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Abstract: A numerical study was conducted to investigate the effect of rotating patterned disks on
the flow and permeate flux in a dynamic filtration (DF) system. The DF system consists of a rotating
patterned disk and a stationary housing with a circular flat membrane. The feed flow is driven by
the rotating disk with the angular velocity ranging from 200 to 1000 rpm and the applied pressure
difference between inlet and outlet ports. Wheel-shaped patterns are engraved on the disk surfaces
to add perturbation to the flow field and improve the permeate flux in the filtration system. Five
disks with varying numbers of patterns were used in numerical simulations to examine the effects
of the number of patterns and the angular velocity of the disk on the flow and permeate flux in
the DF system. The flow characteristics are studied using the velocity profiles, the cross-sectional
velocity vectors, the vortex structures, and the shear stress distribution. The wheel-shaped patterns
shift the central core layer in the circumferential velocity profile towards the membrane, leading to
higher shear stresses at the membrane and higher flux compared to a plain disk. When the number
of patterns on the disk exceeded eight at a fixed Reynolds number, there were significant increases in
wall shear stress and permeate flux compared to a plain disk filtration system with no pattern.

Keywords: membrane filtration; dynamic filtration; rotating flow; patterned surface; flux enhancement;
numerical simulation

1. Introduction

Membrane filtration is a crucial process in a variety of industries, including the biotech-
nological, chemical, food, and pharmaceutical industries. In pressure-driven membrane
filtration processes, several types of membrane modules are used in such industries: tubu-
lar modules, flat-sheet modules, hollow fiber modules, is spiral-wound modules [1]. The
typical feed flow in such modules is parallel to membrane surfaces and the permeate
flow, directed perpendicular to the membrane surface, is produced by the transmembrane
pressure difference. Thus, the flow near the membrane surface leads to the accumulation of
foulants and the formation of concentration boundary layer near the surface, which are
called membrane fouling and concentration polarization, respectively. Fouling is caused
by the particles contained in the feed solution that block membrane pores, and creates a
cake layer due to deposited particles on the membrane surface. Concentration polarization
(CP) refers to a phenomenon in which the species concentration rapidly increases within
a boundary layer close to the membrane surface due to the selective transport of species
through the membrane [2–6]. Both fouling and concentration polarization leading to a
decline in the filtration performance and lifespan of a membrane module are critical issues
that should be overcome or alleviated in most filtration processes [7–9].

Hydrodynamic control of membrane fouling (or concentration polarization) is an
option to minimize fouling and achieve enhanced filtration performance. Flow control
in crossflow filtration (CFF) involves either a patterned surface morphology or a static
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mixer [10–12], whereas hydrodynamic control of membrane fouling in spiral-wound mod-
ules (SWMs) is usually improved by carefully designed feed spacers [13–16]. Additionally,
an optimized feed channel for a spiral-wound membrane filtration can enhance mass
transfer, reduce membrane scaling, and increase flux in the reverse osmosis process [14].
To mitigate fouling or concentration polarization in a filtration system, a rotating disk or
rotor blade can be adopted. The flows induced by these rotating parts increase the shear
stresses on the membrane surface, promoting back transport of foulants via the rotating
flows [17–24]. In addition, a rotating disk over a membrane can effectively enhance mass
transfer by promoting mixing near the membrane surface. This type of filtration, which
utilizes moving parts to generate a unique flow pattern resulting in enhanced filtration
performance, is known as dynamic filtration (DF).

Extensive research has been carried out on DF systems since the late 1980s. Kroner
and Nissinen [17] proposed a dynamic filtration module creating Taylor vortices in an
annular gap by use of an axially rotating filter. They found that the rotating filtration
module resulted in a better performance compared with crossflow filtration modules.
Holeschovsky and Cooney [18] developed a CP model for a rotary filtration module with a
rotating membrane and a stationary outer cylinder, demonstrating a superior performance
of their module compared with crossflow filtration modules. Lee et al. [19] conducted an
experimental study on the cell harvest using a rotating disk filtration system. The rotating
speed of the disk was found to be the most critical parameter determining shear rates, flow
patterns, and the bioseparation performance. The flux increased with the disk rotating
speed, but at the expense of additional power input and heat dissipation. Ding et al. [20]
investigated the performance of a multishaft disk (MSD) system with ceramic membrane
disks mounted on two rotating shafts surrounded by a stationary housing, especially
at high speed and with concentrated suspensions. As a sequel to [20], He et al. [21]
subsequently conducted an experimental study on a modification of the MSD, where disks
of one shaft were replaced by non-permeating metal disks rotating at a different speed
to that of the membrane disks. The permeate flux was more influenced by the rotation
speed of the membrane disk than that of the metal disks. In addition, disks with vanes
resulted in a higher permeate flux and a lower energy consumption compared with those
from smooth disks. Recently, Chaudhuri et al. extensively investigated changes of fouling,
cake resistance, and concentration polarization for roto-dynamic reverse osmosis filtration
systems [22–24]. As for a comprehensive review on dynamic filtration, one may refer to
two papers by Jaffrin [25,26] and a recent paper by Cheng et al. [27].

From the viewpoint of hydrodynamics in a DF system, the enhanced filtration perfor-
mance is due to a specific rotating flow pattern in the filtration system [26]. The velocity
field near the membrane and the resulting shear stress distribution on the membrane are
important factors, with influences on the flux decline caused by membrane fouling or
concentration polarization. In this regard, a systematic numerical approach employing
computational fluid dynamics (CFD) is widely used in dynamic filtration to obtain the
in-depth flow field, the shear stresses, and the solute concentration near the membrane,
which are influenced by the disk shape, the disk rotating speed, the operating pressure,
etc. [28–32]. The flow in the previous numerical studies belongs to a laminar [29,30] or
turbulent flow regime [31,32], depending on the material properties of the feed, the rotating
speed of the disk, and the geometrical parameters of a specific dynamic filtration system.
The flow regime is described by dimensionless numbers such as the Reynolds number (Re)
and the aspect ratio (G) in a rotating system, which will be discussed in Section 2. In this
study, our focus is on a rotor-stator-type dynamic filtration system. The system is composed
of a rotating patterned disk and a stationary housing with a circular flat membrane.

Rotating-disk systems, on which our filtration system is based, are widely used in
various applications such as turbomachinery, computer hard disk drives, automotive
brake systems, medical equipment, membrane filtration systems, etc. [33]. The main
concern of such applications from the viewpoint of fluid mechanics is the interaction
between a spinning disk and the fluid adjacent to the disk, creating complicated three-
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dimensional rotating flows as observed in a rotor-stator system composed of a spinning
disk and a close-fitting stationary housing [34]. Since the pioneering work of Ekman
in 1905 [35], tremendous research efforts have been made to understand the in-depth
flow characteristics due to a rotating disk [36–40]. Especially with regard to the flow in
a closed rotor-stator cavity, Daily and Nece [41] performed experimental and theoretical
studies and found the existence of four flow regimes according to Re and G. Chew and
co-workers [42,43] conducted an early numerical study on the flow inside a rotor-stator
cavity with a centrifugal throughflow.

In fluids engineering applications, patterned surfaces are used as a means to add per-
turbations to a flow field or to guide a flow to a desired direction, where the detailed flows
are affected by the topology and the geometrical parameters of a surface pattern [44–47]. In
membrane filtration, a large number of studies on patterned solid surfaces or patterned
membranes are being conducted to elucidate their influences on antifouling and flux en-
hancement in crossflow filtration [48–54]. Flow and mass transfer characteristics due to
various engineered surface features [50] and bio-mimetic surface patterns [51] are main
concerns of researchers. In particular, the relative size between a surface pattern and a
filtration module plays a key role in mitigating membrane fouling or concentration po-
larization [53,54]. In a DF system, a rotating disk with specific surface structure, such as
radial vanes or perforations used in [21,28], can be used to increase the wall shear rate on
the membrane and the permeate flux.

As far as the effect of patterned disks on the flow and filtration performance in dy-
namic filtration is concerned, however, limited studies have been conducted and further
research is needed to advance our understanding on this issue. This study focuses on a
rotating-disk type DF system with a wheel-shaped pattern on the disk surfaces. To ensure
the effectiveness of the newly designed DF system, it is crucial to understand the hydrody-
namics in the filtration system in a wide range of operating conditions as the geometrical
parameters of the surface pattern change. For this, computational fluid dynamics (CFD)
can be utilized as the virtual product (or process) design tool for a filtration system.

The objectives of the present study are to understand the in-depth flow characteristics
and permeate flux enhancement due to the rotating patterned disk in a dynamic filtration
system. The focus is on investigating the effects of the number of wheel-shaped patterns
and the rotating speed of the disk on the flow and filtration characteristics. The paper is
structured as follows. First, the filtration system is described, including the geometries
of the filtration module, patterned disks, and operating conditions. Next, the governing
equations and relevant boundary conditions to solve the flow problem are presented.
The flow characteristics induced by the rotating disk and the applied pressure difference
between the inlet and outlet are discussed in detail. The change of vortex structures with
the number of patterns is also presented since vortex structures are closely related to the
back transport of foulants. Finally, the permeate flux enhancement and shear stress changes,
which are highly influenced by the rotating speed of the disk and the number of patterns,
are demonstrated.

2. Problem Description
2.1. Dynamic Filtration Sytem and Operating Conditions

Figure 1 schematically represents the dynamic filtration system used in this study,
which is a modification of a commercial dynamic microfiltration module, FMX-B (BKT
Co. Ltd., Daejeon, Republic of Korea) [28]. The stator radius (Ro), the disk radius (Ri),
the shaft radius (Rs), the disk thickness (hd), and the axial gap (hg) between the disk and
the housing are as follows: Ro = 100 mm, Ri = 88 mm, Rs = 8 mm, hd = 3 mm, and
hg = 4.5 mm. A circular flat membrane with the radius Ro is fixed on top of the housing. A
wheel-shaped patterned disk rotates about the z-axis within the stationary housing with
the angular velocity Ω, ranging from 200 to 1000 rpm in the present study. As depicted in
Figure 1, the feed fluid enters the filtration module through an annular-shaped inlet and
exits through an outlet. The pressure at the inlet is Pin = 100, 100 Pa and that at the outlet
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is Pout = 100, 000 Pa. Thus, the pressure difference between the inlet and outlet is fixed at
∆Pio = 100 Pa. The gauge pressure in the permeate side is assumed to be zero. The flow in
the filtration system is mostly influenced by the rotational motion of the disk rather than
the pressure difference ∆Pio because the scale of the pressure difference in the rotor-stator
system (ρΩ2R2

i /2) is much higher than ∆Pio for the operating conditions used in this study.
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Figure 1. The schematic representation of the dynamic filtration system consisting of a disk (in
this figure, with eight engraved patterns) rotating with a constant angular velocity about the z-axis,
and a stationary housing. The feed is introduced through an annular-shaped inlet and exits the
filtration system through an outlet. A constant pressure difference (∆Pio = Pin − Pout = 100 Pa) is
applied between the inlet and outlet. A circular flat membrane with the radius Ro is fixed on top of
the housing.

The dynamic filtration system creates high shear stresses at the membrane surface,
mainly induced by the mechanical movement of the disk rather than the feed flow rate. The
pressure-driven flow due to ∆Pio may add hydrodynamic perturbations to the rotational
flow, with the perturbations affected by the inlet flowrate that is slightly higher than the
permeate flowrate [21,29,34]. Five disks are used to investigate the effect of the number
of patterns Np on the flow and permeate flux at a specific operating condition. Figure 2
schematically depicts the patterns on the circular disk, where wheel-shaped surface patterns
(areas filled with the black color) are engraved on both sides of the disk. The pattern depth
is fixed to be 1.25 mm. In Figure 2, P00 stands for a plain disk (Np = 0), P04 for a disk with
Np = 4, P08 for a disk with Np = 8, etc.
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Figure 2. The five disks used in this study with the number of patterns Np = 0, 4, 8, 12, and 16, which
are denoted by P00, P04, P08, P12, and P16, respectively. In each patterned disk, engraved areas are
filled with the black color. In the cases of patterned disks, the pattern depth is 1.25 mm.

For a given set of the geometrical parameters, fluid properties, and angular velocity
of the disk, the rotating flow in a rotor-stator cavity is known to be governed by two
dimensionless parameters [41], the aspect ratio G and the Reynolds number Re, defined by

G =
hg

Ri
(1)

Re =
ρΩR2

i
µ

(2)

where ρ and µ denote the density and the viscosity of the feed, respectively. The Reynolds
number is defined using the characteristic velocity RiΩ and the characteristics length Ri.
The feed fluid used in this study has the following density and viscosity: ρ = 997 kg/m3

and µ = 0.001 Pa·s. Thus, the two dimensionless parameters are G = 0.0511 and
1.6× 105 ≤ Re ≤ 8.0× 105. When estimated from the diagram for the flow regimes in
a rotor-stator cavity flow presented by Daily and Nece [41], the rotating flow caused by the
plain disk (P00) belongs to the regime IV, which is characterized by turbulent flow, large
clearance, and separate boundary layers. The diagram in [41] serves as the reference to cate-
gorize the flow in a rotor-stator-type dynamic filtration system in which the influence of the
pressure-driven flow is not significant compared to the flow created by the rotating disk.

2.2. Modeling

If the criterion in [41] is applied to the values of Re and G used in this study, the rotating
flow is turbulent with separated boundary layers. The Reynolds-averaged Navier-Stokes
(RANS) model [55] was used to describe the turbulent flow. In the case of incompressible
Newtonian fluid flows, where the density and dynamic viscosity remain constant, the
continuity and momentum equations for the mean velocity components (written in index
notation in Cartesian coordinates) are given by

∂ui
∂xi

= 0, (3)

ρ

(
∂ui
∂t

+ uk
∂ui
∂xk

)
= − ∂P

∂xi
+

∂

∂xj

(
µ

∂ui
∂xj

)
+

∂Tij

∂xj
, (4)

where t is the time, xi the spatial coordinate in the i-th direction, ui is the velocity component,
P is the pressure, and Tij is the Reynolds stress tensor component. The velocity components
and the pressure in Equations (3) and (4) are time-averaged quantities. In addition, the
k − ω Shear Stress Transport (SST) turbulence model by Menter [56,57] is adopted to
simulate the turbulent flow in the dynamic filtration system, as used in previous studies
on rotating disk filtration systems [31,32]. The k−ω SST model is a two-equation model,
which simultaneously solves two transport equations related to the turbulence kinetic
energy k and the specific dissipation rate ω. The fundamental idea of the turbulence model
is to use the k− ω model in the boundary layer region, while activating the k− ε model
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outside the boundary layer, using a blending function. Then, the modification to the eddy
viscosity is introduced.

When modeling flows due to rotating parts, in this study caused by a rotating pat-
terned disk, the simulation methods using unsteady moving grids in the absolute reference
frame are computationally expensive and cumbersome to use [58]. As an alternative to the
moving grid methods, a multiple reference frame (MRF) method is a cost-effective way to
analyze many engineering flows involving rotating parts, e.g., quadcopters, wind turbines,
fans, mixing tanks, and turbine blades [59]. In this regard, an MRF method implemented
in ANSYS CFX 18.1 (ANSYS Inc., Canonsburg, PA, USA) is used to solve the rotating
flow in the dynamic filtration system. When using the MRF method, the computational
domain is divided into two or more domains, which may be either rotating or stationary.
When solving the governing equations for each domain, relevant data are exchanged at the
interfaces between two different domains. After solving the governing equations, one can
obtain the relative velocity in a moving reference frame, defined by

uR = u−Ω× r, (5)

where uR is the relative velocity (the velocity viewed from a moving frame of reference),
u the absolute velocity (the velocity viewed from a stationary frame of reference), Ω the
angular velocity, and r the position vector.

The boundary conditions for solving the governing equations are considered as follows.
At the inlet (Γin), a feed pressure of 100,100 Pa is imposed, and a pressure of 100,000 Pa
is applied at the outlet (Γout). Thus, the pressure difference between the inlet and outlet
is kept at 100 Pa. On the membrane (Γp), the permeate flux J (the velocity normal to the
membrane surface) is specified by

J = u·n = K∆P, (6)

where n is the outward unit normal vector, K the membrane permeability constant (in this
study K = 5× 10−10 m/s·Pa), and ∆P the transmembrane pressure (TMP). The details
on the membrane used in numerical simulations will be introduced in Section 3.5 when
dealing with the filtration performance in our dynamic filtration module. In this study,
assuming that the gauge pressure on the permeate side is zero, the TMP is the pressure at
the membrane surface. No-slip condition is specified at the disk surface (Γr) and at the shaft
surface (Γs). Thus, the circumferential velocity component uθ on Γr and Γs (in the fixed
coordinate) is uθ = rΩ, where r the radial distance from the z-axis. At the impermeable
boundaries (Γw), such as the housing walls, the no-slip and nonpenetration conditions are
imposed, i.e., u = 0 at Γw.

2.3. Numerical Scheme

In this study, numerical simulations are conducted using commercial CFD software
(ANSYS CFX 18.1), which is based on the finite volume method. The computational
domains are discretized by hexahedral elements with the number of elements ranging from
approximately 16,600,000 to 18,600,000 depending on the disk shape in the DF system. The
number of elements is determined from a mesh convergence test, which will be introduced
in Section 3.1. A high-resolution scheme is adopted to treat the convection terms in the
governing equations, preventing numerical instabilities such as spurious oscillations or
wiggles from occurring. As for solver, an algebraic multigrid (AMG) method is used
in solving the governing equations in an iterative manner. All the computations have
been conducted using parallel processing with 16 processors in a workstation with dual
16-core CPUs (Intel® Xeon® Gold 6130, 2.1 GHz) and 256 GB memory. The set of governing
equations is solved using a convergence criterion with the RMS residuals less than 10−5.
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3. Results and Discussion

This section begins with the results of a mesh convergence test that aimed to determine
an optimal element size for the entirety of the simulations. Next, the flow characteristics
induced by the rotating disk and the applied pressure difference between the inlet and
outlet ports are introduced. In addition, the wall shear stress distribution on the membrane
for each filtration system with a specific patterned disk is also evaluated. The shear
stress-induced antifouling effect, closely related to the shear stress level at the membrane
surface [51], is characterized by the area-averaged friction coefficient. Finally, the filtration
performance is assessed using the permeate flux that is affected by both the disk shape and
the disk rotating speed.

3.1. Mesh Convergence Test and Validation

First, the proper number of elements is determined through a mesh convergence
test, guaranteeing a reliable solution with an affordable computational cost. For this
purpose, numerical simulations for the filtration system with the plain disk (P00 in Figure 2)
operating at Ω = 200 rpm were conducted. The number of elements is varied from 4 to
20 million. In addition, the mesh is kept finer near the stator wall and the membrane surface
to capture the large velocity gradients in the boundary layers. As for the convergence
criterion, an RMS residual of 1× 10−5 is required to ensure the convergence of solutions.
The average shear strain rate (

.
γw) at the membrane surface is employed as an indicator

to check mesh convergence because it is sensitive to the velocity solution in the boundary
layer. Figure 3 shows the change of the average wall shear strain rate as the number
of elements (NELE) increases. The grid system with approximately 20 million elements,
showing convergence with mesh refinement, is used in CFD simulations introduced in the
following sections.
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Figure 3. The change of the average shear strain rate
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γw at the membrane wall as a function of the

number of elements NELE for the filtration system with the plain disk rotating at Ω = 200 rpm.

To validate the numerical scheme used in this study, our velocity profile for an enclosed
rotor-stator cavity flow with the aspect ratio 0.127 and the Reynolds number 1.6× 106 is
compared with an experimental data reported by Cheah et al. [60]. The mesh for the cavity
geometry used in the validation contains 2,880,000 hexahedral elements. Torras et al. [31]
also compared their simulation results (obtained using commercial software Fluent 6.2)
for the same geometry and operating condition with those in [60]. Figure 4 shows the
time-averaged circumferential velocity (uθ) profiles at r/R = 0.4 along the gap between the
disk and the membrane surface for the three cases when Re = 1.6× 106. The red line is the
velocity profile obtained from the present CFD simulation, while the circles and the black
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line are the velocity profiles from [60] and [31], respectively. Though the two CFD results
show deviations from the experimental data near the stator surface (z/h = 1), they are in a
good agreement with the experimentally measured velocity profile. As for predicting the
velocity profile near the disk surface (z/h = 0), our CFD model predicts the experimental
data better than that of [31], ensuring the accuracy of the present numerical scheme in
predicting the flow characteristics of the rotor-stator cavity system.
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between the disk and the membrane surface when Re = 1.6× 106. The red line indicates the velocity
profile obtained numerically in the present study. Both circles and the black line are velocity profiles
in [31] (reprinted from Torras et al. [31] with permission from Elsevier). The original experimental
data (circles) are from Cheah et al. [60].

3.2. Flow Charactetistics

In the dynamic filtration (Figure 1), high wall shear stresses are created by the relative
motion between the fixed membrane and a rotating patterned disk. Therefore, a better
understanding of the in-depth flow characteristics is necessary to determine a proper set of
design parameters and operating conditions resulting in an enhanced filtration performance
and reduced membrane fouling. In what follows, all the velocity components are presented
in terms of dimensionless variables. Here, the dimensionless radius (r∗), the dimensionless
mean velocity components (u∗θ and u∗r ), and the dimensionless axial coordinates z∗ are
defined by r∗ = r/Ri, u∗θ = uθ/U, u∗r = ur/U, and z∗ = z/H, where r =

√
(x2 + y2),

U = RiΩ and H = hg + hd/2 (see Figure 1 for the geometrical parameters).
First, the basic flow in the dynamic filtration system with a disk without pattern

(the plain disk P00 in Figure 2) will be presented. Figure 5 depicts the dimensionless
circumferential and radial velocity profiles (u∗θ and u∗r ) in the dimensionless axial direction
z∗ at the four radial positions r∗ = 0.25, 0.5, 0.75, and 1 (in this case located on the y-axis),
when Ω = 200 rpm (corresponding to the Reynolds number of Re = 1.6× 105). In Figure 5,
the abscissa z∗ = 0.25 corresponds to the disk surface and z∗ = 1 to the membrane surface.
The circumferential velocity profile (Figure 5a) clearly demonstrates the existence of three
layers in the axial direction, a central core layer and two boundary layers separated by
the core layer, which is a typical flow pattern in the regime IV of a rotor-stator cavity
flow as defined by Daily and Nece [41]. This type of flow is called the Batchelor-type
flow with three distinct zones: a centrifugal boundary layer close to the rotor (Ekman
layer), a central core with negligible variation in u∗θ , and a centripetal boundary layer near
the stator (Bödewadt layer). Though it is not presented in the paper, the axial velocity
magnitude |u∗z | is order of O

(
10−3), and is thus quite small compared to the magnitude of
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the tangential and radial velocity components. The velocity gradients near the disk and
membrane surfaces increase with r∗, indicating that the frictional effect on both surfaces
increases in the radial direction as well.
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Figure 5. The dimensionless circumferential and radial velocity profiles for the plain disk case (P00).
Velocity profiles in the dimensionless axial direction are plotted at the four locations on the y-axis
with the dimensionless radial distance r∗ = 0.25, 0.5, 0.75, and 1. Here, the angular velocity of the
disks is Ω = 200 rpm. The two velocity components are defined by u∗θ = uθ/U and u∗r = ur/U,
where U = RiΩ. (a) Dimensionless circumferential velocity (u∗θ ); (b) dimensionless radial velocity
(u∗r ). In the two plots, z∗ = 0.25 corresponds to the disk surface and z∗ = 1 to the membrane surface.

Next, the influence of the number of patterns on the velocity profiles was investigated,
varying the number of patterns Np from 0 to 16 with an increment of 4 (Figure 2). By
inserting wheel-shaped patterns on disk surfaces, complex vortices are expected to occur,
affecting the mean velocity profiles, the radial distribution of pressure, the shear stress
on the wall, and the permeate flux. The velocity profiles for u∗θ and u∗r affected by the
number of patterns are depicted in Figure 6, where the velocity components (u∗θ and u∗r in
the axial direction) at r∗ = 0.75 are plotted. When patterns are engraved on the disk, the
circumferential velocity magnitude in the central core region increases. It was reported
that increasing the magnitude of the circumferential velocity in the central core region
produces a higher permeate flux at the same angular velocity [61]. Thus, one can expect a
higher permeate flux as the number of patterns increases in the filtration module. The flux
enhancement with Np will be discussed in Section 3.5.
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radial velocity (u∗r ).

As the number of patterns Np increases, the magnitude of the velocity gradient ∂u∗θ/∂z∗

decreases at the disk surface, but increases at the membrane surface (Figure 6a). The increase
rate of the velocity gradient magnitude at the membrane surface (

∣∣∂u∗θ/∂z∗
∣∣
z∗=1) tends to be

saturated when Np > 8. In the case of a patterned disk, therefore, one can expect a higher
shear stress on the membrane and better antifouling due to the higher wall shear stress,
compared with those from a plain disk. The patterns on the rotating disk play a role in
carrying the momentum caused by the disk rotation further into the central core region,
leading to an increased velocity magnitude

∣∣u∗θ ∣∣ with Np in this region. As for the variation
of u∗r with Np, there exist changes in the velocity profile near both walls. The magnitude of
the velocity gradient ∂u∗r /∂z∗ at the membrane surface increases with Np, but it does not
show any notable change as Np increases above 8, which is a similar trend to that observed
in the change of ∂u∗θ /∂z∗. However, the influence of such changes on the frictional effect
are not as significant as those observed in u∗θ , since the magnitude of u∗θ is one order of
magnitude less than that of u∗r (Figure 6b). The quantitative analysis on the shear stress
increase with the number of patterns will be discussed in Section 3.4.

Figure 7 shows the cross-sectional velocity vectors and contours for the value of the
dimensionless axial velocity u∗z in the zx-plane. As depicted in Figure 7a, the flow pattern
for the plain disk (P00) looks almost symmetric with respect to the midsurface (xy-plane)
even though there are small perturbations due to the pressure-driven flow effect. The two
counter-rotating cross-sectional flows near the rim of the housing generate a pair of Taylor
vortices. Vortex structures varying with Np will be presented in Section 3.5. However, such
symmetry is broken completely for the cases with patterns on the disk. As the number
of patterns increases above 8, one cannot observe notable changes in the cross-sectional
velocity vectors from a qualitative perspective.
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3.3. Vortex Structure

The performance of a rotary dynamic filtration system is closely related to a secondary
flow, such as Taylor vortices created by a high-speed rotation of a rotor, reducing membrane
fouling or concentration polarization [18]. Such a secondary flow in membrane filtration
also leads to enhanced mixing and improved fouling resistance via back transport of
foulants from the membrane to the bulk flow region [27,53]. In addition, Taylor vortices are
also associated with the enhanced shear rate in a dynamic filtration module [61]. In this
regard, three-dimensional vortex structures due to the flow in the DF system are identified
using the velocity field. Among several definitions representing the topology of a vortex
core, the λ2-definition of Jeong and Hussain [62] is adopted for vortex identification in our
filtration system. In this definition, a vortex core is defined as a connected fluid region with
two negative eigenvalues of D2 +W2. Here, D and W are the symmetric and antisymmetric
parts of the velocity gradient tensor ∇u, respectively, where D =

(
∇u +∇uT)/2, and

W =
(
∇u−∇uT)/2. If the three real eigenvalues (λ1, λ2, and λ3) of the symmetric

tensor D2 + W2 are ordered as follows: λ1 ≥ λ2 ≥ λ3, the definition is equivalent to the
requirement that λ2 < 0 within the vortex core.

As far as vortex structures are concerned, our main concern is on the change of
vortex structure with the number of patterns on the disk. As representative examples,
vortex structures at a fixed rotation speed (Ω = 200 rpm) will be presented in this section.
Figure 8 demonstrates the three-dimensional vortex structures using the λ2-definition for
the filtration modules with different number of patterns when the disk rotating speed is
Ω = 200 rpm. In this figure, vortex regions are identified by iso-surfaces of λ2 and color
contours represent the magnitude of the dimensionless velocity u∗ = u/U. In the case
of a plain disk (P00), a pair of Taylor vortices are observed in the radial gap between the
disk and the outer housing (Figure 8a). The upper one represents rotating motions in the
counter-clockwise direction and the lower one represents those in the clockwise direction,
which are generated by the flow pattern depicted in Figure 7. In addition, vortices also
emerge in the upper and lower axial gaps near the disk tip. Spiral vortices, skewed to
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the left (in the negative x-direction), occur near the center of the filtration module. The
skewness in the spiral vortices is due to the existence of the outlet port located at the bottom
of the housing (see Figure 1). Thin vortices, which are stretched in the radial direction, are
observed near the stator wall. In the cases of filtration modules with a patterned disk, there
exists a significant difference in the vortex structures.
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when the angular velocity of the disk is Ω = 200 rpm. The color contour in each plot represents the
dimensionless velocity magnitude (|u∗| ). (a) Np = 0 (plain disk), (b) Np = 4, (c) Np = 8, (d) Np = 12,
and (e) Np = 16.

As the number of patterns Np increases, the two Taylor vortices become distorted,
showing a wavy pattern (Figure 8b), and they are merged together at the highest Np
(Figure 8e). The evolution of the vortex structures with Np, formed in the entire domain
of the rotor-stator system, demonstrates the dependency of the vortex structures on the
disk geometry. It should be noted again that, as the number of patterns Np increases above
8, the changes in the vortex structure in the radial gap between the disk and the housing
begin to be saturated with Np.

3.4. Shear Stress Distribution

The flow and vortex structures presented in Sections 3.2 and 3.3 revealed the number
of patterns on the disk surface has a significant impact on the flow behavior in the dynamic
filtration module. The rotational motions of the patterned disk can generate a high wall
shear stress at the membrane surface as well, affected in this study by the number of
patterns Np and the Reynolds number Re. In addition, the shear stress at the membrane
is closely related to the control of membrane fouling and the filtration enhancement in
dynamic filtration modules [25–27,30]. As such, we attempt to elucidate the variation of
the wall shear stress at the membrane and its change with Np and Re.

The variation of the wall shear stress on the membrane was examined using the
line-averaged friction coefficient C f at a radial position r, defined by

C f =
1

2πr

∫ 2π

0
τ∗wr dθ, (7)
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where the integrand is evaluated along a circle on the membrane surface with the radius r
and its center at (x, y) = (0, 0). In Equation (7), τ∗w is the dimensionless wall shear stress on
the membrane, defined by

τ∗w =
τw

1
2 ρΩ2R2

i
. (8)

The numerator τw in Equation (8) is the local wall shear stress at the membrane surface,
given by τw = µ

.
γw, where µ is the viscosity,

.
γw the wall shear rate (

.
γw =

√
2D : D

∣∣∣
w

),
and D the rate-of-deformation tensor (symmetric part of the velocity gradient tensor). The
denominator in Equation (8) is the dynamic pressure defined with the characteristic velocity
ΩRi and the characteristics length Ri. In the Cartesian coordinate system, the shear rate

.
γ

is evaluated using the following relation:

.
γ =

√√√√2

{(
∂u
∂x

)2
+

(
∂v
∂y

)2
+

(
∂w
∂z

)2
}
+

(
∂u
∂y

+
∂v
∂x

)2
+

(
∂v
∂z

+
∂w
∂y

)2
+

(
∂u
∂z

+
∂w
∂x

)2
, (9)

where u, v, and w are velocity components in the x–, y–, and z–directions, respectively.
Figure 9 shows the change of the line-averaged friction coefficient C f at the membrane

surface as a function of the dimensionless radius r∗ = r/Ri for the five filtration modules
with different numbers of patterns (Np = 0, 4, 8, 12, and 16). Though the rotation speed is a
factor with an influence on the shear stresses [63], the friction coefficient when Ω = 200 rpm
(equivalent to Re = 1.6× 105) is presented as a representative example. In the case of the
plain disk with Np = 0 (P00), the friction coefficient C f increases with r∗, reaches a peak
value around r∗ ≈ 1.1, and decreases rapidly near the stator side wall. Such variation of C f
with r∗ can also be inferred from Figure 5 showing the velocity components (u∗θ and u∗r )
and their changes in the z-direction. If wheel-shaped patterns are engraved on the disk
surfaces, a different profile of C f is observed in each filtration module. In cases of disks
with patterns, the overall values of C f increased significantly as Np increased, compared
to the case with Np = 0 (P00). When Np = 16 (P16 in Figure 9), the maximum friction
coefficient is approximately two times higher than that of the case with Np = 0, and the
peak value is observed around r∗ ≈ 1.03.
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Figure 9. The change of the line-averaged friction coefficient C f at the membrane surface as a
function of the dimensionless radius r∗ = r/Ri for the five filtration modules with different numbers
of patterns on the disk. Here, Ω = 200 rpm.

The influence of the number of patterns (Np) and the Reynolds number (Re) on the
wall shear stress is investigated by utilizing a friction coefficient. To evaluate the influence
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of Np and Re on the skin friction over the entire membrane surface, the area-averaged
friction coefficient C f is defined as follows:

C f =
1

Am

x

A

τ∗w dA, (10)

where Am denotes the membrane area (Am = 3.14 × 10−2 m2) and A the domain on
the membrane. Figure 10 shows the change of the area-averaged friction coefficient (C f )
influenced by Np and Re. Here, the disk rotating speed Ω is varied from 200 to 1000 rpm
(thus, Re is varied from 1.6× 106 to 8.0× 106). Figure 10a plots C f as a function of Np at
the five Reynolds numbers, while Figure 10b plots C f as a function of Re at the five values
of Np. As Np increases C f increases as well, but the increase rate of C f shows a noticeable
slowdown when Np > 8, regardless of the Reynolds number (Figure 10a). As for the effect
of Re on the skin friction, C f decreases with Re and the decrease rate of C f increases as Np

increases (Figure 10b). Although C f decreases with Re, the magnitude of τw itself increases
with Re. In summary, the filtration dynamic module with a patterned disk leads to a higher
friction coefficient than that of the plain disk and the increase rate of C f with Np slows
down as the number of patterns Np increases above 8.
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affected by Np.

3.5. Filtration Performance

Filtration enhancement due to the patterned disk in the dynamic filtration module is
demonstrated for a microfiltration process. In a microfiltration membrane, the permeate
flux J through the membrane is given by J = K∆P. Assuming that the membrane pores
are well-connected, uniform, and cylindrical in shape, the permeability constant K [64] is
evaluated using the following relation:

K =
φa2

8µζ∆l
, (11)

where φ is the porosity, a the pore radius, ζ the tortuosity, and ∆l the membrane thick-
ness. Using the following parameters for the membrane and the feed fluid, φ = 0.2,
a = 0.1 µm, µ = 0.001 Pa·s, ζ = 2.5, and ∆l = 200 µm, the permeability constant is
K = 5× 10−10 m/s·Pa. Though membrane fouling is a major problem in most membrane
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processes, the fixed value of K is assumed, limiting our interest to the flux enhancement
due to the rotating patterned disk in the dynamic filtration system with an uncontaminated
membrane. As mentioned in Section 2.2, the local pressure at a specific location on the
membrane is used as ∆P, assuming that the gauge pressure in the permeate side is zero.

The flux enhancement due to a patterned disk is characterized by a dimensionless
permeate flux J ∗,

J ∗ = JJ0
, (12)

where J0 is the reference flux, defined by J0 = K∆P0. Using ∆P0 = 100, 000 Pa (reference
TMP), the reference flux is J0 = 180 LMH (L/m2·h), which is equivalent to 5× 10−5 m/s.
The change of J ∗ in the radial direction is assessed using a line-averaged dimensionless
permeate flux J ∗L , given by

J ∗L =
1

2πr

∫ 2π

0
J ∗r dθ, (13)

which is defined in an analogous manner to the definition of C f (Equation (7)). To evaluate
overall filtration performance of the filtration system influenced by Np and Re, the area-
averaged dimensionless permeate flux J ∗ is defined as follows:

J ∗ = 1
Am

x

A

J ∗ dA. (14)

Figure 11 shows the line-averaged dimensionless permeate flux J ∗L as a function of the
dimensionless radial coordinate r∗ for the five filtration modules with a different number
of patterns. In all cases, J ∗L increases with r∗ because the pressure at the membrane (TMP)
increases in the radial direction. When a patterned disk is used, J ∗L near the center is lower,
compared with that of the module with the plain disk, but J ∗L becomes higher in the outer
portion of the membrane, bringing benefit in the permeate flux. As the number of patterns
Np increases, the increase of J ∗L is significant up to the number of patterns Np = 8, and it
tends to be saturated when Np > 8. When Ω = 200 rpm (Re = 1.6× 105), the highest flux
obtained with Np = 16 is J ∗L ≈ 1.01 (equivalent to 182 LMH), which is not a significant
gain in the permeate flux. When Ω = 1000 rpm (Re = 8.0× 105), however, the highest flux
obtained with Np = 16 is J ∗L ≈ 1.25, now equivalent to 225 LMH. The variation of J ∗L in
the radial direction confirms that the effectiveness of the DF module is closely related to
both the rotating speed of the patterned disk and the number of patterns.

Finally, the overall flux enhancement with the patterned disk was assessed using
the area-averaged permeate flux (J ∗), depicted in Figure 12. Within the range of Np and
Ω used in this study, the maximum area-averaged permeate flux J ∗

∣∣
max (obtained with

Np = 16 and Re = 8.0× 105) is approximately 1.13 (equivalent to 203 LMH). The proper
number of patterns seems to be eight, since one cannot achieve a notable gain in J ∗ when
Np > 8. As for the effect of Re on J ∗, the higher the Reynolds number, the larger the gain
in the permeate flux caused by the use of a patterned disk.
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4. Conclusions

In this study, the effect of disk geometry on the permeate flux enhancement in a
dynamic filtration (DF) system is numerically investigated. The DF system consists of a
disk (rotor) and a stator with a membrane fixed on top of the stator. Wheel-shaped patterns
are engraved on both sides of a disk with a number of patterns (Np) on one side varying
from 0 to 16. The aspect ratio G, the axial clearance (between the disk and the membrane)
divided by the disk radius, is fixed at 0.0511. A constant pressure difference of 100 Pa
is maintained between the inlet and outlet. The Reynolds number (Re) is varied from
1.6× 105 to 8.0× 105 by changing the disk rotating speed (Ω) from 200 to 1000 rpm. The
k−ω SST turbulence model is employed to solve the turbulent rotating flows and the MRF
method is adopted to treat the rotating disk in quasi-steady state.

The flow characteristics in the DF system are examined to understand the detailed
flow affected by Np and Re. The velocity profiles along the axial direction revealed the
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Batchelor-type flow with two boundary layers (near the disk and membrane surfaces) and
a central core layer in all Reynolds numbers. For a constant angular velocity, as the number
of patterns Np increases, the magnitude of the circumferential velocity in the central core
layer increases, which not only increases the shear stress applied to the membrane surface
but also improves the permeate flux. The vortex structure in the dynamic filtration system
is visualized via the λ2-criterion, demonstrating complex vortex structures generated by
the perturbation due to the patterned surfaces. The changes of flow characteristics (velocity
profiles, shear stresses, and vortex structures) and the overall permeate flux tend to be
saturated as Np increases above 8, implying that Np = 8 is a proper choice for the number
of patterns in the DF system. Within the range of Np and Ω investigated in this study, the
maximum area-averaged permeate flux obtained when Np = 16 and Re = 8.0× 105 is
approximately 203 LMH, while the flux for the plain disk at the same Re is approximately
185 LMH. It should be noted that a rotating disk with a proper number of patterns resulted
in a higher wall shear stress, mitigating membrane fouling and a higher permeate flux
compared to that from a filtration system with a plain disk, but the gain in the permeate
flux is highly affected by the Reynolds number (or the disk rotating speed Ω). The higher
the Reynolds number, the larger the gain in the permeate flux from a patterned disk in the
DF system.

As a fundamental study on the hydrodynamics in a rotor-stator-type DF system, this
study presents new insights into the effect of the pattered disk on the flow and filtration
performance in the DF system that have not been previously explored. In future work,
we plan to investigate the concentration distribution and permeate flux enhancement in
a reverse-osmosis DF system with patterned disks, and to solve the associated flow and
mass transfer problems.
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Abbreviations

AMG Algebraic multigrid
CFD Computational fluid dynamics
CFF Crossflow filtration
CP Concentration polarization
DF Dynamic filtration
MRF Multiple reference frame
MSD Multishift disk
RANS Reynolds-averaged Navier-Stokes
RMS Root mean square
SST Shear stress transport
SWM Spiral-wound module
TMP Transmembrane pressure
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List of Symbols
Am Membrane area, m2

a Pore radius of membrane, µm
C f Friction coefficient
C f Area-averaged friction coefficient
D Symmetric part of velocity gradient, 1/s
G Aspect ratio
H Gap from the x–axis to membrane, mm
hg Axial gap, mm
J Permeate flux, m/s
J0 Reference permeate flux, m/s
J ∗ Dimensionless permeate flux
J ∗ Area-averaged dimensionless permeate flux
K Membrane permeability, m/s·Pa
k Turbulence kinetic energy, J/kg
l Membrane thickness, µm
NELE Number of elements
Np Number of patterns on one side of a disk
n Outward unit normal vector
P Pressure, Pa
Pin Pressure at the inlet, Pa
Pout Pressure at the outlet, Pa
R Radius, mm
Ri Disk radius, mm
Ro Stator radius, mm
Rs Shaft radius, mm
Re Reynolds number
r Radial distance from the z–axis, mm
r∗ Dimensionless radius
t Time, s
Tij Reynolds stress tensor, Pa
U Linear velocity, m/s
u Velocity vector, m/s
uR Relative velocity vector, m/s
uθ Circumferential velocity, m/s
ur Radial velocity, m/s
uz Axial velocity, m/s
u∗ Dimensionless velocity vector
u∗θ Dimensionless circumferential velocity
u∗r Dimensionless radial velocity
u∗z Dimensionless axial velocity
W Antisymmetric part of velocity gradient, 1/s
z∗ Dimensionless z–coordinate
Greek Letters
Γin Inlet boundary
Γout Outlet boundary
Γp Membrane (permeable boundary)
Γr Disk surface
Γs Shaft surface
Γw Impermeable boundary
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.
γ Shear rate, 1/s
.
γw Wall shear rate, 1/s
.
γw Average wall shear rate, 1/s
∆ Difference
ζ Tortuosity
λ Real eigenvalue
µ Viscosity of fluid, Pa·s
ρ Density of fluid, kg/m3

τw Wall shear stress, Pa
τ∗w Dimensionless wall shear stress
φ Porosity
Ω Angular velocity, 1/s
ω Specific dissipation rate, 1/s
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