
Citation: Păncescu, F.M.;

Rikabi, A.A.K.K.; Oprea, O.C.;

Grosu, A.R.; Nechifor, A.C.;

Grosu, V.-A.; Tanczos, S.-K.;

Dumitru, F.; Nechifor, G.;
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Abstract: Melatonin is the hormone that focuses the attention of the researchers in the medical,
pharmaceutical, materials, and membranes fields due to its multiple biomedical implications. The
variety of techniques and methods for the controlled release of melatonin is linked to the multitude
of applications, among which sports medicine occupies a special place. This paper presents the
preparation and characterization of composite membranes based on chitosan (Chi) and sulfonated
ethylene-propylene-diene terpolymer (sEPDM). The membranes were obtained by controlled vacuum
evaporation from an 8% sEPDM solution in toluene (w/w), in which chitosan was dispersed in an
ultrasonic field (sEPDM:Chi = 1:1, w/w). For the comparative evaluation of the membranes’ perfor-
mances, a melatonin-chitosan-sulfonated ethylene-propylene-diene terpolymer (Mel:Chi:sEPDM
= 0.5:0.5:1.0, w/w/w) test membrane was made. The prepared membranes were morphologically
and structurally characterized by scanning electron microscopy (SEM), Fourier transform infrared
spectroscopy (FTIR), energy-dispersive spectroscopy analysis (EDAX), thermal analysis (TG, DSC),
thermal analysis coupled with chromatography and infrared analysis, and contact angle measure-
ments, but also from the point of view of performance in the process of transport and release of
melatonin in dedicated environments (aqueous solutions with controlled pH and salinity). The
prepared membranes can release melatonin in amounts between 0.4 mg/cm2·per day (sEPDM),
1.6 mg/ cm2·per day (Chi/sEPDM), and 1.25 mg/cm2·per day (Mel/Chi/SEPDM).

Keywords: melatonin; composite membranes; chitosan; sEPDM; melatonin transport and release

1. Introduction

The biomedical implications of melatonin, the hormone secreted by the pineal gland,
are so diverse and of particular importance that researchers have devoted extensive studies
to it [1–3].

One of the current medical concerns is ensuring the daily amount of melatonin in the
body, because the secretion of the pineal gland can be affected by various dysfunctions of
the human body [4,5]. Even getting older is a problem in reducing the amount of melatonin
generated in the body [6].

Starting with the circadian cycle [7], melatonin is involved in a series of biochemical
processes related to: reducing oxidative stress [8], increasing aerobic performances [9],
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tissue repair [10], muscle adaptation and skeletal muscle capacity [11], sleep and neuropro-
tection [12], blood pressure [13], metabolic diseases [14], cancer [15], rheumatic diseases [16],
trauma and accidents [17], stimulation of cartilage matrix development [18], cardiovascular
diseases [19], arthritis [20], and depression [21]. In order to have an overview of all of
melatonin’s connections with the body’s health level, one can imagine a spiral scheme of its
effects on some diseases or conditions of the body (Figure S1, see supplementary material).

The diversity of melatonin’s implications in human body conditions has led to a
variety of administration methods. The oral one predominates in current treatments
because melatonin is easily adsorbed and desorbed from the digestive system, allowing the
use of multiple materials and forms of conditioning [22–24].

However, there are more and more cases: trauma following various accidents [25],
contusions [26], dislocation of bones from the joints [27], broken or displaced teeth in contact
sports or that use special equipment or devices [28], blows to the head and spine [29],
fractures and various accidents in the practice of motorized sports [30], which require
the application and delivery of melatonin locally, alone or accompanying other drugs or
pharmaceutical preparations [31].

The representative ways of delivery, controlled release of the various chemical species
of interest, many of which have been studied for melatonin as well, are suggested in
Figure 1 [32–44].
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Among the recent applications of melatonin with significant results are those in
sports medicine, while among the methods of controlled release, the attention given to the
involvement of chitosan in various formulations can be highlighted [35].

Chitosan ensures a controlled release of melatonin, especially through ingestion,
but for applications in sports medicine, orthopaedics, or dentistry, a reduction in the
solubility of this biopolymer and an improvement in physical stability are necessary [36].
By embedding in various organic or inorganic nanoparticles, films, and membranes from
biodegradable polymers, it is possible to reduce the solubility of chitosan [37].

Composite membranes are effective means both for the transport and the delivery or
controlled released of melatonin [38], which justifies the expansion research in the field [39].

Studies related to improving the performance of fuel cell membranes have shown that
an effective means of chitosan reticulation can be performed with ionophores with sulfonic
groups of the polyether–ether sulfonated ketone type [40].

The study presented in this paper refers to the preparation and characterization
of a composite membrane based on chitosan (Chi) and sulfonated ethylene-propylene-
diene terpolymer (sEPDM) and its controlled melatonin release performance in synthetic
aqueous solutions. The study addressed the transport and release of melatonin through
the composite membrane (Chi-sEPDM) compared to the integral membrane from sEPDM.
On the other hand, the results of the controlled release through the composite membrane
(Chi-sEPDM) were compared to the parallel measurements of melatonin release from a
melatonin/chitosan/sulfonated ethylene-propylene-diene terpolymer (Mel-Chi-sEPDM)
test composite membrane. The operational parameters of the melatonin transport and
release experiments from a saturated source phase (SP) or from the test membrane were
the pH and salinity (NaCl) of some synthetic receiving aqueous solutions (RP).

2. Materials and Methods
2.1. Reagents and Materials

All reagents and organic compounds used in the presented work were of analytical
grade. They were purchased from Merck (Merck KGaA, Darmstadt, Germany): hydrochlo-
ric acid, sodium chloride, and sodium hydroxide.

Melatonin (Mel-Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) and the ba-
sic polymeric materials for making the membranes, i.e., chitosan (Chi) (Sigma-Aldrich
Chemie GmbH, Steinheim, Germany) and sulfonated ethylene-propylene-diene terpolymer
(sEPDM), were recently used in our research group for ionic and molecular separations [41].
Their main characteristics are given in Table 1.

The purified water characterized by 18.2 µS/cm conductivity was obtained with a
RO Millipore system (MilliQ® Direct 8 RO Water Purification System, Merck, Darmstadt,
Germany) [42].
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Table 1. The characteristics of the used organic compounds.

Organic Compounds Name and Symbol Molar Mass
(g/mol)

Solubility
in Water

(g/L)
pKa

Membranes 2023, 13, 282 4 of 30 
 

 

Table 1. The characteristics of the used organic compounds. 

Organic Compounds Name and Symbol 

Molar Mass 

breakk 

(g/mol) 

Solubility 

breakk 

in Water 

breakk 

(g/L) 

pKa 

 

Melatonin (Mel) 

 

 

 

 

 

 

 

 

 

 

 

 

232.28 

2g/L; max. 

breakk 

3·10−3 mol/L 

5.7 and 

10.2 

 

Chitosan (Chi) 

 

 

 

 

 

 

 

 

 

 

 

 

 

1526.5 

soluble in acid 

media breakk  

(0.5 M HCl: 

breakk  

50 mg/mL) 

6.2 to 7.0 

 

sulfonated ethylene-propylene-diene 

breakk  

terpolymer (sEPDM) 

 

 

 

 

 

 

 

 

2500–6500 

soluble in 

breakk  

toluene 

1.9 to 2.2 

The purified water characterized by 18.2 μS/cm conductivity was obtained with a RO 

Millipore system (MilliQ®  Direct 8 RO Water Purification System, Merck, Darmstadt, Ger-

many) [42]. 

2.2. Methods and Procedures 

2.2.1. Obtaining the Composite Membranes Based on SEPDM 

Melatonin (Mel) 232.28 2g/L; max.
3·10−3 mol/L 5.7 and 10.2

Membranes 2023, 13, 282 4 of 30 
 

 

Table 1. The characteristics of the used organic compounds. 

Organic Compounds Name and Symbol 

Molar Mass 

breakk 

(g/mol) 

Solubility 

breakk 

in Water 

breakk 

(g/L) 

pKa 

 

Melatonin (Mel) 

 

 

 

 

 

 

 

 

 

 

 

 

232.28 

2g/L; max. 

breakk 

3·10−3 mol/L 

5.7 and 

10.2 

 

Chitosan (Chi) 

 

 

 

 

 

 

 

 

 

 

 

 

 

1526.5 

soluble in acid 

media breakk  

(0.5 M HCl: 

breakk  

50 mg/mL) 

6.2 to 7.0 

 

sulfonated ethylene-propylene-diene 

breakk  

terpolymer (sEPDM) 

 

 

 

 

 

 

 

 

2500–6500 

soluble in 

breakk  

toluene 

1.9 to 2.2 

The purified water characterized by 18.2 μS/cm conductivity was obtained with a RO 

Millipore system (MilliQ®  Direct 8 RO Water Purification System, Merck, Darmstadt, Ger-

many) [42]. 

2.2. Methods and Procedures 

2.2.1. Obtaining the Composite Membranes Based on SEPDM 

Chitosan (Chi) 1526.5

soluble in acid
media

(0.5 M HCl:
50 mg/mL)

6.2 to 7.0

Membranes 2023, 13, 282 4 of 30 
 

 

Table 1. The characteristics of the used organic compounds. 

Organic Compounds Name and Symbol 

Molar Mass 

breakk 

(g/mol) 

Solubility 

breakk 

in Water 

breakk 

(g/L) 

pKa 

 

Melatonin (Mel) 

 

 

 

 

 

 

 

 

 

 

 

 

232.28 

2g/L; max. 

breakk 

3·10−3 mol/L 

5.7 and 

10.2 

 

Chitosan (Chi) 

 

 

 

 

 

 

 

 

 

 

 

 

 

1526.5 

soluble in acid 

media breakk  

(0.5 M HCl: 

breakk  

50 mg/mL) 

6.2 to 7.0 

 

sulfonated ethylene-propylene-diene 

breakk  

terpolymer (sEPDM) 

 

 

 

 

 

 

 

 

2500–6500 

soluble in 

breakk  

toluene 

1.9 to 2.2 

The purified water characterized by 18.2 μS/cm conductivity was obtained with a RO 

Millipore system (MilliQ®  Direct 8 RO Water Purification System, Merck, Darmstadt, Ger-

many) [42]. 

2.2. Methods and Procedures 

2.2.1. Obtaining the Composite Membranes Based on SEPDM 

sulfonated ethylene-propylene-diene
terpolymer (sEPDM) 2500–6500 soluble in

toluene 1.9 to 2.2

2.2. Methods and Procedures
2.2.1. Obtaining the Composite Membranes Based on SEPDM

Obtaining the membranes from sEPDM (M1), chitosan–sEPDM (M2), and melatonin–
chitosan–sEPDM (M3) was carried out by phase inversion method [41] and by controlled
evaporation technique [43].

The polymer solution (sEPDM 8%, w/w) in toluene is introduced in a Petri dish and
evaporated in a vacuum oven at a temperature of 60 ◦C, thus obtaining the polymer
membrane from sEPDM (M1) (Figure 2).

Membranes 2023, 13, 282 5 of 28 
 

 

 

Figure 2. Schematic representation of the procedure for obtaining sEPDM based membranes. 

The membranes were cut into 1.2 cm and 3.3 cm diameter disks, intended for mor-

phological, structural, transport, and release characterizations. The prepared membranes 

were morphologically and structurally characterized by scanning electron microscopy 

(SEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive spectroscopy 

analysis (EDAX), thermal analysis (TG, DSC), thermal analysis coupled with chromatog-

raphy and analysis in infrared, and contact angle measurements, but also from the point 

of view of performance in the process of transport and release of melatonin in dedicated 

environments (aqueous solutions with controlled pH and salinity). 

2.2.2. Transport and Release of the Melatonin through/from Composite Membranes 

Based on SEPDM 

Transport Performance of the Obtained Membranes 

To determine the transport performances of the prepared membranes (M1 or M2), a 

permeation module (Figure 3) with two compartments separated by a disk with a free 

membrane diameter of 3.3 cm was used [44]. Both compartments have a stirring magnetic 

bar (50 rpm) placed at the base. In one compartment, a 100 mL source solution of 2.0 g/L 

melatonin in ultra-pure water is introduced (the source phase, SP), and, in the second 

compartment, 100 mL synthetic receiving solutions of imposed pH made with hydrochlo-

ric acid or sodium hydroxide are introduced, in a range close to the biological pH (the 

receiving phase, RP). 

 

Figure 3. Schematic representation of pertraction installation for the melatonin transport through 

prepared membranes (M1 and M2): 1-pertraction module; 2-source compartment; 3-receiving 

Figure 2. Schematic representation of the procedure for obtaining sEPDM based membranes.

To obtain the chitosan with sEPDM (M2) composite membrane, a dispersion of chitosan
in toluene solution of sEPDM was made, by introducing 1 g of chitosan in 12.5 g of
sEPDM solution (8% in toluene) so that the mass ratio of the two polymers is 1:1. To
disperse the chitosan, the glass bottle was placed in an ultrasonic bath (Elmasonic S, Elma
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Schmidbauer GmbH, Singen, Germany) for three hours, observing the complete dispersion.
The dispersion is introduced into a Petri dish and evaporated under controlled conditions
at 60 ◦C, under vacuum.

The preparation of the melatonin–chitosan–sEPDM composite membrane (M3) is
carried out by using a mixture of melatonin and chitosan powders (0.5 g:0.5 g), which is
homogenized in a dry way, for two hours, at 100 rpm, in a mill with spherical ceramic bodies
(Retsch PM100 mill form Viola Schimadzu, Bucharest, Romania). The obtained powder
is dispersed in 12.5 g toluene solution of sEPDM (8%, w/w), in the Elmasonic S ultrasonic
bath, for three hours, obtaining a dispersion in toluene with a melatonin:chitosan:sEPDM
ratio = 0.5 g:0.5 g:1.0 g. The dispersion is then introduced into a Petri dish and evaporated
under controlled conditions at 60 ◦C, under vacuum.

In all three cases, the complete evaporation of toluene was followed, by bringing the
STERIPLAN ROTH Petri bottles to constant mass.

The membranes were cut into 1.2 cm and 3.3 cm diameter disks, intended for morpho-
logical, structural, transport, and release characterizations. The prepared membranes were
morphologically and structurally characterized by scanning electron microscopy (SEM),
Fourier transform infrared spectroscopy (FTIR), energy-dispersive spectroscopy analysis
(EDAX), thermal analysis (TG, DSC), thermal analysis coupled with chromatography and
analysis in infrared, and contact angle measurements, but also from the point of view of
performance in the process of transport and release of melatonin in dedicated environments
(aqueous solutions with controlled pH and salinity).

2.2.2. Transport and Release of the Melatonin through/from Composite Membranes Based
on SEPDM
Transport Performance of the Obtained Membranes

To determine the transport performances of the prepared membranes (M1 or M2),
a permeation module (Figure 3) with two compartments separated by a disk with a free
membrane diameter of 3.3 cm was used [44]. Both compartments have a stirring magnetic
bar (50 rpm) placed at the base. In one compartment, a 100 mL source solution of 2.0 g/L
melatonin in ultra-pure water is introduced (the source phase, SP), and, in the second
compartment, 100 mL synthetic receiving solutions of imposed pH made with hydrochloric
acid or sodium hydroxide are introduced, in a range close to the biological pH (the receiving
phase, RP).
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Figure 3. Schematic representation of pertraction installation for the melatonin transport through
prepared membranes (M1 and M2): 1-pertraction module; 2-source compartment; 3-receiving com-
partment; 4-magnetic stirrer system; 5-pipes; source phase (SP – 2g/L melatonin neutral aqueous
solution); receiving phase (RP – pH and salinity-controlled solution).

In another set of experiments, 1–5% NaCl salinity solutions in ultra-pure water were
used as the receiving phase. The experiments were carried out in five identical bipartite
modules, with a volume of 100 mL melatonin solution and an imposed pH or salinity
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solution of the same volume, so that the results can be averaged. The five membranes,
dedicated to each set of tests, were kept for 48 h in the 2 g/L melatonin solution and wiped
by gentle pressing between two filter paper discs (Whatman® Filter Paper, Merck KGaA,
Darmstadt, Germany) and then were fixed by silicone rubber gaskets in the permeation
modules. The spectrophotometric analyses were performed daily, at two wavelengths,
278 nm, and 285 nm, for ten days, collecting 1.0 mL of solution from the source phase.
The analyses were performed on two different spectrometers, by the same operator and
repeated by an independent operator. The analysis laboratory works and respects the
specific recommendations and guidelines of EURACHEM [45]. The validation of the
analysis method was carried out by a fast and sensitive electrochemical method, developed
and reported previously [46].

Release Performance of the Obtained Membranes

The controlled release experiments were carried out according to a previously de-
scribed procedure [47].

In this study, two types of melatonin release are experimented:

1. The release of melatonin from a saturated solution “through” membranes prepared in
synthetic solutions of controlled pH and salinity (Figure 4a);

2. The release of melatonin “from a” test composite membrane (Mel-Chi-sEPDM, M3) in
synthetic solutions of controlled pH and salinity (Figure 4b).
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In the first case, the membrane discs were placed in the lids of 10 cm3 glass bottles.
Then, 5.0 mL of controlled 2 g/L melatonin aqueous solution was introduced into the glass
bottles, and the perforated bottle cap was sealed with a membrane and placed with the cap
down in a cup in which 100 bottles could be inserted simultaneously (Figure 4a). The entire
assembly is placed in a vessel (10.0 L, simulating a high, quasi-constant dilution, and to
maintain the concentration gradient for melatonin), with controlled pH or salinity solution,
which is recirculated with a constant flow rate (200 mL/min). Seven bottles were retrieved
daily for analysis so that the results of the melatonin analysis could be averaged, and three
bottles were stored as control samples.
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In the second case, the composite membranes (Mel-Chi-sEPDM, M3) are placed in
the lid of the 100 bottles containing 5.0 mL synthetic solution of imposed pH and salinity,
and melatonin from the membranes is released in contact with them (through overturning)
(Figure 4b).

As in the previous case, seven bottles were retrieved daily for analysis so that the
results of the melatonin analysis could be averaged, and three bottles were stored as control
samples.

The validation of the results was performed periodically by electrochemical and/or
UV–Vis methods at an independent laboratory [47,48].

The flows of the melatonin derivatives from the source phase were determined at
specific time intervals, using the relation (1) [49]:

J =
M

S·∆t
(mg/(m2 s)) or mol/(m2 s)) (1)

M being the permeate mass (g or mol), S being the effective surface of the membrane (m2),
and ∆t the time interval (s).

The release (or pertraction) efficiency RE% (or PE%) for the melatonin derivatives was
calculated as follows [50], based on melatonin solution concentration:

RE or PE(%) =

(
c0 − c f

)
c0

·100 (2)

cf being the final concentration of the solute (melatonin) and c0 the initial concentration of
solute (melatonin).

The same release efficiency can also be obtained based directly upon the absorbance
of the considered solutions (melatonin) [51], as in (3):

RE or PE(%) =
(A0 − As)

A0
·100 (3)

A0 being the initial absorbance of the sample melatonin solution and As the current ab-
sorbance of the sample.

2.3. Equipment

The surface and cross-section characteristics of the membranes were determined
with a scanning electron microscopy (SEM) equipped with a probe for energy dispersive
spectroscopy analysis (EDX). A Hitachi S4500 system was used (Hitachi High-Technologies
Europe GmbH, Krefeld, Germany) [52].

Thermal analysis (TG-DSC) was performed with a STA 449C Jupiter apparatus, from
Netzsch (NETZSCH-Gerätebau GmbH, Selb, Germany). Each sample weighed approxi-
matively 10 mg. The samples were placed in an open alumina crucible and heated up to
900 ◦C with 10 K·min−1 rate, under flow of 50 mL·min−1 dried air. As reference, we used
an empty alumina crucible. The evolved gases were analysed with a FTIR Tensor 27 from
Bruker (Bruker Co., Ettlingen, Germany), equipped with a thermostat gas cell [53].

FTIR 2D maps were recorded with a Nicolet iS50R FTIR microscope (Thermo Fisher
Scientific Inc., Waltham, MA, USA), with a deuterated triglycine sulphate (DTGS) detec-
tor, in the wavenumber range 4000–600 cm−1. The FTIR 2D maps were used to obtain
information about the spatial distribution of the components [54].

Determination and monitoring of pH and salinity for every stock solution was achieved
using a conductance cell or combined selective electrode (HI 4107, Hanna Instruments Ltd.,
Leighton Buzzard, UK) and a multi-parameter system (HI 5522, Hanna Instruments Ltd.,
Leighton Buzzard, UK) [55].

The UV–Vis spectra of the melatonin samples were recorded for a wavelength ranging
from 200 to 800 nm, at room temperature, using 10 mm quartz cells on CamSpec M550
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spectrometer (Spectronic CamSpec Ltd., Leeds, UK), and, for the daily determinations,
two wavelengths were chosen, 278 nm and 285 nm [56,57].

Additionally, the UV–Vis validation analysis of the melatonin solutions was performed
on dual-beam UV equipment—Varian Cary 50 (Agilent Technologies Inc., Santa Clara, CA,
USA)—at a resolution of 1 nm, spectral bandwidth of 1.5 nm, and a scan rate of 300 nm/s [57].

Contact angle measurements for the considered spheres materials (with distilled water
or melatonin derivatives solution) [58] were carried out with a horizontal microscope with
video camera (Viola–Shimadzu, Bucharest, Romania).

3. Results and Discussion

The controlled release of pharmaceutical preparations is an important aspect that
doctors take into account both when prescribing drug doses and when administering food
supplements [59–62].

In the case of melatonin, the possibility of oral administration allows its inclusion in
powdery materials, tablets, or cassettes, which, by ingestion, ensure the release of controlled
amounts in the body [63]. If a localized administration is desired (injuries, trauma, areas of
the oral cavity), as is the case in sports accidents, creams, gels, patches, or films (membranes)
can be used [64–69].

In the present study, the controlled transport or release of melatonin through a chitosan
(Chi)-sulfonated ethylene-propylene-diene terpolymer (Chi-sEPDM) composite membrane,
with possible applications in sports medicine, were considered. The results of the con-
trolled release through the composite membrane (Chi-sEPDM) were compared to the
parallel measurements of melatonin release from a melatonin-chitosan-sulfonated ethylene-
propylene-diene terpolymer composite test membrane (Mel-Chi-sEPDM).

The membrane prepared by controlled evaporation from a chitosan or a melatonin–
chitosan dispersion in sEPDM solution in toluene was characterized morphologically
and structurally by scanning electron microscopy (SEM), Fourier transform infrared spec-
troscopy (FTIR), energy-dispersive spectroscopy analysis (EDAX), thermal analysis (TG,
DSC), thermal analysis coupled with chromatography and infrared analysis, but also from
the point of view of melatonin transport to solutions of controlled pH and salinity.

3.1. Morphological and Structural Membrane Characteristics

The obtained membranes have the macroscopic characteristics illustrated in Table 2:
the thickness, the general aspects (photo), low resolution scanning electron microscopy,
and the contact angle with distilled water. The membranes have very different appearance,
roughness, morphology, and wetting characteristics, which can be found in the performance
of transport and/or release of melatonin in aqueous solutions of variable pH and salinity.
Although the thickness of the three membranes is relatively similar, in the micrometric
determinations, it is still affected by the very different roughness [70]. The hydrophilicity of
the membranes increases sharply in the series M1 < M2 < M3, both through the influence of
the composition and the roughness found in low resolution scanning electron microscopy
(Table 2).
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Table 2. The macroscopic characteristics for the obtained membranes.

Material Membrane
Symbols

Thickness
(µm)

Membrane View
(Photo)

Low Magnitude SEM
(Membrane Surface)

Contact Angle
(θ◦)

sEPDM M1 50 ± 2
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3.1.1. Scanning Electron Microscopy (SEM)

The membrane samples based on sulfonated ethylene-propylene-diene terpolymer
(sEPDM) (M1), chitosan-sulfonated ethylene-propylene-diene terpolymer (Chi-sEPDM)
(M2), and melatonin-chitosan-sulfonated ethylene-propylene-diene terpolymer (Mel-Chi-
sEPDM) (M3) with a size of 10 cm2, were fractured in liquid nitrogen and metallized with
a superficial layer of gold, to be able to examine the section of the membranes (scanning
electron microscopy, SEM) and the elemental distribution on the surface (energy-dispersive
spectroscopy analysis, EDAX), analyses available on a Hitachi S4500 system.

Figure 5 shows the images obtained for the three membranes (M1, M2 and M3), at a
magnification of ×1000 for the cross-section (Figure 5a,c,e), and the cross-section details
×5000 (Figure 5b,d,f). Figure 6 illustrates the elemental composition.

The uniformity of the sEPDM membrane surface (M1, Figure 5a) is specific to an inte-
gral membrane obtained by phase inversion through evaporation, both on the surface and
in the section. The electrostatic charge causes the adhesion of several polymer fragments
on the surface, and isolated crystallites are observed in the section (Figure 5a,b).

The images of the two composite membranes (M2 and M3) (Figure 5b–f) highlight the
heterogenous nature, the micro-aggregates of chitosan or melatonin being clearly observed
especially on the surfaces (Figure 5c,d) but also in sections (Figure 5d,f). These superfi-
cial agglomerations amplify to a microscopic level the roughness of the two composite
membranes, also observed in the assembly presented in Table 2.
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Figure 5. Scanning electron microscopy (SEM) images for: sulfonated ethylene-propylene-diene
terpolymer (sEPDM) (M1)—(a,c,e); chitosan (Chi)-sulfonated ethylene-propylene-diene terpolymer
(Chi-sEPDM) (M2)—(b,d,f).
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Figure 6. Energy-dispersive spectroscopy analysis (EDAX) diagram for: sulfonated ethylene-
propylene-diene terpolymer (sEPDM) (M1) (a); chitosan (Chi)–sulfonated ethylene-propylene-diene
terpolymer (Chi-sEPDM) (M2) (b), melatonin/chitosan (Chi)–sulfonated ethylene-propylene-diene
terpolymer (Mel-Chi-sEPDM) (M3) (c).

The elemental analysis on the surface (EDAX) allows highlighting of carbon (C)
elements, the majority, but also oxygen (O) and sulphur (S) on all membranes: the sul-
fonated ethylene-propylene-diene terpolymer (sEPDM) membrane (M1) (Figure 6a) and
in the chitosan-sulfonated ethylene-propylene-diene terpolymer (Chi-sEPDM) composite
membrane (M2) (Figure 5b), and melatonin-chitosan-sulfonated ethylene-propylene-diene
terpolymer (Mel-Chi-sEPDM) composite membrane (M3) (Figure 5c).

The surface elemental concentration is slightly different for all membranes (Table 3).
However, one observes a remarkable reduction with almost half of the sulphur concentra-
tion and with a third of the oxygen concentration in the case of the Chi-sEPDM membrane
(M2), compared to the melatonin-chitosan-sulfonated ethylene-propylene-diene terpolymer
(Mel-Chi-sEPDM) composite membrane (M3) in the examined areas.



Membranes 2023, 13, 282 12 of 27

Table 3. Energy dispersive spectroscopy analysis (EDAX) for the prepared membranes.

Membranes M1 M2 M3

Surface
Composition

Weight
(%)

Atomic
(%)

Error
(%)

Weight
(%)

Atomic
(%)

Error
(%)

Weight
(%)

Atomic
(%)

Error
(%)

C K 94.48 95.88 3.07 96.37 97.3 2.29 93.16 94.92 2.88

O K 5.28 4.02 29.5 3.49 2.64 30.79 6.44 4.93 20.94

S K 0.24 0.09 62.31 0.15 0.06 61.64 0.4 0.15 16.27

Although the difference in elemental surface composition is relatively small, the
hydrophilicity of the membranes’ surfaces changes dramatically (Table 2): the composite
membrane (M3) being much more hydrophilic (θ = 35◦), comparatively with the composite
membrane (M2) being more hydrophilic (θ = 45◦), and much more than the sEPDM
membrane (M1, θ = 75◦). This observation shows, for the present case, that the surface
roughness is decisive for the hydrophilicity of the membranes.

3.1.2. Fourier Transform InfraRed Spectroscopy (FTIR) Membrane Characteristics

The data obtained from the elemental analysis (EDAX) required a study in the infrared
domain both spectrally (FTIR) and by interference reflection microscopy (IRM), which
would provide more structural information and surface composition.

Figure 6 shows the spectra of the base materials: sulfonated ethylene-propylene-diene
terpolymer (sEPDM), chitosan (Chi), and melatonin (Mel) (Figure 7).
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The spectra obtained were used to select the wave numbers for which the infrared
microscopy map (FTIR, 2D) was made, for the three membranes obtained.

Most of the specific wave numbers of the three materials are located in very close
areas and therefore cannot be used as safe specific values for the FTIR microscopy study. It
should also be emphasized that the sEPDM film subjected to FTIR analysis was obtained
from toluene solution, which did not favour the highlighting of hydrogen bonds of the
sulfonic group (Figure 7). The examined chitosan and melatonin were presented as a
powder, and the obtained spectra are compatible with the literature data.

In another train of thought, the three materials used to obtain the composite membrane
interact. Thus, the sulfonic groups in sEPDM give a neutralization reaction with primary
amino groups from chitosan and secondary amino groups from melatonin, but there are also
other possible interactions such as hydrogen bonds, ionic bonds, and hydrophobic bonds
(Table 1). Figure 8 shows the images of the selected areas (M1 in Figure 8a, M2 in Figure 8b,
and M3 in Figure 8c), and Table 4 shows FTIR 2D maps, at randomly selected wave numbers,
but targeting each representative range of the spectra: 3345 cm−1, 1385 cm−1, 1050 cm−1,
and 728 cm−1.

Table 4. The FTIR 2D maps for sEPDM membrane (M1) and composite membrane (M2 and M3).
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brane (M1); (b) chitosan-sulfonated ethylene-propylene-diene terpolymer (Chi-sEPDM) membrane
(M2); and (c) melatonin-chitosan-sulfonated ethylene-propylene-diene terpolymer (Mel-Chi-sEPDM)
membrane (M3).

The associated spectra and the colour scale used are shown in Figure 9, showing
significant differences that can largely justify the differences in hydrophilicity presented by
the prepared membranes (Tables 1 and 4).
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Figure 9. Infrared associated spectrum and colour scales for sulfonated ethylene-propylene-diene
terpolymer (sEPDM) membrane (M1); chitosan-sulfonated ethylene-propylene-diene terpolymer (Chi-
sEPDM) membrane (M2), and melatonin-chitosan-sulfonated ethylene-propylene-diene terpolymer
(Mel-Chi-sEPDM) membrane (M3).

The HD-IR obtained maps show a relatively uniform, regular, and repeatable distri-
bution of the surface of the obtained membranes, especially for the sulfonated ethylene-
propylene-diene terpolymer (sEPDM) membrane (M1). The composite chitosan-sulfonated
ethylene-propylene-diene terpolymer (Chi-sEPDM) membrane (M2), and melatonin-chitosan-
sulfonated ethylene-propylene-diene terpolymer (Mel-Chi-sEPDM) membrane (M3) show
areas that, with the greatest probability, are due to the agglomeration of chitosan or melatonin–
chitosan (upper left corner of the images), being more obvious for a wave number of 3345 cm−1,
but also present for all other wave numbers (see Table 4). This agglomeration was also high-
lighted in the scanning electron microscopy details (Figure 5c,e).

3.1.3. Thermal Characteristics of the Prepared Membranes

The complex thermal analysis had both the role of highlighting the thermal behaviour
of the membranes at relatively low temperatures (up to 300 ◦C) and their composition
through gas chromatographic analysis coupled with infrared spectrometry of combustion
gases (up to 800 ◦C).

The sample M1 (Figure 10) can be considered stable up to 260 ◦C, losing only 1.65% of
its mass, mainly residual solvent but also some sulphur is removed as SO2, as indicated by
the FTIR analysis of the evolved gases. Between 260–375 ◦C, the sample is losing 11.41% of
its mass, the process being accompanied by a broad exothermic effect with peak at 291 ◦C.
The main degradation process takes place between 375–462 ◦C, when the sample is losing
76.12% of its mass (Figure 10a). The DSC curve indicates two strong exothermic effects, but
the FTIR of the evolved gases indicates a quasi-continuous production of CO2, H2O, or
hydrocarbon fragments, which means that any backbone breaking in smaller fragments is
also accompanied by the combustion of those fragments (Figure 10a–c). The FTIR spectrum
at 429 ◦C, in the middle of the strongest degradation process, indicates the evolving of H2O,
CO2, and CO as combustion products, but also of saturated hydrocarbon fragments from
pyrolysis of the polymer backbone and SO2. The residual carbonaceous mass is burned
after 460 ◦C, the process being accompanied by a strong exothermic peak at 529.2 ◦C. The
FTIR analysis of evolved gases at 529 ◦C indicates that the product is mainly CO2. It can be
seen that some desulfurization processes also take place under 200 ◦C.

The traces for evolving SO2 (1367 cm−1) vs. temperature and traces for evolving CO2
(2355 cm−1) vs. temperature were detailed in the supplementary material (Figure S2, see
supplementary material).
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Figure 10. Thermal characteristics of the sulfonated ethylene-propylene-diene terpolymer (sEPDM)
membrane (M1): (a) thermal diagram; (b) 3D complex analysis; (c) 2D complex analysis.

The sample M2 (Figure 11) is losing 7.49% in the temperature interval RT–225 ◦C, the
associated effect being weak and endothermic with minimum at 85.5 ◦C. The sample is
losing some residual water molecules in this interval, but also the desulfurization processes
start (Figure 11a), as indicated by the FTIR of the evolved gases and the traces for individual
wavenumbers vs. temperature (Figure 11b). In the interval 225–400 ◦C, the sample begins
to suffer an oxidative degradation, with multiple exothermic peaks visible on the DSC
curve, partially overlapped. The FTIR of evolved gases allows identification of combustion
products such as CO2, CO, and H2O, but also saturated hydrocarbons from polymer
backbone fragmenting and SO2, indicating the complexity of the thermal degradation
(Figure 10b,c). The majority of SO2 is evolving in this interval, with only minor peaks being
identified on the compound trace after 400 ◦C (Figure 10a). The same can be stated for the
saturated hydrocarbon fragments: after 400 ◦C, only a small peak is observable on the trace
line (Figure 10c). After 400 ◦C, the sample suffers mostly oxidation processes, as indicated
by the evolving of CO2 and H2O in larger quantities, culminating with the burning of the
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residual carbonaceous mass, which is accompanied by the strong and sharp exothermic
effect from 617.2 ◦C. The recorded mass loss after 400 ◦C is 42.60%.
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Figure 11. Thermal characteristics of the chitosan–sulfonated ethylene-propylene-diene terpolymer
membranes (Chi-sEPDM) (M2): (a) thermal diagram, (b) 3D complex analysis; (c) 2D complex analysis.

The traces for evolving SO2 (1367 cm−1), CO2 (2355 cm−1), hydrocarbons (2964 cm−1),
and H2O (3566 cm−1) vs. temperature were detailed in the supplementary material (Figure S3,
see supplementary material).

Sample M3 (Figure 12) is losing 4.54% up to 220 ◦C, mostly water molecules and some
traces of SO2, as indicated by the FTIR spectra. The principal degradation processes take
place between 220 ◦C and 475 ◦C, when a series of exothermic effects are seen on the DSC
curve, indicating multiple oxidation reactions. The bulk of gaseous products CO, H2O,
hydrocarbon fragments, and SO2 is eliminated in this interval. The recorded mass loss is
69.49%. After 475 ◦C, the residual carbonaceous mass is burned, the principal degradation
product identified by FTIR being CO2.

The traces for evolving SO2 (1367 cm−1), CO2 (2355 cm−1), hydrocarbons (2964 cm−1),
and H2O (3566 cm−1) vs. temperature were detailed in the supplementary materials
(Figure S4, see supplementary material).
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methods of controlled release [71]. 
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• A universal dose of melatonin cannot be prescribed because each body has its own 

production [72]; 

Figure 12. Thermal characteristics of the melatonin-chitosan-sulfonated ethylene-propylene-diene
terpolymer membranes (Mel-Chi-sEPDM) (M3): (a) thermal diagram, (b) 3D complex analysis; (c) 2D
complex analysis.

The results of complex thermal analysis, coupled with the gas chromatography and
infrared spectrometry, provide the stability range of each prepared membrane but, above
all, confirm their composition.

3.2. Transport and Release of the Melatonin through Prepared Membranes

A natural hormone, synthesized in the body, melatonin can be administered orally
most of the time, and the main concern of the researchers was to find the most suitable
methods of controlled release [71].

However, there are some specific aspects that make melatonin remain constantly in
the attention of researchers in order to design new methods of delivery in the body:

• A universal dose of melatonin cannot be prescribed because each body has its own
production [72];

• Age and health greatly affect the production of the pineal gland [73];
• The time of day is very important because the production of melatonin in the body is

cyclical [74];
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• In the case of accidents, especially those from various sports competitions, local
administration is necessary (oral cavity, skin, bones, joints) [75,76].

All these considerations have encouraged experimental research on the transport and/or
release of melatonin through composite membranes of chitosan-sulfonated ethylene-propylene-
diene terpolymer membranes (Chi-sEPDM), and the melatonin-chitosan-sulfonated ethylene-
propylene-diene terpolymer composite membranes (Mel-Chi-sEPDM), even if recently a
mathematical model of the release of various active substances has been proposed [66].

In this study, the transport “through” the composite membrane obtained in a two-
compartment membrane system and the release of melatonin “through” the composite
membrane in an open system (the receiving solution is renewed) were followed.

For comparison, melatonin-chitosan-sulfonated ethylene-propylene-diene terpolymer
(Mel-Chi-sEPDM) composite membrane was tested in a system for releasing melatonin
“from inside” the membrane to a receiving phase consisting of synthetic solutions with
imposed pH and salinity.

3.2.1. Transport of Melatonin Transport through the Obtained Membranes (M1 and M2)

The melatonin transport experiments through sulfonated ethylene-propylene-diene
terpolymer (sEPDM) membrane (M1) and chitosan-sulfonated ethylene-propylene-diene
terpolymer (Chi-sEPDM) membrane (M2) were carried out from a 100 mL source phase,
with a concentration of 2 g/L, and imposed pH (6.0, 7.0 and 8.0) or salinity (1.0%, 3.0%
and 5.0% NaCl) 100 mL receiving phases. The compartments of the membrane system
were constantly stirred. The results obtained (Figure 13) show that pH influences the
transport, especially in the second part of the studied interval (Figure 13a), while sodium
chloride has an effect on the transport from the beginning of the range, especially at lower
concentrations (Figure 13b). The pronounced increase in salinity disfavours the transport,
most probably by reducing the solubility of melatonin in the receiving phase.
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Figure 13. Time variation of melatonin flow through sulfonated ethylene-propylene-diene terpoly-
mer (sEPDM) membranes (M1) and chitosan-sulfonated ethylene-propylene-diene terpolymer (Chi-
sEPDM) membranes (M2), depending on pH (a) and salinity (b).

The transport of melatonin in the system with the receiving phase of variable pH
is mainly determined by the difference in concentration between the aqueous phases,
so by the solubility of melatonin in the aqueous phases of relatively close composition
(Figure 13a). On the other hand, the transport of melatonin to the receiving phase of
controlled salinity corresponds to a coupled transfer mechanism (Figure 13b), in which the
melatonin transport from source phase to the receiving phase is coupled with the transport
of sodium ions in the opposite direction (Figure 14).
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Figure 14. Transport schemes in the case of the receiving phase of controlled pH (a) or imposed
salinity (b).

3.2.2. Release of Melatonin through the Obtained Membranes

The study of the controlled release of melatonin was carried out for a source phase
of 5 mL, with a concentration of 2 g/L, and receiving phases of a much larger volume of
5 L with imposed pH (6, 7.0 and 8) or salinity (1%, 3% and 5% NaCl). Basically, a set of
100 vials containing the source phase is immersed in a vessel with 10.0 L of recirculated
receiving solution, with a flow rate of 100 mL/min. Thus, it can be appreciated that the
receiving phase will remain at the imposed pH and salinity. Ten of the vials from the set
are taken out daily for analysis, for 10 days, seven of them for averaging the results and
three to be sent for validation of the analyses.

The delivery results of melatonin for ten consecutive days through sulfonated ethylene-
propylene-diene terpolymer (sEPDM) membrane (M1) and chitosan-sulfonated ethylene-
propylene-diene terpolymer (Chi-sEPDM) membrane (M2) are presented in Figure 15.

Membranes 2023, 13, 282 22 of 29 
 

 

 

 

 

 

Figure 15. Time variation of melatonin cumulative release through sulfonated ethylene-propylene-

diene terpolymer (sEPDM) membrane (M1) and chitosan-sulfonated ethylene-propylene-diene ter-

polymer (Chi-sEPDM) membrane (M2), depending on pH (a) and salinity (b). 

The results obtained for the release of melatonin show that chitosan-sulfonated eth-

ylene-propylene-diene terpolymer (Chi-sEPDM) membrane (M2) allows a faster transfer 

and in an amount that approaches the data from the literature, while sulfonated ethylene-

propylene-diene terpolymer (sEPDM) membrane (M1) has a low but relatively constant 

release over time. 

For the sulfonated ethylene-propylene-diene terpolymer (sEPDM) membrane (M1) 

that contains sulfonic reactive functional groups (SO3H), the interactions with melatonin 

during its transport and release are predictable, since at the working pH they are in sul-

fonate form (SO3-). In the case of chitosan-sulfonated ethylene-propylene-diene terpoly-

mer (Chi-sEPDM) composite membrane (M2), the interactions with melatonin in transport 

and release are complex because at the working pH the amino groups can be free or ion-

ized (ammonium) (Figure 16). 

 
(a) (b) 

Figure 16. Schematic representation of the polymer mixture: before (a) and after (b) the formation 

of the chitosan–sulfonated ethylene-propylene-diene terpolymer membrane (Chi-sEPDM) (M2). 

The ionic situation presented in Figure 16b is close to reality in the case of acidic pH, 

but at pH = 7 or higher, the ammonium groups will change to the amino form, and the 

Figure 15. Time variation of melatonin cumulative release through sulfonated ethylene-propylene-
diene terpolymer (sEPDM) membrane (M1) and chitosan-sulfonated ethylene-propylene-diene ter-
polymer (Chi-sEPDM) membrane (M2), depending on pH (a) and salinity (b).
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The results obtained for the release of melatonin show that chitosan-sulfonated
ethylene-propylene-diene terpolymer (Chi-sEPDM) membrane (M2) allows a faster transfer
and in an amount that approaches the data from the literature, while sulfonated ethylene-
propylene-diene terpolymer (sEPDM) membrane (M1) has a low but relatively constant
release over time.

For the sulfonated ethylene-propylene-diene terpolymer (sEPDM) membrane (M1)
that contains sulfonic reactive functional groups (SO3H), the interactions with melatonin
during its transport and release are predictable, since at the working pH they are in sul-
fonate form (SO3−). In the case of chitosan-sulfonated ethylene-propylene-diene terpoly-
mer (Chi-sEPDM) composite membrane (M2), the interactions with melatonin in transport
and release are complex because at the working pH the amino groups can be free or ionized
(ammonium) (Figure 16).
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Figure 16. Schematic representation of the polymer mixture: before (a) and after (b) the formation of
the chitosan–sulfonated ethylene-propylene-diene terpolymer membrane (Chi-sEPDM) (M2).

The ionic situation presented in Figure 16b is close to reality in the case of acidic
pH, but at pH = 7 or higher, the ammonium groups will change to the amino form,
and the membrane charge will be slightly negative (due to the sulfonate groups). All
these considerations explain to a good extent not only the large difference between the
hydrophilicity of the prepared membranes but also the influence of pH and salinity on the
transport and release of melatonin.

The study of the sensitivity to pH variation for the case of chitosan-sulfonated ethylene-
propylene-diene terpolymer (Chi-sEPDM) composite membrane (M2) requires a greater
depth compared to the experiments carried out so far, by widening the range both towards
strongly acidic and towards strongly basic environments.

3.2.3. Melatonin Release from Melatonin-chitosan-sulfonated Ethylene-propylene-diene
Terpolymer Composite Membranes (Mel-Chi-sEPDM, M3)

Melatonin-chitosan-sulfonated ethylene-propylene-diene terpolymer composite mem-
branes (Mel-Chi-sEPDM, M3) were tested for the release of melatonin “from” their composi-
tion in synthetic solutions with pH and salinity similar to those of the previous experiments.
The surface of the membranes in contact with 5.0 mL synthetic solution, from each of the
100 test bottles, is 1 cm2, and the mass of a membrane is 24.5 ± 0.5 mg, so the amount of
melatonin in each membrane (available for release) is approx. 6.25 mg.

The results obtained (Figure 17) show that the release rate of melatonin starts with
approx. 1.25 ± 0.15 mg/cm2 per day, for the first day, and decreases constantly, reaching
0.1 ± 0.05 mg/cm2·per day, on the tenth day. In this case as well, the increase in pH slightly
favours the release of melatonin (Figure 17a), and the increase in salinity causes a slower
release of this hormone (Figure 17b).
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Figure 17. The variation of the amount of melatonin delivered daily per surface unit (cm2) of
melatonin-chitosan-sulfonated ethylene-propylene-diene terpolymer composite membranes (Mel-
Chi-sEPDM, M3), over a period of 10 days: (a) depending on the pH and (b) the salinity of the
receiving phase.

What must be emphasized, from the perspective of the applications, is that after the
fifth day, the amount of melatonin delivered drops almost five times, after which the level
remains low and relatively constant.

These observations are useful for the administration of melatonin, by means of this
type of composite membrane, in areas of the body with a higher pH, or in narrow places
with profuse perspiration, but taking it to refresh the melatonin content of the membrane
or to change the whole membrane after 5 days of application.

3.3. Aspects Regarding the Administration Method of Melatonin Using the Principle of the
Studied Systems

The delivery of melatonin orally, in doses of 1 mg to 10.0 mg per day, is widespread
and involves ingestion as pure powder or conditioned (formulated) powder using various
compounds that ensure delayed release, in the form of cachets, capsules, or tablets [77].
Although other techniques and delivery procedures have been developed (gels, bandages,
creams, patches) [78], the approach to the direction of release or delivery with membranes
is of special interest, especially for cases of accidents resulting in scratches, punctures, tears,
trauma, fractures, injuries caused by practicing various contact sports, the use of sports
equipment, or motorized sports [79].

In the case of the present study, the development of composite membranes, for the
transport and delivery of melatonin, based on an ion polymer (sEPDM) with excellent
mechanical, thermal, and chemical (pH, oxidative potential, bacterial attack) properties and
a biopolymer (chitosan) that is biocompatible and interacts excellently with melatonin, en-
sures the diversification of delivery forms of this hormone in the case of sports biomedicine
applications (Figure 18).

Thus, the M2 composite membrane, which allows the transport and delivery of
melatonin from a quasi-saturated source phase toward the affected tissue, can be applied
in the case of sprains, dislocations, joint fractures, broken or displaced teeth, as soft bags or
soft capsules that, at certain intervals, can be “refuelled” without removing them from the
place where they were placed (Figure 18).

For cases of superficial injuries (skin, head, fingers, spine), the composite membrane
M3 is indicated to be applied as patches or adhesive dressings, the most suitable places
being the narrow areas of the body.
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Figure 18. Possible ways to deliver melatonin using chitosan–sEPDM (M2) or melatonin–chitosan–
sEPDM (M3) composite membranes.

Both types of membranes are included in the non-resorbable category, being removed
after the lesions have either improved or healed.

Unlike oral administration, when melatonin comes into contact with a strongly acidic
(pH 2–3, in the stomach) or basic (intestines) environment, in the case of the skin and oral
cavity, the pH is close to neutral but highly dependent on the external contact environment,
which involves studying transport and delivery over the entire pH scale.

4. Conclusions

This paper presents the preparation and characterization of chitosan and sulfonated
ethylene-propylene-diene terpolymer (Chi-sEPDM) composite membrane, and melatonin-
chitosan-sulfonated ethylene-propylene-diene terpolymer composite membranes (Mel-Chi-
sEPDM), and its controlled release performance in synthetic aqueous solutions.

The membranes were obtained from an 8% sEPDM solution in toluene (w/w), in which
chitosan or melatonin–chitosan (1:1, w/w) powders were dispersed in an ultrasonic field
(sEPDM:Chi=1:1, w/w and Mel:Chi:sEPDM=0.5:0.5:1, w/w/w), through controlled vacuum
evaporation. They were morphologically and structurally characterized by scanning elec-
tron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive
spectroscopy analysis (EDAX), thermal analysis (TG, DSC), thermal analysis coupled with
infrared chromatography and analysis, and contact angle measurements, but also from
the perspective of performance in the processes of transport and release of melatonin in
dedicated environments (aqueous solution with controlled pH and salinity).

The transport of melatonin in the system with the receiving phase of variable pH
is mainly determined by the difference in concentration between the aqueous phases, so
by the solubility of melatonin in aqueous phases of relatively close composition, while
the transport of melatonin to the receiving phase of controlled salinity corresponds to a
coupled transfer mechanism in which the transport of melatonin from the source phase to
the receptor phase is coupled with the transport of sodium ions in the opposite direction.

The results obtained for the release of melatonin show that chitosan-sulfonated
ethylene-propylene-diene terpolymer (Chi-sEPDM) membrane (M2) allows a faster transfer
and in a quantity that approaches the data from the literature, while sulfonated ethylene-
propylene-diene terpolymer (sEPDM) membrane (M1) has a low but relatively constant
release over time.

The prepared membranes can release melatonin in amounts between 0.4 mg/cm2·per day
(M1), 1.6 mg/cm2·per day (M2), and 1.25 mg/cm2·per day (M3).
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50. Szczepański, P.; Tanczos, S.K.; Ghindeanu, L.D.; Wódzki, R. Transport of p-nitrophenol in an agitated bulk liquid membrane
system–Experimental and theoretical study by network analysis. Sep. Purif. Technol. 2014, 132, 616–626. [CrossRef]

51. Diaconu, I.; Nechifor, G.; Nechifor, A.C.; Totu, E.E.; Ruse, E. The transport of nitrophenols through liquid membranes. Rev. Chim.
2009, 60, 1243–1246.

52. Nechifor, A.C.; Pîrt,ac, A.; Albu, P.C.; Grosu, A.R.; Dumitru, F.; Dimulescu (Nica), I.A.; Oprea, O.; Pas, cu, D.; Nechifor, G.;
Bungău, S.G. Recuperative Amino Acids Separation through Cellulose Derivative Membranes with Microporous Polypropylene
Fiber Matrix. Membranes 2021, 11, 429. [CrossRef] [PubMed]

53. Motelica, L.; Ficai, D.; Oprea, O.-C.; Ficai, A.; Ene, V.-L.; Vasile, B.-S.; Andronescu, E.; Holban, A.-M. Antibacterial Biodegradable
Films Based on Alginate with Silver Nanoparticles and Lemongrass Essential Oil–Innovative Packaging for Cheese. Nanomaterials
2021, 11, 2377. [CrossRef] [PubMed]

54. Bartlam, C.; Morsch, S.; Heard, K.W.; Quayle, P.; Yeates, S.G.; Vijayaraghavan, A. Nanoscale infrared identification and mapping
of chemical functional groups on graphene. Carbon 2018, 139, 317–324. [CrossRef]

55. Dimulescu (Nica), I.; Nechifor, A.; Urducea, C.B.; Oprea, O.; Paşcu, D.; Totu, E.; Albu, P.; Nechifor, G.; Bungău, S. Accessible
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