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Abstract: G-protein coupled receptors (GPCRs), one of the largest superfamilies of cell-surface
receptors, are heptahelical integral membrane proteins that play critical roles in virtually every organ
system. G-protein-coupled receptors operate in membranes rich in cholesterol, with an imbalance
in cholesterol level within the vicinity of GPCR transmembrane domains affecting the structure
and/or function of many GPCRs, a phenomenon that has been linked to several diseases. These
effects of cholesterol could result in indirect changes by altering the mechanical properties of the
lipid environment or direct changes by binding to specific sites on the protein. There are a number of
studies and reviews on how cholesterol modulates class A GPCRs; however, this area of study is yet
to be explored for class C GPCRs, which are characterized by a large extracellular region and often
form constitutive dimers. This review highlights specific sites of interaction, functions, and structural
dynamics involved in the cholesterol recognition of the class C GPCRs. We summarize recent data
from some typical family members to explain the effects of membrane cholesterol on the structural
features and functions of class C GPCRs and speculate on their corresponding therapeutic potential.

Keywords: G-protein-coupled-receptors; GPCRs; membrane protein; protein–lipid interactions;
sterols; cholesterol; class C GPCRs

1. Introduction

Many recent studies are geared towards deciphering the structures of G-protein
coupled receptors (GPCRs) through several methods, most commonly crystallography and
cryogenic electron microscopy (Cryo-EM). This is simply because many medications are
designed to target GPCRs due to their central role in many biological functions. All GPCRs
in a lipid bilayer are not stand-alone molecules, rather they interact with other components
of the bilayer e.g., lipids and sterols, most notably cholesterols [1]. Some members of
GPCRs exist and function as monomers, especially within the class A GPCRs, while other
GPCRs, mostly the class C GPCRs, form dimers [2,3], and oligomers with themselves
or other GPCRs [4]. Most recently, several determined GPCR structures often existing as
dimers, appear to indicate the presence of cholesterol. A notable example is the 2-adrenergic
receptor (2AR), a class A GPCR crystallized with cholesterol molecules and a component of
the dimer interface consisting of the addition of post-translational palmitate groups from
each protomer [1]. GPCRs function within cholesterol-rich membranes and an insufficient
or excessive amount of cholesterol within the membrane could induce conformational
changes in many GPCRs which would result in various diseases [5,6]. These effects of
cholesterol could result in indirect changes by altering the mechanical properties of the
lipid environment or direct changes by binding to specific sites on the protein [7–9]. There
are a number of studies and reviews on how cholesterol modulates class A GPCRs, but this
area of study is yet to be fully explored for class C GPCRs. Recent advances in experimental
and computational power have enabled researchers to investigate the role of lipids in
various membranes and solvable proteins, at the atomic level using molecular dynamics
simulation [10–18].
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Class C GPCRs consist of about 23 receptors with a unique characterization com-
pared to other GPCR classes and exist as obligate homo- (e.g., CaS) [19–22] or hetero-
(e.g., GABAB) dimers [23–26]. They are made up of three unique structural elements: a
seven-transmembrane domain which is responsible for allosteric ligand recognition but is
uniquely dimeric in the case of class C GPCRS [27]; an unusually large extracellular venus
flytrap domain (VFT) which has a double-lobed structure with a crevice between them to
serve as the orthosteric binding site; and a cysteine-rich domain (CRD) that links the VFT
region to the 7TM region (Figure 1) [3]. However, some class C GPCRs, like GABAB recep-
tors, lack the cysteine-rich domain [24,25,28–30]. Due to these distinct structural features
and mandatory dimerization, the class C GPCRs have been the most complex of the GPCRs
in terms of understanding their activation mechanism [31–35]. Using several methods such
as crystallization [30], lipid cubic phase [36], and most commonly single particle Cryo-EM,
structures of over 20 human class C GPCRs have been solved to date [37], comprising
metabotropic glutamate receptors (mGluR1–5, mGluR7) [36,38–46], gamma-aminobutyric
acid receptors (GABAB1 and GABAB2) [23,24,47], calcium-sensing receptors (CaS) [48–50],
the extra-cellular domain of taste receptors (TAS1R1–TAS1R3) [51–55], and orphan recep-
tors (GPR158, GPR179, GPR156) [56–60]. Similarly to other GPCR structures, class C GPCR
structures are solved with inclusion of cholesterol or cholesteryl hemisuccinate (CHS) to the
detergent mix during crystallization and recently, Cryo-EM (Table 1). However, some of the
structures also have bound cholesterol or cholesteryl hemisuccinate acting as ligands to the
already determined structures (Table 1). The argument for cholesterol addition varies from
stabilizing the protein to aiding dimerization. Experimental analysis and, most recently,
molecular dynamics simulations [16,17,61–64] have been used to decipher the possible role
of cholesterol in these protein structures. In this review, we will discuss the relevance and
position of cholesterol molecules in class C GPCR structures and functions.

4or2_modelled.pdb

Venus fly-trap 
domain

Cysteine-rich
 domain

Transmembrane 
region

Figure 1. Representation of a class C GPCR (a full length human mGluR5) showing the different
regions as: VFT (magenta), CRD (green), and 7TM region (blue). (PDB ID: 7FD8).
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Table 1. Solved class C GPCR structures with cholesterol acting as ligands.

Name PDB ID * Number of Sterols in TM

mGluR1 4OR2 [36] 6 CLR
mGluR5 7FD8 [45] 2 CHS
GABAB 6WIV [24] 10 CLR

7CUM [65] 16 CLR
7CA3 [65] 3 CLR

CaSR 7SIM [66] 8 CLR
7SIL [66] 8 CLR

Orphan receptor (GPR158) 7SHF [56] 22 CLR
7SHE [56] 22 CLR **

* Data obtained from protein data bank (PDB) database (https://www.rcsb.org, accessed on 9 February 2023).
Citations to the PDB structures are included. ** CLR cholesterol; CHS cholesteryl hemisuccinate.

1.1. Cholesterol–Membrane Interactions

The plasma membrane of eukaryotic cells consists of various lipids displaying high
biochemical variability in both their apolar moiety and their polar head [67,68]. Sterols are a
class of lipids that are a key component of the plasma membrane and are characterized by
their steroid hydrocarbon ring structure. One specific sterol, cholesterol, makes up a vital part
of the plasma membrane of eukaryotic cells. Cholesterol is crucial for membrane dynamics
and organization [69–71] and it is also necessary for viability and cell proliferation [72]. The
structural features of cholesterol qualify it to interact with proteins and other membrane
lipids in several different ways through a variety of different interaction domains [67].
Cholesterol consists of a tetracyclic fused ring skeleton with a single hydroxyl group, a
double bond, and a flexible iso-octyl hydrocarbon sidechain [73] which allows it to take on a
wide array of conformations [67]. The hydroxyl group is said to contribute significantly to the
amphiphilic behavior of cholesterol, causing it to orient in membranes [74]. It is also essential
in the hydrogen bond formation between cholesterol and water [75], as well as other lipid
membranes in the cell [76]. The hydroxyl group can form two distinct types of hydrogen
bonds (acceptor and donor) with a polar group belonging to either a membrane lipid or a
protein. Cholesterol is able to affect the physical behavior and dynamics of the cell membrane
by interacting with membranes rich in sphingolipids such as lipid “rafts” [77–79], or by being
present in the liquid disordered (Ld) phase of membranes which contain a large number of
glycerophospholipids such as phosphatidylcholine [80]. As a result, cholesterol can alter the
properties and dynamics of proteins in the membrane [73,81–83]. When bound to cholesterol,
some integral membrane proteins could become activated or inactivated [84–86]. In recent
times, there has been considerable interest in cholesterol interaction sites in membrane
proteins. Certain proteins function in cholesterol-rich domains, while others have direct
interactions with cholesterol through their transmembrane domains, and sometimes act as
ligands [11,61]. The more common cholesterol binding sites in membrane proteins include the
cholesterol recognition/interaction amino acid consensus (CRAC)/CARC domain [87], the
cholesterol consensus motif (CCM) [88,89] and the sterol-sensing domain (SSD) [90,91]. All
of these listed are structural features in proteins that could result in preferential involvement
with cholesterol. Several studies have shown that protein–cholesterol interactions are more
common in proteins with sequences comprising of the CRAC motif [92], a short peptide
segment at the tail of a transmembrane helix comprising of 5–13 amino acid residues. The
CRAC motif consists of a well defined linear sequence of amino acids [67,92–97] identified
via the following pattern: a leucine or valine residue, 1–5 non-specific amino acid residues,
tyrosine, another 1–5 residues of any amino acid, and finally a lysine or arginine residue
[-L/V-(X)1–5-Y-(X)1–5-R/K-, with (X)1–5 representing between one and five residues of
any amino acid] [92–95]. Rhodopsin, the β(2)-adrenergic receptor, and the serotonin(1A)
receptor are examples of GPCRs that have been identified with the CRAC motif recognition
site [92]. The major difference between the CARC and CRAC motif is that one exhibits
a preference for the outer membrane leaflet (CARC), while the mirror sequence (CRAC)
is located in the inner membrane leaflet [98,99]. A double CARC-CRAC motif has been
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identified within the transmembrane domains of some membrane proteins [10,98]; however,
the limiting factor of the CRAC/CARC sequence is that they are based on a linear (1D)
sequence motif, as opposed to cholesterol-binding sites which consist of a three-dimensional
(3D) structure [100]. Another common motif is the CCM, which is defined by four spatially
distributed interactions with cholesterol: an aromatic Trp158, conserved in 94% of class A
GPCRs; a hydrophobic Ile154 conserved in 35% of class A GPCRs (both residues in helix
IV); an aromatic Tyr70 from helix II, which forms a hydrogen bond with Arg151 from helix
IV [101–103]. This motif was established from the analysis of the human β2-adrenergic
receptor in a complex with timolol and two molecules of cholesterol [101]. CCM can either be
described as strict or less restrictive [101,104]. The strict variant is found in 21% of the class A
GPCRs, while the less-restrictive variant, defined by the absence of the aromatic residue from
helix II, is present in 44% of class A GPCRs [101,103,104]. Additionally, the sterol-sensing
domain is another significant cholesterol recognition motif with a larger protein segment
and comprises five transmembrane helices. The sterol-sensing domains usually consist of a
tetrapeptide amino acid sequence— tyrosine, isoleucine, tyrosine, and phenylalanine (YIYF)—
which has been found to be present in other lipid-raft associated proteins without the SSD
motif [90,91,94]. Studies have shown that the presence of the YIYF amino acid sequence alone
can interact with the cholesterol-rich domain [90,91,94,105,106]. Finally, START proteins have
also been identified as a cholesterol binding motif, with the transport of cholesterol molecules
being their primary function [107,108]. Proteins with the START domain [109] are able to
transfer lipids between membranes and can interact with cholesterol [94]. While all of these
are cholesterol-binding motifs in membrane proteins, the CARC-CRAC motif is the major
cholesterol interaction site that has been observed in GPCRs.

1.2. GPCR–Cholesterol Interactions

G-protein-coupled receptors are a superfamily of integral membrane proteins in the
human genome, constituting one of the largest classes of clinical drug targets [110–113].
Often distinguished by a characteristic seven transmembrane helices plus an eighth helix
that lies underneath the surface of the layer, GPCRs depend on a relationship with the
lipid membranes in their physical environment to perform their function [11,62]. As per
the phylogenetic investigation, most GPCRs belong to one of four classes, i.e., A, B, C, and
Frizzled. The class-C GPCR family contains metabotropic glutamate receptors (mGluR1–8),
γ-aminobutyric acid receptors, a few taste-detecting receptors (TAS1R1-3), Ca2+-detecting
receptors (CaS), and orphan receptors [114]. One trademark highlight of the class-C GPCRs
is their dimerization, either into homo- or hetero-dimers, which is requisite for their proper
functioning [40]. Cholesterol assumes an essential role in the function of a significant
number of GPCR structures [115]. It does this by binding to a number of GPCRs, including
rhodopsin [116], oxytocin [117], µ-Opioid [118], and serotonin 1A receptors [119], at both
canonical and non-canonical binding sites, consequently altering their ligand-binding
activity allosterically, which could result in the activation or inactivation of the protein.
For example, cholesterol is reported to influence Hedgehog (Hh) signaling as a means of
activating the Smoothened orphan receptor (SMO) which belongs to GPCRs [120]. As such,
it has been determined that cholesterol can influence the stability, oligomerization, and
ligand-binding affinity of GPCRs [12,63,116,119,120]. Two mechanisms have been proposed
by which cholesterol might influence the structure and function of GPCRs: directly, through
specific interactions with the GPCRs; indirectly, by altering the physical properties of the
membrane; or perhaps some combination of the two mechanisms [61,92,121,122]. Recently,
several GPCR structures have been determined through X-ray diffraction and even more
through Cryo-EM. A large percentage of these structures have been stabilized by site-
specific cholesterol binding, although it is uncertain if these cholesterol associations are due
to recurring cholesterol-binding motifs or if the experimental technique used determines
the method of cholesterol binding. A comprehensive study by Taghon et al. [88] showed
that cholesterol binding in both X-ray and Cryo-EM structures is much the same. They also
indicate that about 92% of cholesterol molecules on GPCR surfaces are located in predictable
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locations that do not require cholesterol-binding motifs [88]. The importance of cholesterol
in GPCR structural dynamics has been identified in some GPCR structures, especially
within the class A family (e.g., the presence of CCM in the β2-adrenergic receptor [101]). In
some cases, CHS has been used to substitute cholesterol in GPCRs, although the validity of
this replacement has been contested [93,123–125]. The CRAC motif has been established as
a characteristic feature of the serotonin (1A) receptor [126], the β2-adrenergic receptor [127],
cholecystokinin [121], cannabinoid (CB1) receptor [128], etc. [92,93,129], indicating that the
interaction of cholesterol with GPCRs could be specific in nature. However, another group
of researchers suggested that the presence of CRAC/CARC motifs does not automatically
prove that cholesterol interacts within those binding motifs [130]. On the flip side, their
impact on class C GPCRs is yet to be fully explored [36]. The significance of cholesterol
to GPCR structures and their functional dynamics is an ongoing question that is yet to be
fully elucidated [93].

2. Significance and Interaction Sites of Cholesterol in Class C GPCRs
2.1. Metabotropic Glutamate Receptors (mGluRs)

Metabotropic glutamate receptors (mGluRs) are a family of G protein-coupled recep-
tors that are significant in regulating neurotransmission [131–133]. GPCRs are membrane-
bound proteins expressed in the central nervous system (CNS), and their physiological
functions are dependent on their lipid environment [134]. There are three groups with eight
subtypes of mGluRs that are classified based on G-protein coupling and ligand selectiv-
ity [40,135]. Group I consists of mGluR1 and mGluR5, which are linked to the activation of
phospholipase C (PLC) to increase diacylglycerol (DAG) and inositol triphosphate (IP3),
Group II includes mGluR2 and 3 [136], Group III is comprised of mGluR4, 6, 7, and 8.
These last two groups are linked to the inhibition of adenylyl cyclases (ACs) [137,138].
In mammalian cells, cholesterol is highly concentrated in the plasma membrane but low
in the intracellular membrane [139]. Cholesterol affects receptor function by affecting
the membrane’s fluidity or interacting with the receptor’s binding site [140] and moves
freely between the inner and outer leaflets [141]. In lipid rafts, plasma membranes are
rich in cholesterol and sphingolipids within their lipid domains, and the cholesterol forms
specific interactions with GPCRs including mGluR1 and mGluR2. Research has shown
that cholesterol aids the dimerization of mGluR2 and mGluR5 through interactions with
the TM4/TM5 domains and also through the TM1/TM2 domains of mGluR1 [142–144].
In mGluRs, investigations from several scientists have suggested specific interaction sites
for mGluR1 and mGluR2 [40,145]. A study has revealed the presence of a CRAC motif in
the transmembrane helix 5 domain of mGluR1, which is conserved for all mGluRs. The
CRAC motif located in TM5 plays an important role in supporting mGluR1 recruitment
to the lipid raft as a result of agonist binding [143]. It has been reported that mutations
in this motif affect both signaling and the association of mGluR1 with cholesterol-rich
membrane domains [143]. Another group has experimentally determined that within the
transmembrane domain of mGluR1, cholesterol is localized within the helix I homodimer
interface. Intriguingly, this was observed through analyses of the crystal structure of the
transmembrane domain of mGluR1, bound by six cholesterol molecules mediating the
dimer interface, which in this case is mainly composed of the TM1 helices from both
protomers (Figure 2). It has been suggested that these cholesterol molecules stabilize the
dimerization of mGluR1 (PDB:4OR2) [36]. In addition, by increasing cholesterol levels,
mGluR1 signaling efficiency is enhanced upon stimulation by an agonist, while by lowering
cholesterol levels, extracellular signal-regulated kinase-mitogen-activated protein kinase
(ERK-MAPK) activation via mGluR1 is inhibited [143,146]. In this way, lipid rafts and
membrane cholesterol act as positive allosteric modulators (PAM) of the group I mGluR
signaling pathway. Therefore, it is possible to modulate abnormal group I mGluR behavior
in neuropsychiatric conditions (fragile X syndrome and autism) through the use of drugs
such as statins and cyclodextrins, which affect membrane cholesterol levels [143]. Further-
more, the role of cholesterol has also been considered for class II members of mGluRs. A
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number of neuropsychiatric conditions, including depression, Alzheimer’s disease, and
Parkinson’s disease, as well as different types of cancer, have been treated with these same
classes of drugs [147–149]. The binding of glutamate to mGluR2 dimers results in the
transmission of a signal across the transmembrane domain of the receptor that prevents
the activity of adenylate cyclase via the Gi/o protein [135]. In a study, the interaction
of cholesterol with mGluR2 was demonstrated across 2 to 5 sites in the transmembrane
domain of mGluR2 [135], using molecular dynamics simulations [150–152], biochemical ap-
proaches, and photocrosslinking experiments. It was observed that mGluR2 is modulated
by their surrounding lipid environment, particularly cholesterol, through an unknown
mechanism. The CRAC/CARC motif and a cholesterol consensus motif (CCM) were sug-
gested as cholesterol-binding motifs in GPCRs [67,153]. A central aromatic amino acid that
interacts with sterols is a common characteristic of some of the motifs described [135]. A
recent computational study conducted by Bruno et al. [154] found that the conformational
differences observed in the helical structure of the mGluR2-TM8 domain can be used as
an indicator to detect the presence of cholesterol in metabotropic glutamate receptors and
GPCRs. They observed that the inclusion of higher levels of cholesterol in the membrane
stabilizes the transmembrane helix 8 (TM8) of mGluR2, while a lack of cholesterol results
in destabilization of the TM8 domain [154]. However, the role of cholesterol in the third
group of mGluRs remains unknown.

PDB ID: 4OR2 PDB ID: 7FD8

Figure 2. Crystal structure of mGluR1 (grey) in an inactive state, and a Cryo-EM structure of an
intermediate-active mGluR5 (blue), determined with 6 molecules of cholesterol (red) and 2 molecules
of CHS (magenta), respectively.

2.2. GABAB Receptors

In mammals, GABA (γ-Aminobutyric acid) is one of the major inhibitory neurotrans-
mitters. In order for GABA to exert its effects, it must bind to at least two different receptor
classes: GABAA and GABAB. Approximately 20 to 50% of the brain’s synapses contain
GABAA receptors [155]. They are pentameric receptors belonging to a superfamily of
ligand-gated ion channels [29]. Unlike GABAA, GABAB receptors are members of class
C GPCRs with the typical classification of an N-terminal VFT region: a 7TM domain,
and a C-terminal intracellular domain [24,30,156]. GABAB receptors function as inhibitor
receptors by opening potassium channels, reducing the activity of adenylate cyclase and
calcium channels [157]. There are few solved structures of GABAB receptors containing
cholesterol, deposited on the protein data bank (Figure 3), and subsequently, there is little
knowledge of the effect of membrane cholesterol on the GABAB receptors. Experimental
investigations have shown that cholesterol enrichment and depletion both decrease GABA
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potency, resulting in an up to fourfold increase in EC50 [158]. The structures of GABAB
receptors with cholesterol were determined based on ligand type because the presence of
a ligand can change how cholesterol interacts with the receptor. For instance, in absence
of ligands, it is feasible that there is no interaction between cholesterol and the receptors.
However, for systems bound to an antagonist, 10 and 16 molecules of cholesterol [24,65]
were bound between the protomers of the transmembrane dimers [115] (Figure 3). Thus,
It can be suggested that the ligands may have caused some conformational changes in
receptors allowing greater binding to cholesterol. Moreover, three cholesterol molecules
were attached to the GABAB receptor bound to a positive allosteric modulator (PAM) [65]
(Figure 3). Therefore, the variation in cholesterol binding between two different ligand
classes can indicate the potentially significant role of ligands in the interaction between
cholesterol and the receptors.

PDB ID: 7CUM PDB ID: 7CA3 PDB ID: 6WIV

Figure 3. Visual representations of GABAB receptors in active state (orange) and inactive states
(red and gray), determined by single particle Cryo-EM. They include 2 (orange), 17 (red), and 16
(gray) bound cholesterols, respectively, within the transmembrane region. The figures here show
the transmembrane region only bound to cholesterol (cholesterol molecules are shown as cyan and
green sticks).

2.3. Taste Receptor

TAS1R1 and TAS1R2 were among the first determined subfamilies of taste-related
GPCRs. Prior to identifying their physiological ligands, they were originally classified
as orphan receptors [159]. Subsequently, some scientists identified a member, TAS1R3,
through a fusion of molecular biological and genetic approaches [160]. These three members
(TAS1R1-3) code for sweet and umami tastes and are classified as class C GPCRs. The
sweet taste signals are activated by TAS1R2 and TAS1R3 heterodimers, while the umami
taste signals are transduced by heterodimers of TAS1R1 and TAS1R3 [161]. Therefore, the
class C taste receptors consist of either TAS1R1 or TAS1R2, interacting with a common
subunit TAS1R3. Similar to other class C GPCRs, they exist as obligate dimers and are
characterized by a large extracellular N-terminus, which houses the orthosteric ligand-
binding site, while the allosteric binding sites are present in the cysteine-rich domain
and/or transmembrane region [160]. Due to these multiple binding sites, a single taste
receptor is able to function for various stimuli [53]. The sweet taste receptor is able to
interact with various compounds at a lower sensitivity, unlike most GPCRs, which are
highly selective to specific high-affinity ligands. Cholesterol has been shown to regulate
GPCR signaling in sweet taste receptors [162,163]. A study showing the presence of a CRAC
motif in T2R4 (a subset of GPCRs responsible for bitter taste receptors [164]), explains that
taste receptors are crucial to cholesterol sensitivity [94] and become more sensitive to
cholesterol through a cellular mechanism [92]. Furthermore, they observe electrostatic
interactions between the 3β-hydroxyl group of cholesterol and the positively charged
residue in the cholesterol binding motif [162]. Site-directed mutagenesis and functional
assays have been optimized in the study of putative cholesterol-binding motifs (CRAC and
CARC) to determine the mechanism of cholesterol binding to taste receptors. A comparison
of the dynamics of wild-type T2R14 receptors and mutant T2R14 receptors revealed that
the amino acid residues K110, F236, and L239 are required for the receptor to function
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appropriately when cholesterol is present. Based on this study, it could be suggested that
cholesterol influences taste receptors by directly interacting with the receptor [165].

2.4. Retinoic Acid-Inducible Orphan G Protein-Coupled Receptors (RAIGs)

Retinoic-acid inducible receptors belong to a group of class C GPCRs [166]. Al-
though containing a characteristic secondary structure of seven transmembrane α-helical
domains, these receptors have short amino-terminal extracellular domains, ranging from
30 to 50 amino acids [167]. In contrast, other family C members consist of a large N-terminal
domain, comprising 500–600 amino acids [168]. Currently, there are four genes that make
up the RAIG family: RAIG1, RAIG2 RAIG3, and GPCR5D [50]. RAIG1 was the first of
these genes to be determined, and it was associated with a retinoic acid-responsive gene in
human carcinoma cells [50,167,168]. Although classified as a class C GPCR, RAIG protein
shares low sequence similarity with known members of GPCRs, and only shows 25%
similarity [167,169] with the homology sequence of mGluR2 and 3, primarily in the trans-
membrane regions [167]. Due to the large variation between the sequence homology of
RAIG proteins and most GPCRs, the endogenous ligands for RAIGs remain unknown [169].
However, the ligand-binding regions are predicted to be found in the extracellular loops of
the transmembrane domain, and also at the short amino-terminal regions [167,168,170]. A
study that utilized fluorescence microscopy and immunocytochemical methods to study
the formation and localization of synaptic vesicles in human SH-SY5Y neuroblastoma cells
suggested that retinoic acid-induced proteins with cholesterol produced significant neurite
extension and formation of cell-to-cell contacts, predicting it as a valuable tool for basic
studies of neuronal metabolism [166].

2.5. Calcium-Sensing Receptor-Related Receptor

As a G-protein-coupled receptor, the calcium-sensing receptor (CaSR) is essential
for controlling calcium homeostasis [171] in humans. CaSR is a Ca2+-sensing protein
found on the surface of cells [172] that exists as an obligate homodimer and belongs to
class C GPCRs [48]. Each protomer has a Ca2+-binding extracellular domain and a seven-
transmembrane-helix domain (7TM) that activates heterotrimeric G-proteins [34]. The classi-
cal calcium-sensing receptor is known to be involved in the pathophysiology of parathyroid
and renal-related diseases by sensing calcium ions in extracellular fluid [53,171]. Recent
studies suggest that CaSR can be modulated through the interactions of its transmembrane
(TM) domains with cholesterol [66]. This is especially observed in TM6 where cholesterol
molecules found at the dimer interface influence the interactions of two residues (ILE816)
from the TM6 helices of both subunits. This allows the side chains of both residues to pack
against each other and make indirect dimer contacts. As a result of these observations, it
could be suggested that the TM6-TM6 dimer interface is stabilized by cholesterol and as
such it is essential in the receptor activation of CaSR [66].

Cholesterol depletion has been shown to negatively impact receptor function by de-
creasing basal activity and Ca2+ sensitivity [173]. Another study showed that vascular
smooth muscle cells (VSMCs) [174] are expressed in CaSR and can be altered by choles-
terol [175]. They further indicated that plaque stability can be affected due to CaSR [176]
mediating MMP-2 (matrix metalloproteinase-2) production in the presence of cholesterol
via the phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway [177,178]. In addition,
activation of CaSR in VSMCs increases cell proliferation and survival via the phospholipase
C (PLC)-IP3 and MAPK-ERK1/2 pathways [179].

2.6. Orphan Receptor

Despite extensive reorganization efforts, there are over 140 receptors [180] within
the GPCR family that have yet to be fully identified and these groups are referred to as
orphan receptors [37,112,180,181]. Orphan GPCRs play important roles in physiology
and diseases, yet they are poorly understood in terms of their structural organization,
ligand identification, activation mechanisms, and signaling reactions [56,180,182] GPR156,
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GPR158, and GPR179 make up the orphan receptor of class C GPCRs [56–60,182] and they
are the least characterized members of the group [182]. They share 70% sequence similarity
in both extracellular and TM domains, with a distinct feature of lacking the Venus flytrap-
fold ligand-binding domain [182]. GPR158 are drug targets with significant roles in mood
regulation, memory, depression [183], carcinogenesis, and cognition [56,182,184–186]. It
is highly expressed in brain tissues [187] and functions by regulating ion channels and
second messengers. One prominent characteristic of GPR158 is that it binds to the neuronal
RGS7-Gβ5, a regulator of the G protein signaling protein complex [188], that directly
deactivates G proteins [188,189]. GPR158 and RGS regulate the homeostasis of the second
messenger cyclic adenosine monophosphate (cAMP), and control the neuronal activity
with a marked impact on brain physiology [56]. Recently, two high-resolution Cryo-EM
structures have been determined by Patil et al. [56]. The structures consist of GPR158 alone,
and GPR158 bound to RGS complex (Figure 4), with both determined structures revealing
the presence of an extracellular Cache domain and an unusual ligand-binding domain, that
is not found in other GPCRs [56]. In both initial structures, cholesterol interacts between the
protomers and the transmembrane helices to stabilize the protomers [56]. The determined
structures show several cholesterol molecules surrounding the dimeric interface of GPR158,
which acts as a shield for the cavity formed at the interface. It is also suggested that the
interactions of cholesterol with the transmembrane helices could stabilize the interface
between both protomers. Patil et al. [56] reported that the stability provided by these
cholesterol molecules results in a more compact dimeric interface, which then prevents G
protein activation [56].

PDB ID: 7SHF PDB ID: 7SHE

Figure 4. Visual representations of inactive states of GPR158 class C orphan receptors, showing
GPR158 bound to RGS complex (gray) and GPR158 in apo form (blue). Both structures contain
22 cholesterol molecules within the transmembrane region. The upper figures show the whole
protein, while the lower figures only show the transmembrane region (cholesterol molecules are
shown as violet and red sticks).
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3. Conclusions

Through this review and the accompanying table and figures, we have described the
interaction sites of cholesterol in specific receptors of class C GPCR structures. Through
the collective study of class C GPCR structures, we notice that cholesterol is mostly bound
between the transmembrane dimers of the receptors and also within the surrounding
groves of the transmembrane helices, which could explain why it seems to aid dimerization.
Furthermore, this review highlights the significance of cholesterol within specific class
C GPCRs. Consideration of several studies revealed that cholesterol is important for
oligomerization, organization, function, and dynamics of class C GPCRs. In general, we see
that cholesterol could affect ligand binding, G-protein coupling, and intracellular signaling
of GPCRs. With the possible emergence of more cholesterol-bound GPCR structures and
analyses, we picture an exciting and enlightening future in the study of cholesterol–GPCR
interactions. We expect that this information will help provide insight into the molecular
mechanisms of cholesterol molecules bound to particular receptors of class C GPCRs.
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