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Abstract: Plasmid DNA is used as a vector for gene therapy and DNA vaccination; therefore, the
establishment of a mass production method is required. Membrane filtration is widely employed as a
separation method suitable for the mass production of plasmid DNA. Furthermore, the separation
of plasmid DNA using microfiltration and ultrafiltration membranes is being investigated. Because
plasmid DNA has a circular structure, it undergoes significant deformation during filtration and
easily permeates the membrane, hindering the selection of separation membranes based on molecular
weight. In this study, we applied affinity microfiltration to plasmid DNA purification. α-Fe2O3 with
an isoelectric point of approximately 8 and a particle size of 0.5 µm was selected as the ligand for
two-stage affinity microfiltration of plasmid DNA. In the first stage of microfiltration, the experiment
was conducted at a pH of 5, and a cake of α-Fe2O3 with bound plasmid DNA was obtained. Next,
liquid permeation (pH 9 and 10) through the cake was performed to elute the bound plasmid DNA.
Plasmid DNA was eluted during the early phase of liquid permeation at pH 10. Furthermore, agarose
gel analysis confirmed the usefulness of the two-stage affinity microfiltration method with adsorption
and desorption for plasmid DNA purification.
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1. Introduction

Recently, gene therapy and DNA vaccines have been actively developed for the
treatment of various diseases [1]. Gene therapy requires a vector that acts as a carrier for
gene replacement, and plasmids are used as non-viral vectors [2,3]. Plasmid DNA is an
extranuclear gene that exists in bacteria such as Escherichia coli and replicates independently
of chromosomal DNA. To use plasmid DNA in gene therapy, it is necessary to mass-
produce pharmaceutical-grade plasmid DNA and develop industrial-scale isolation and
purification methods [4,5]. Plasmid DNA purification starts with the process of extracting
plasmid DNA from the inside of the bacterial cells, followed by lysis through the addition
of chemicals, separation of the bacterial mass, and chromatography [6,7]. The use of
hazardous substances that affect the human body is preferably avoided, and a safe, scalable,
and cost-effective purification process for plasmid DNA needs to be developed.

Membrane processes have immense potential for large-scale plasmid purification.
Several studies [8–15] have demonstrated that membrane-based processes are effective for
the purification of plasmid DNA. Microfiltration membranes are mainly used to remove
contaminants such as chromosomal DNA, proteins, and aggregates of bacteria because
capturing nanosized plasmid DNA is difficult [11,14]. In contrast, ultrafiltration membranes
that can capture nanosized particles are used to capture and purify or concentrate plasmid
DNA [14]. However, as plasmid DNA has a circular structure and is significantly deformed
during filtration, it may permeate the membrane, depending on the filtration conditions,
even when an ultrafiltration membrane is used. Therefore, although the selection of
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separation membranes based on molecular weight is difficult, several studies have been
conducted on the physical mechanisms governing DNA transmission and the effects of
membrane pore size and operating conditions on the DNA sieving coefficient [9,10,12].

Affinity membrane filtration, in which a large ligand is used to selectively bind
the desired materials in solution and is retained by a semipermeable membrane, is a
promising purification technique for biopolymers [16,17]. Using this method, plasmid
DNA can be adsorbed onto submicron-sized ligands and captured using microfiltration
membranes. Since the performance of affinity filtration is significantly influenced by the
specific binding interactions between the targeted material and the ligand, various types of
ligands have been applied to attain a higher level of separation efficiency for biopolymers.
Affinity substances for plasmid DNA include metal ions, metal oxides, peptides, and
proteins [18–21]. In general, these ligands are used as a fixed layer; however, in this study,
we investigated a membrane filtration method in which metal oxide particles of a size
that can be captured using a microfiltration membrane are added as ligands to a solution
containing plasmid DNA.

E. coli is often used for the production of plasmid DNA, and several extraction methods
have been investigated [22,23]. Cell disruption for plasmid DNA extraction should be
performed to minimize damage to plasmid DNA and genomic DNA. Alkaline lysis is
the most commonly used method for cell disruption; however, it has known limitations,
including low plasmid DNA recovery and a time-consuming process. Haberl et al. showed
that electroextraction is a swifter alternative to alkaline lysis for the extraction of plasmid
DNA [22]. Padilla-Zamudio et al. showed that cell disruption in a bead mill was more
efficient in releasing plasmid DNA than alkaline lysis [23]. High pressure is also effective
for cell disruption, and it is known that metabolites such as nucleic acids can be extracted
from E. coli cells at pressures above 600 kPa [24]. Each extraction method has advantages
and disadvantages; therefore, to establish a highly efficient purification method for plasmid
DNA, an examination of the extraction of plasmid DNA, including its separation properties
after cell disruption, is necessary.

In the present study, the application of affinity microfiltration to plasmid DNA purifi-
cation and the search for ligands was examined. In addition to the selectivity behaviors in
the binding process of plasmid DNA to the ligand and the elution process of the bound
plasmid DNA, the membrane filtration behaviors of plasmid and ligand were also investi-
gated in this system. Furthermore, we investigated the cell disruption method for plasmid
DNA extraction and the membrane filtration properties of the disrupted suspension. The
results of this study demonstrated the effectiveness of a two-stage microfiltration process,
in which both the adsorption and desorption of plasmid DNA to large ligands exhibit
immense potential for plasmid DNA purification.

2. Materials and Methods
2.1. Materials

A 3.0 kb plasmid DNA pBluescript II SK(+) was obtained from Stratagene Corp., San
Diego, CA, USA. Escherichia coli DH5α (Nippon Gene Co. Ltd., Tokyo, Japan) was used
as the host for the plasmid and grown at 303 K on an LB medium supplemented with the
ampicillin antibiotic. The test solution was prepared by the following three steps: alkaline
lysis of E. coli containing plasmid DNA, the addition of CaCl2 for the removal of high
molecular weight RNA [25], and the addition of ethanol for the concentration of nucleic
acid. The plasmid DNA-containing sediment was dissolved in 10 mM Tris-HCl buffer
(pH 5), and this solution, free of impurities such as proteins, was used for a two-stage
affinity microfiltration experiment. The ligand employed in the experiments was α-Fe2O3
(particle size: 0.5 µm) provided by the Kojundo Chemical Lab. Co. Ltd., Saitama, Japan. A
microelectrophoresis Mark II apparatus (Rank Brothers Ltd., Cambridge, UK) was used to
determine the zeta potential of α-Fe2O3 particles.
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2.2. Adsorption and Desorption Experiments

Plasmid DNA solutions of different concentrations were prepared and added to α-
Fe2O3 slurries with known concentrations (0.1–80 mg/mL) to measure the adsorption
properties. The solvents used for the solutions and slurries were pH 5–7 10 mM Tris-HCl
buffer. An amount of 1 mL of each solution was maintained at a constant temperature
of 298 K for 1 h, which was confirmed to be sufficient to achieve a quasi-steady state in
the preliminary test. The desorption of the plasmid DNA adsorbed onto the particles was
performed by changing the pH of the solution and allowing it to stand for 1 h. The amounts
of adsorbed or desorbed plasmid DNA were determined from the concentrations of plasmid
DNA in the solutions before and after the experiments using a spectrophotometer (UV-1800,
Shimadzu Corp., Kyoto, Japan). The plasmid DNA used in the adsorption/desorption
experiments was purified using a Qiagen plasmid midi kit.

2.3. Two-Stage Affinity Microfiltration Experiments

An unstirred batch filtration cell with an effective membrane area of 19.6 cm2 was
utilized in this study. Microfiltration experiments were performed in the dead-end filtration
mode under constant pressure by applying compressed nitrogen gas [26]. The filtrate
was collected in a reservoir placed on an electronic balance (Shimadzu Corp., Kyoto,
Japan) connected to a personal computer to collect and record mass versus time data. The
weights were converted to volumes using density correlations. A mixed cellulose ester
microfiltration membrane (Advantec Toyo Co. Ltd., Tokyo, Japan) with a nominal pore
size of 0.1 µm was employed in the experiments. In the first stage of microfiltration, the
experiment was conducted under the condition of pH 5 using test solutions containing
ligands (160 mL, the mass fraction of the solids s = 0.016), and a cake of α-Fe2O3 with
plasmid bound was obtained. In the second stage of microfiltration, 10 mL of 1 M Tris-HCl
buffer (pH 9) was added to the top of the cake and allowed to permeate after standing
for 1 h. Next, the permeation of 2 M Tris-HCl buffer (pH 10, 50 mL) through the cake
was performed to elute the bound plasmid DNA. The concentration of plasmid DNA in
the permeate was measured at 260 nm using a spectrophotometer (UV-1800, Shimadzu
Corp., Kyoto, Japan). The quality of the plasmid DNA was confirmed using agarose gel
electrophoresis. A permeate of 5 µL was mixed with 1 µL of 6×loading buffer (0.25%
bromophenol blue, 0.25% xylenecyanol, and 5 mM EDTA in 30% glycerol) and subjected to
electrophoresis. Electrophoresis was performed in 0.6% (w/v) agarose (Nippon Gene Co.
Ltd., Tokyo, Japan) containing ethidium bromide for 1 h at 100 V for using a submarine
electrophoresis system (Nihon Eido Co.Ltd., Tokyo, Japan). Gels were placed on a UV table
(Atto Corp., Tokyo, Japan), and photographs were taken with Polaroid (Funakoshi Co. Ltd.,
Tokyo, Japan). OneSTEP Marker 1 (λ/Hind III digest, Nippon Gene Co. Ltd., Tokyo, Japan)
was used as a molecular marker. The two-stage affinity microfiltration experiments were
performed more than three times to ensure the reproducibility of the results.

2.4. Cell Disruption Experiments

Three mechanical cell disruption methods were investigated to extract plasmid DNA
from E. coli cells. The E. coli cells, after cultivation, were collected using centrifugation
(3000 rpm, 15 min) and suspended in pure water to prepare a suspension (3.0 × 108 cell/mL).
10 mL of E. coli suspension was disrupted with an ultrasonic homogenizer (UP-200S, Dr.
Hielscher GmbH, Stuttgart, Germany) at an operating frequency of 24 kHz and a nominal
load power output of 200 W for 60 s. Cell disruption using a bead mill was performed by
setting a 2 mL tube (zirconia beads of 1 mm diameter, 60 beads, Sarstedt Inc., Newton, MA,
USA) in a Delta Mixer (Se-08, Taitec Corp., Tokyo, Japan) and shaking for 30 min at 3000 rpm.
An attempt was made to extract the plasmid DNA from the cells using electroporation.
The condition was as follows: 0.2 cm-gap sterile electroporation cuvette, pulse number
10, voltage 500 V, pulse length 100 ms, and interval 0.1 s using the Gene Pulser Xcell
Electroporation System (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Photomicrographs
of E. coli after disruption were obtained using a digital photomicroscope (BA210EINT,
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Shimadzu Rika Corp., Tokyo, Japan). A suspension of disrupted E. coli cells was subjected
to affinity filtration after removing solids with constant pressure microfiltration (p = 49 kPa,
mixed cellulose ester membrane with 0.1 µm).

3. Results and Discussion
3.1. Adsorption and Desorption Properties of Plasmid DNA

Figure 1 shows the pH dependence of the zeta potential of α-Fe2O3 particles used as
ligands. The isoelectric point is approximately pH 8, and it is positively charged at a pH
lower than eight and negatively charged at a pH above eight. Since plasmid DNA is a
polyanion, it is expected to be adsorbed on the surface of positively charged α-Fe2O3 by
setting the pH below seven. In contrast, in a solution environment with a pH greater than
nine, an electrostatic repulsive force acts between α-Fe2O3 and plasmid DNA.
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The adsorption isotherms of plasmid DNA onto α-Fe2O3 were obtained through batch
adsorption experiments, and the results at pH 7 are shown in Figure 2. The experimental
data were approximated using the Langmuir adsorption isotherm equation, represented by

W =
aWsC

1 + aC
, (1)

where W is the amount of plasmid DNA adsorbed, a is the Langmuir adsorption constant,
Ws is the maximum adsorption capacity of α-Fe2O3 for plasmid DNA, and C is the equilib-
rium concentration of plasmid DNA in the solution. The solid line in the figure represents
the calculated value based on Equation (1). This result is consistent with the findings of Liu
et al., in which the DNA adsorption behavior of modified magnetic nanoparticles follows
the Langmuir isotherm model [27]. As can be seen from the figure, the amount of adsorp-
tion is large, even at extremely low concentrations, and the affinity of plasmid DNA for
α-Fe2O3 is extremely high. However, the maximum adsorption amount of plasmid DNA on
the modified magnetic nanoparticles used by Liu et al. was approximately 10 times larger
than that on the iron oxide particles we used. It is expected that the adsorption amount of
plasmid DNA can be increased by modifying the surface of the iron oxide particles.

In Figure 3, the maximum adsorption capacity Ws is plotted against the pH of the
solution. The amount of plasmid DNA adsorbed is strongly dependent on pH and decreases
with increasing pH at pH 5–7. The Ws at pH 5 was approximately twice that at pH 7. By
lowering the pH, more plasmid DNA can be adsorbed; however, if it is extremely low,
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plasmid DNA may deteriorate. Therefore, the first stage of microfiltration involving the
binding of plasmid DNA was performed at pH 5.
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Figure 4 shows the effects of pH on the desorption of plasmid DNA from α-Fe2O3. Af-
ter the plasmid was adsorbed onto α-Fe2O3, the pH of the solution was gradually increased,
and the desorption efficiency D of the plasmid DNA was determined by measuring the
amount of desorbed plasmid DNA that migrated into the solution. The plasmid DNA was
desorbed at a pH above the isoelectric point of α-Fe2O3, and the desorption efficiency D was
approximately 100% above pH 10. At pH 10, the plasmid DNA was desorbed from α-Fe2O3
particles (0.125 mg/mL) and recovered as a solution with a concentration of 1.6 µg/mL.
Impurities can be separated using adsorption filtration of the plasmid DNA, and subse-
quently, the plasmid DNA can be recovered using desorption filtration. Therefore, α-Fe2O3
particles are determined to be suitable as a ligand. The second stage of microfiltration
involving the desorption of plasmid DNA was performed using liquid permeation with a
stepwise increase in pH.
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3.2. Two-Stage Affinity Microfiltration Properties of Plasmid DNA

Although plasmid DNA permeates the microfiltration membrane, the ligand α-Fe2O3
particles are captured using the 0.1 µm microfiltration membrane, forming a filter cake.
Plasmid DNA can be purified using two-stage microfiltration by adsorbing the plasmid
DNA onto the α-Fe2O3 cake to separate impurities and subsequently desorbing from the
α-Fe2O3 cake. Based on the results of the adsorption experiments, the amount of α-Fe2O3
required to adsorb almost 100% of the plasmid DNA in the test solution prepared from E.
coli was calculated, and adsorption microfiltration experiments were performed. Typical
data of the microfiltration experiments of α-Fe2O3 and α-Fe2O3 with plasmid DNA-bound
slurries at pH 5 are plotted in Figure 5 in the form of the reciprocal filtration rate (dθ/dv)
against the filtrate volume v per unit effective membrane area. For the filtration of the
α-Fe2O3 slurry, the plots appeared to be linear according to the Ruth filtration rate equation,
expressed as [28]

dθ

dv
=

µρsαav

p(1 − ms)
(v + vm), (2)

where θ is the filtration time, µ is the viscosity of the filtrate, ρ is the density of the filtrate, s
is the mass fraction of the solids in the slurry, p is the applied filtration pressure, vm is the
fictitious filtrate volume per unit effective membrane area, and m is the ratio of the mass
of the wet cake to the mass of the dry cake. The average specific cake resistance αav was
calculated from Equation (2) using the slope of the plot. In contrast, for the filtration of
α-Fe2O3 with the plasmid DNA-bound slurry, cake formation was significantly affected
by particle settling. After the formation of the filter cake, the supernatant fluid permeated
the filter cake. During this period, dθ/dv remained approximately constant. From this
constant value (dθ/dv)p, αav can be calculated as

αav =
p

µw

{(
dθ

dv

)
p
−
(

dθ

dv

)
m

}
, (3)

where w is the net solid mass of the entire cake per unit effective membrane area, and
(dθ/dv)m is the reciprocal filtration rate, which is equivalent to the flow resistance of the
membrane. It was observed that average specific cake resistance decreased by approxi-
mately 1/3 from 3.9 × 1012 m/kg to 1.0 × 1012 m/kg because of the binding of plasmid
DNA to α-Fe2O3. This phenomenon is attributed to the charge neutralization of positively
charged α-Fe2O3 by the polyanion plasmid DNA, resulting in floc formation and coarsening.
In addition, the filtrate did not contain plasmid DNA, as shown in Figure 6, lane 7.
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(ethanol addition); lane 7, filtrate (pH 5); lane 8, permeate (pH 9); lane 9, permeate (pH 10 early
phase); lane 10, permeate (pH 10 later phase).

In Figure 7, dθ/dv and the optical density at a wavelength of 260 nm (OD260) of the
permeate are plotted against the permeate volume v per unit effective membrane area in
the elution process. Upon changing the pH of the permeate from 9 to 10, the value of
dθ/dv changed from 400 s/m to 600 s/cm, indicating a change in the cake structure. A
higher pH resulted in a higher average specific cake resistance αav, as determined from
Equation (3). Furthermore, the variation in OD260 of the permeate showed that plasmid
DNA was eluted in the early phase of the pH 10 liquid permeation (2 M Tris-HCl buffer).
This was confirmed using agarose gel analysis, as shown in Figure 6 (lanes 9 and 10). The
test solution with OD260 = 4.05 was recovered as a solution with OD260 = 1.05 using a
two-stage affinity microfiltration.

Figure 6 shows the results of the agarose gel electrophoresis of the solutions obtained
after each treatment. The solution (lane 6) that was subjected to adsorption filtration after
alkaline lysis of E. coli (lane 3) and the addition of CaCl2 (lanes 4 and 5) were found to
contain plasmid DNA and a large amount of low-molecular-weight RNA. Neither plasmid
DNA nor RNA was confirmed in the filtrate (lane 7) of the adsorption filtration; therefore,
both nucleic acids are assumed to be adsorbed by α-Fe2O3 and exist in the cake on the
membrane surface. In the desorption filtration of plasmid DNA, a small amount of low-
molecular-weight RNA was confirmed in the permeate of pH 9 (lane 8). Subsequently,
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plasmid DNA and RNA were confirmed in the initial permeate at pH 10 (lane 9), and only
plasmid DNA was confirmed in the subsequent permeate at pH 10 (lane 10). Therefore,
highly purified plasmid DNA can be obtained from E. coli using a two-stage microfiltration
process with adsorption and desorption.
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3.3. Cell Disruption Properties

The above study applied the two-stage microfiltration process with adsorption and
desorption and was performed on a solution containing plasmid DNA after alkaline lysis of
E. coli. To establish a safe method that uses the minimum amount of chemicals possible, we
investigated a plasmid DNA release method. The release of plasmid DNA from E. coli was
attempted with ultrasonic irradiation, bead milling, and electroporation. In both methods,
plasmid DNA was released from the E. coli suspension after treatment. However, long-term
ultrasonic irradiation destroys the released plasmid DNA and does not increase the recovery
amount, and bead mill disruption cuts the genomic DNA, rendering the subsequent
purification difficult. Figure 8 shows micrographs of E. coli suspensions treated with each
method. Compared with untreated cells, the change after electroporation was remarkable,
and large flocs were formed. Biopolymers, such as genomic DNA, polysaccharides, and
proteins, were released from E. coli using electroporation, and aggregates were formed
along with the cells.
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Microfiltration was performed to remove impurities and obtain a plasmid DNA
solution, and the results are plotted in Figure 9 in the form of the reciprocal filtration
rate (dθ/dv) against the filtrate volume v per unit effective membrane area. In the case
of ultrasonic irradiation and bead milling, the flux decline was significant. In contrast,
in the case of electroporation, in which aggregates were formed, the filtration rate was
extremely high, confirming the superior separation performance. OD260 of the filtrates
obtained using ultrasonic irradiation, bead milling, and electroporation were 8.80, 9.85,
and 7.08, respectively, and OD260/OD280 ratios were 1.5, 1.9, and 2.0, respectively. In terms
of plasmid DNA extraction, Haberl et al. show that electroextraction leads to a higher
concentration of extracted plasmid DNA than alkaline lysis, which is commonly used [22].
This filtrate containing plasmid DNA can be purified using a two-stage microfiltration
process using α-Fe2O3, as described above. The recovered solution using a two-stage
affinity microfiltration exhibited an OD260/OD280 ratio of 1.8, indicating a high degree of
nucleic acid purification [29]. However, to further improve the degree of purification of
plasmid DNA, an operation to remove RNA, such as the addition of CaCl2 or degradation
with RNase, is required. In addition, attention should be paid to the detection and removal
of impurities that do not contribute to the OD260/OD280 ratio.
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4. Conclusions

The affinity microfiltration of plasmid DNA using α-Fe2O3 as a ligand was examined.
The adsorption and desorption properties of plasmid DNA revealed that α-Fe2O3 particles
are suitable ligands. The data from two-stage affinity microfiltration, including both the
binding process of plasmid DNA to α-Fe2O3 and the elution process of bound plasmid
DNA, demonstrate that this method has immense potential for plasmid DNA purification.
However, adsorption and desorption times should be optimized to reduce processing
time. In addition, electroporation is effective as an elution method for bacterial cells
in the purification process of plasmid DNA. The microfiltration performance was high
owing to the formation of aggregates of impurities, including cells. Furthermore, the
degree of nucleic acid purification was high. We believe that the results of this study will
contribute to the establishment of a purification process suitable for the mass production of
pharmaceutical-grade plasmid DNA.
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