer adjoins will be imitated by the boundary conditions.

Assume that the channel is rather short, so that the thickness of the diffusion layer
is small compared to the intermembrane distance, and is approximately constant in the
tangential direction [14]. Then the mass transfer process can be considered in the direction
normal to the membrane surface, without considering the convective transfer (since the
flow is laminar). Density, temperature, and the dielectric constant of the solution are
considered to be constants; chemical reactions are not taken into account.

Let x be the coordinate normal to the membrane surface, varying from 0 (solution
volume, that is, the outer edge of the diffusion layer) to δ (solution/CEM interface), Figure 1.
The parameter determining the electric field mode is the current density i (t).
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Figure 1. Scheme of the concentration profiles of cations, c1, anions, c2, and their difference, c1 − c2,
in the depleted diffusion layer near the surface of the cation-exchange membrane (CEM). A current
of density i passes through the system. The regions of the diffusion layer are indicated by numbers:
the electrically neutral region (1), the extended region (2) and the quasi-equilibrium region of the
space charge (3). c1m is the cation concentration at the solution/CEM boundary.

The mathematical description of the non-stationary ion transport in the dilute elec-
trolyte solution includes the Nernst–Planck equations, Equation (1), the material balance
equations, Equation (2), and the Poisson equation for the electric potential, Equation (3),
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(NPP) [17]. This system of equations for the binary electrolyte in the diffusion layer near
the surface of the ion-exchange membrane is written as:

jn(x, t) = − F
RT

znDncn(x, t)
∂ϕ(x, t)

∂x
− Dn

∂cn(x, t)
∂x

, n = 1, 2 (1)

∂cn(x, t)
∂t

= −∂jn(x, t)
∂x

, n = 1, 2 (2)

ε0εr
∂2ϕ(x, t)

∂x2 = −F(z1c1(x, t) + z2c2(x, t)) (3)

where jn, cn, Dn, zn are the flux, molar concentration, diffusion coefficient and charge
number of the n-th ion, respectively; ϕ is the electric potential; ε0 is the electrical constant;
εr is the relative permittivity of the electrolyte solution (assumed to be constant); F is the
Faraday constant; R is the gas constant; T is the absolute temperature. In the NPP system,
Equations (1)–(3), the quantities j1, j2, c1, c2, ϕ are unknown functions of the spatial
coordinate x and time t.

The total current density is described by Equation (4) [32,33]:

itot(t) = iF(x, t) + ic(x, t) (4)

where iF(x, t) = F(z1 j1(x, t)+ z2 j2(x, t)) is the density of the faradaic current (or conduction

current), and ic(x, t) = −ε0εr
∂2ϕ(x,t)

∂x∂t is the density of the charging current (or displacement
current) associated with the formation and change in the space charge.

Differentiation of the Poisson equation, Equation (3), by time and substitution of the
material balance equations, Equation (2), gives the following relation ∂iF(x,t)

∂x + ∂ic(x,t)
∂x = 0.

Thus, in the 1D case, the total current density, itot(t), does not depend on the spatial
coordinate x and is equal to the given value i(t):

itot(t) = iF(x, t) + ic(x, t) = i(t) (5)

Therefore, from the equation for the total current density, Equation (4), it is possible to
derive the equation for the electric field strength, E(x, t) = −∂ϕ/∂x, which simulates the
electric mode with a given current density i(t):

ε0εr
∂E(x, t)

∂t
= i(t)− F(z1 j1(x, t) + z2 j2(x, t)) (6)

Substitution of the Nernst–Planck equations, Equation (1), into the material balance
equations, Equation (2), and the equation for the displacement current, Equation (6), gives
the closed system of equations for the desired ion concentrations, c1(x, t), c2(x, t), and
electric field strength, E(x, t):

∂cn(x, t)
∂t

= − ∂

∂x

(
F

RT
znDncn(x, t)E(x, t)− Dn

∂cn(x, t)
∂x

)
, n = 1, 2 (7)

ε0εr
∂E(x,t)

∂t = i(t)− F2

RT
(
z2

1D1c1(x, t) + z2
2D2c2(x, t)

)
E(x, t)+

+F
(

z1D1
∂c1(x,t)

∂x + z2D2
∂c2(x,t)

∂x

) (8)

Let us abbreviate the system of Equations (7) and (8) as NPD.
The possibility of replacing the Poisson equation with the displacement current equa-

tion, which makes it possible to introduce the total current density as one of the independent
variables of the problem, was noted by Cohen and Cooley [32]. In [32], the ion transport
was calculated based on the Nernst–Planck equations and the displacement current equa-
tion, in a completely mechanically permeable membrane, without describing its other
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physical properties. Brumleve and Buck [33] used this approach to calculate the frequency
characteristics of the impedance of a permselective membrane at a constant underlimiting
current. In the present work, we use this approach to describe the transport of ions in the
depleted diffusion layer near the surface of the ion-exchange membrane.

To solve the NPD system, Equations (7) and (8), boundary conditions are required
only for the equations for ion concentrations; the equation for the displacement current
density is a spatially distributed ordinary differential equation and requires only initial
conditions.

Assume that at the initial time, t = 0, no current flows through the system; thus,
the electrical neutrality condition is fulfilled at all points of the diffusion layer, and the
concentrations of cations and anions are equal to the initial electrolyte concentration, c0;
the electric field strength is zero:

c1(x, 0) = c0, c2(x, 0) = c0, E(x, 0) = 0 (9)

At the outer boundary of the diffusion layer (x = 0), the concentration of both types of
ions is fixed and equal to the initial electrolyte concentration, c0:

c1(0, t) = c0 (10)

c2(0, t) = c0 (11)

According to modern concepts [19,34], when a current flows in the desalination chan-
nel, the following ion concentration distribution is formed: the condition of local electrical
neutrality is satisfied in the volume of the desalination channel; when approaching the
solution/membrane interface, the concentration of counterions passes through a minimum
separating the extended SCR and the quasi-equilibrium EDL [19,35] (Figure 1). Within the
EDL, the concentration of counterions increases rapidly, and reaches the concentration of
fixed ions in the membrane volume. The concentration of co-ions tends exponentially to
zero as it approaches the “perfectly selective” membrane. The concentration of counterions
at the boundary, c1m, should be lower than the concentration of fixed ions, but of the same
order of magnitude. To find c1m, several models can be applied, a brief review of which is
given in [36].

However, the value of c1m does not significantly affect the distribution of concentra-
tions and potential in the extended SCR [35,37]. Therefore, following Rubinshtein and
Shtilman [19], we set the concentration of counterions c1m under the boundary conditions,
and consider it as a parameter. Note that this boundary condition is intensively used
in studies of electromembrane systems by Pham et al. [38], Mani et al. [20], Demekhin
et al. [39], Shi et al. [40], and others.

In the case of an “ideally selective” membrane, the current is carried exclusively by
counterions, and therefore, at the solution/membrane interface, the partial current density
of counterions is equal to the total current density, and the normal flux of co-ions is zero.
If the permselective properties of the membrane are described using transport numbers
of ions, the boundary condition for co-ions is determined based on the equation for the
continuity of the ion flux at the solution/membrane interface. Therefore, at the electrolyte
solution/membrane interface (x = δ), the counterion concentration is set constant, which is
Nc times greater than the initial electrolyte concentration, c0 [19]:

c1(δ, t) = Ncc0 (12)

The boundary condition for the concentration of co-ions is formulated using the
equation for the continuity of the ion flux at the solution/membrane interface:(

−D2
∂c2

∂x
− F

RT
z2D2c2

∂ϕ

∂x

)
(δ, t) =

T2C
Fz2

i(t), (13)
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where T2C is the effective anion transport number in the CEM. The transport number of
an ion in a membrane is defined as the fraction of the conduction current carried by ions
of a given species; for example, the transport number of the n-th ion in the CEM is equal
to TnC = Fzn jn/i [31]. Since the conduction current, iF, is realized by ions of both types,
the following relations are fulfilled: T1C + T2C = 1. In ion-exchange membranes placed in
dilute electrolyte solutions, the current is carried almost exclusively by counterions, that is,
T1C and T2A are close to 1 [41].

Compare the accuracy and required time of calculations based on the NPP and NPD
equations. Thus, calculations for the same system parameters will be performed based on
two approaches that differ in the way the electric field is described, namely:

(1) The NPD approach, which involves solving the system of the Nernst–Planck and
displacement current equations, Equations (7) and (8), with boundary conditions (9)–(13);

(2) The NPP approach, which involves solving the system the Nernst–Planck–Poisson
equations, Equations (1)–(3). In this case, conditions for the electric potential are added to
the boundary conditions (9)–(13). The system of Equations (1)–(3) includes the potential of
the electric field only in the form of spatial derivatives, and therefore only the potential
drop, ϕ(δ, t)−ϕ(0, t), is significant. For the convenience of calculations, the zero potential
is set on the right boundary, x = δ:

ϕ(δ, t) = 0. (14)

The condition, which introduces the density of the flowing current into the problem
formulation of the NPP approach [25], is placed on the left boundary, x = 0:

∂ϕ

∂x
(0, t) = −RT

F2

(
i(t) + Fz1D1

∂c1(0,t)
∂x + Fz2D2

∂c2(0,t)
∂x

z2
1D1c1(0, t) + z2

2D2c2(0, t)

)
(15)

The initial condition on the potential sets the zero value in the entire diffusion layer:

ϕ(x, 0) = 0 (16)

2.2. System Parameters

The values of the parameters of the membrane system, which are typical for real
chronopotentiometric experiments, were chosen, namely: intermembrane distance
H = 5.67 × 10−3 m, channel length L = 20 × 10−3 m, the temperature T = 293 K, con-
centration of NaCl electrolyte solution c0 = 10 mol/m3, the average velocity of forced flow
V0 = 3.8 × 10−3 m/s. These values of the parameters make it possible to estimate the thick-
ness of the diffusion layer using the Leveque formula, δ = (H/1.47) (LD/(H2V0))1/3 [42].
For the indicated parameters, thickness of the diffusion layer δ ≈ 0.247 × 10−3 m. It is
also necessary to determine the diffusion coefficients of cations D1 = 1.33 × 10−9 m2/s and
D2 = 2.05 × 10−9 m2/s; the ion charge numbers z1 = 1, z2 = −1. To simplify the numerical
solution, the ratio of the counterion concentration at the solution/CEM interface to its value
in the solution volume was taken to be Nc = 1. This value is less than in real systems [19];
however, it was shown in [35] that for Nc ≥ 1, the value of Nc does not significantly affect
the distribution of concentrations and potential in the extended SCR. Consider the direct
current mode with the density i = 2ilim, where ilim is the limiting current density determined
by Equation (17) [42]:

ilim =
FDc0

H(T1C − t1)

[
1.47

(
H2V0

LD

)1/3

− 0.2

]
(17)

where D = D1D2(z1 − z2)/(D1z1 − D2z2) is the diffusion coefficient of the electrolyte,
t1 = 0.395 is the transfer numbers of cation in the solution.
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The boundary value problems of the considered mathematical models were solved by
the finite element method using the Comsol Multiphysics 6.1 package (www.comsol.com,
(accessed on 14 March 2023) COMSOL AB, Stockholm, Sweden).

The computational complexity of the considered problem of describing the ion trans-
port in the diffusion layer near the membrane surface is associated with large gradients of
ion concentrations and electric potential in the quasi-equilibrium part of the EDL (Figure 1).
The computational complexity increases rapidly as the thickness of this region decreases,
which is estimated to be of the order of the Debye length LD =

√
εε0RT/(2c0F2) [31].

The latter occurs with an increase in electrolyte concentration c0. Therefore, to perform
calculations for concentration values corresponding to the values used in real experiments,
a non-uniform computational mesh is construct. Namely, the area under consideration is
divided into two parts:

• Region I is the main part of the diffusion layer (with the exception of the thin layer
at the solution/membrane interface, it is 100LD thick), with a uniform distribution of
elements. The main control parameter of the computational mesh in this region is the
number of elements (a series of values 1000, 2000, . . . , 6000 is set).

• Region II is a layer of 100LD thickness at the solution/membrane interface, with a
linearly decreasing size of computational mesh elements. The main control parameters
of the computational mesh in this area are the number of elements (set to 400) and the
ratio of the length of the first element to the last (set to 1000).

For the considered parameters, the Debye length is LD = 3.06× 10−9 m.
Thus, the calculations based on the NPP and NPD approaches, performed with the

same system parameters, solver tolerance settings on the same computational mesh, will
be compared.

2.3. Results and Discussion

Figure 2a shows the concentration profiles at t = 0, 7.6, 100 s, calculated based on the
NPP and NPD approaches.

At the initial time (t = 0 s), the uniform distribution of the concentration of cations
and anions (which are equal to c0, according to the initial condition (9)) determines the
initial resistance of the electrolyte solution. On the chronopotentiogram (ChP, that is, the
dependence of the potential drop on time at a constant current density), the initial almost
vertical section is observed (Figure 2b, t ≈ 0 s).

Over time, the electrodiffusion process reduces the ion concentration near the mem-
brane surface. The formation of concentration gradients in the electrolyte, due to the
passage of current through its interface with the ion-selective surface, is called concentra-
tion polarization [18]. An increase in concentration polarization reduces the conductivity
of the solution, which limits the rate of mass transfer. Therefore, there is a segment of slow
growth of the potential drop on the ChP (Figure 2b, 0 < t < τ). At t = τ = 7.56 s, the tangent
to the concentration profiles (in the electrically neutral part) tends to 0 at x = δ (Figure 2c).

Furthermore, an extended space charge region (SCR) begins to form at the outer edge
of the EDL (Figure 2c,d), and the rapid increase in the potential drop is noted on the ChP
(Figure 2b, t > τ). The local maximum of the space charge density, ρ = F(z1c1 + z2c2), is
shifted into the volume of the solution (Figure 2d,e). The formation of the extended SCR
increases the electric field strength in this region (Figure 2f). Over time, the system passes
into the stationary state (with the constant potential drop), in which the local maximum of
the space charge is located almost in the middle of the diffusion layer (Figure 2e).

www.comsol.com
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Figure 2. (a) Concentration profiles of cations, c1, and anions, c2, in the diffusion layer near the CEM
surface at t = 0, 7.6, 100 s; (b) chronopotentiograms; (c) distribution of concentrations c1 and c2 in
the area near the surface of the CEM at t = 7.5, 7.56, 7.6 s; (d) distribution of space charge density,
ρ = F(z1c1 + z2c2), at t = 7.56, 7.6, 7.7, 7.8 s; (e) distribution of space charge density, ρ, at t = 5, 10,
. . . , 30, 100 s; (f) distribution of electric field strength, E, at t = 5, 10, . . . , 30, 100 s. The results of
calculations by NPP (red and blue solid lines) and NPD (dashed black lines) approaches are shown.
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It should be noted that there is good agreement (a difference less than 0.3%) between
the time, τ = 7.56 s, and the analytic assessment of the Sand transition time, τS, determined
by Equation (18) [43]:

τS =
πD

4

(
c0Fz1

T1 − t1

)2 1
i2

(18)

Equation (18) was derived from the theoretical analysis of the infinite diffusion layer,
and determines the moment when the electrolyte concentration on the membrane surface
reaches 0 [43].

The described features of the mass transfer process in the diffusion layer near the
membrane surface are in agreement with the modern ideas about this process that have
been developed in [19,22].

In our work [26], a comparison was made between the ChPs obtained experimen-
tally [44] and theoretically, using the NPP model. The experiment [44] was carried out
with a laboratory cation-exchange membrane MK-40MOD with an electrically homogeneous
surface and 0.02 M (20 mol/m3) NaCl solution at i/ilim = 1.7. Good agreement between
the experimental and calculated curves is observed at times t < τS. As t approaches τS, the
theoretical curve rises steeply, while the experimental curve also rises, but not so steeply;
it slows down and forms an inflection point, then flattens out and reaches a steady state.
The slowdown of the ChP is usually associated with the development of current-induced
convection, which under the experimental conditions is electroconvection [44]. Electro-
convection mixes the solution at the surface: it provides additional delivery of a more
concentrated electrolyte from the volume of the solution to the surface, and pumps out
the depleted solution from the near-surface region [20,21]. Thus, for a more accurate de-
scription of ChPs in systems with ion-exchange membranes, the proposed one-dimensional
modelling (both NPP and NPD) should be extended at least to a two-dimensional descrip-
tion with the addition of the Navier–Stokes equations, which take into account the effect of
electric force on the spatial electric charge in solution.

Let us estimate the error in calculating the characteristics of mass transfer in a diffusion
layer with the direct current flow based on the NPP and NPD approaches. The calculation
error can be estimated from the error in fulfilling Equation (5), since the total current density
in the 1D case at each point of the region under consideration must be equal to the given
current density. The computational complexity of calculating fields with large gradients
leads to the increase in the error of the current density calculation in the quasi-equilibrium
part of the EDL and in the vicinity of the local maximum of the extended SCR. For example,
Figure 3 shows the distribution of the total current density at t = 15 s: significant deviations
of the current density from the specified value 2ilim are observed at the right boundary,
x = δ, and in the region of the local maximum of the extended SCR, x ≈ 0.72 δ. Therefore,
the calculation error is determined in the main part of the diffusion layer (Region I):

rI(t) = max
x∈[0,δ−100LD ]

|itot(x, t)− i|
i

(19)

and in the quasi-equilibrium part of the EDL (Region II):

rI I(t) = max
x∈(δ−100LD ,δ]

|itot(x, t)− i|
i

(20)

A series of calculations based on the NPP and NPD approaches has been performed for
the following values of the parameter of the computational mesh: the number of elements
in the main part of the diffusion layer (Region I) nI = 1000, 2000, . . . , 9000. Figure 4a,b
show the values of the total time spent on the calculation of the model for t from 0 to 100 s
and the maximum value of the calculation error in the main part of the diffusion layer
in this time interval, rI = max

t∈[0, 100s]
rI(t). The time step is automatically selected by the
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solver, taking into account the set relative-tolerance value. The calculations presented here
were performed with the relative-tolerance value equal to 10−6, which made it possible to
achieve an error of less than 1%.
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The calculation error rI of the NPP approach is greater than that of the NPD approach
for all considered values of the number of mesh elements. Note that for the NPP approach,
the condition rI < 1% is satisfied with the number of elements equal to 5000 or more,
and for the NPD approach, at 2000 or more (Figure 4b). The calculation time of the NPP
approach is on average 2.4 times less than that of the NPD approach (Figure 4a).

It was possible to achieve the calculation error of the current density in the Region II,
rI I , of less than 1% by increasing the number of elements in this region only for the NPD
approach (starting from nI I = 300 and more), Figure 4c. For the considered concentration of
the solution, c0 = 10 mol/m3, the order of the calculation error of the current density in
the Region II based on the NPP approach was 103% (therefore, these data are not shown
in Figure 4c); only for small concentrations (c0 ≤ 0.01 mol/m3) can an acceptable error be
obtained. To overcome this problem of the NPP approach, a numerical–analytical method
was proposed in [25], according to which the solution is obtained by a combination of the
numerical solution in the electrically neutral region and extended SCR, with the analytical
solution in the quasi-equilibrium EDL.

In the NPP approach, the boundary condition (15), which determines the galvanody-
namic mode, is set at the outer edge of the diffusion layer (x = 0), on which the current
density is calculated with high accuracy (Figure 3). Therefore, despite the low accuracy of
the current density calculation in the NPP approach at the solution/membrane interface
(x = δ), the ChPs calculated based on the NPP and NPD approaches practically coincide
(the difference is less than 0.27%). However, for the problem of describing mass transfer in
a desalination channel for the galvanodynamic mode, the described problem of the NPP
approach limits its direct application to only the range of low electrolyte concentrations [45].
This is due to the fact that, in this case, both boundaries of the region under consideration
are solution/membrane boundaries: on one side with the AEM, on the other side with
the CEM.
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the number of elements in regions I and II, respectively.

3. Ion Transport in the Section of the Desalination Channel
3.1. Mathematical Model

The high accuracy of calculation at the solution/membrane interface of the NPD
approach makes it possible to solve the problem of describing the ion transport in the
desalination channel under the direct current for the values of electrolyte concentrations
used in experimental studies. The model for the section of the desalination channel differs
from the model for the diffusion layer in the following elements:

• The geometry of the model is the segment with the length equal to the intermembrane
distance, H;

• Near the solution/AEM boundary (x = 0), the 100LD -thick region with a linearly
increasing size of computational mesh elements (the number of elements is set to
400 and the ratio of the length of the first element to the last one is equal to 1000), is
selected;
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• The boundary conditions at x = 0 are replaced by the conditions:(
−D1

∂c1

∂x
− F

RT
z1D1c1

∂ϕ

∂x

)
(0, t) =

T1A
Fz1

i(t), (21)

c2(0, t) = Nac0 (22)

where T1A is the effective transfer number of cations in the AEM (taken as T1A = 0.972);
Na is the ratio of the anion concentration at the solution/AEM interface to its value in
the bulk solution (taken as Na = 1).

3.2. System Parameters

Calculations for the section of the desalination channel were performed with the
system parameters given in Section 2.2.

3.3. Results and Discussion

Figure 5 shows the concentration profiles (Figure 5a) and the charge density distribu-
tion (Figure 5b) for the section of the desalination channel with the quiescent electrolyte
solution under the action of direct current at t = 0.50, . . . , 250, 268 s. At t = 268.15 s, the ion
concentration is completely depleted, which coincides with the analytical estimate of this
time, τb, obtained in [45]:

τb ≈
z1Fc0h

i(1− T1A − T2C)
(23)
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Figure 5. (a) Concentration profiles of cations, c1, (solid lines) and anions, c2, (dashed lines) in the
section of the desalination channel; (b) distribution of the space charge density, ρ. The results of
calculation using the NPD approach at t = 0, 50, . . . , 250, 268 s are shown.

4. Conclusions

New mathematical models of the ion transport in the diluted diffusion layer near
the surface of the ion-exchange membrane and in the section of the desalination channel
between AEM and CEM under the passage of direct current are constructed, based on the
NPD equations. These models make it possible to describe the violation of the electrical
neutrality of the solution and the formation of the extended SCR under the action of
an overlimiting direct current. The solutions obtained on the basis of NPD are in good
agreement with the analytical estimates of the transition time for the diffusion layer and the
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time of complete desalting of the quiescent electrolyte solution in the desalination channel
formed between the AEM and the CEM.

The comparison of the new approach to modelling the direct current mode based on
the NPD equations with the previously described approach based on the NPP equations is
made. It is shown that, although the calculation time of the NPD approach is longer than
of the NPP, it is characterized by a smaller calculation error.

For a more accurate description of ChPs in systems with ion-exchange membranes,
the proposed 1D modelling should be extended to a 2D description with the addition of the
Navier–Stokes equations, where the effect of the electric force on the electric charge is taken
into account. The development of the proposed approach for multi-species systems, which
will be processed in real-world systems with ion-exchange membranes, is also planned in
the subsequent work.
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