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Abstract: Water is an important component of our life. However, the unavailability of fresh water
and its contamination are emerging problems. The textile industries are the major suppliers of
contamination of water, producing high concentrations of heavy metals and hazardous dyes posing
serious health hazards. Several technologies for water purification are available in the market.
Among them, the membrane technology is a highly advantageous and facile strategy to remediate
wastewater. Herein, the distinguished combination of pore-forming agents, solvent, and nanoparticles
has been used to achieve improved functioning of the polymeric composite membranes. To do so,
graphene oxide (GO) was fabricated via Hummer’s technique and GO functionalization using
chloroacetic acid (c-GO) was performed. Thermoplastic polyurathane (TPU) membranes having
different concentrations c-GO were made using the phase inversion technique. Scanning electron
microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), and X-ray diffraction (XRD)
was used to examine surface morphology, chemical functionalities on membranes surfaces, and
crystallinity of membranes, respectively. The temperature-dependent behavior of c-GO composite
membranes has been analyzed using DSC technique. The water contact angle measurements were
performed for the estimation of hydrophilicity of the c-GO based TPU membrane. The improved
water permeability of the composite membrane was observed with increasing the c-GO concentration
in polymeric membranes. c-GO was observed as a potential candidate that enhanced membrane
physicochemical properties. The proposed membranes can behave as efficient candidates in multiple
domains of environmental remediation. Furthermore, the improved dye rejection characteristics
of proposed composite membranes suggest that the membranes can be best suited for wastewater
treatment as well.

Keywords: thermoplastic polyurethane (TPU); carboxylated graphene oxide (c-GO); nanocomposite
membrane; water flux; dye rejection

1. Introduction

Pure water is essential and a major component for human survival on this planet [1].
Drinking water, both in terms of quality and quantity, has become a critical challenge for
human survival [2]. The expansion of industries, agricultural resources, and the population
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growth all demands access to clear water [3]. The textile industries are the major contributor
of colored wastewater production [4,5]. It is the biggest zone that is spreading extreme
water pollution. Chemical additives and various types of dyes are also present in textile
wastewater. The problem of colors in textile effluent and the difficulties related to the
degradation of dye wastewater is alarming [6–10]. There is a need to design solutions that
are cost effective and time efficient to recover and provide high quality of water.

Membrane technology is used in a number of water treatment processes for this
purpose, including municipal and industrial wastewater recycling, and also sea- and
brackish water desalination [11,12]. A membrane is a thin sheet or layer that serves as a
selective barrier between two phases (liquid, vapor, or gas), allowing certain components
to flow through depending on its structure [13,14]. Membranes are advantageous because
of their low production cost, energy efficiency, ease of fabrication, and lack of thermal
treatment [15]. Polymeric membranes have drawn a lot of interest due to their high-
water flux, environmental friendliness, cost-effectiveness, and energy efficiency. Polymer-
based membranes are composed up of polymers and organic matter including polyether
sulfone, polysulfone, polyether ketone, thermoplastic polyurethane (TPU), cellulose acetate
(CA), polyimide (PI), polysulfide (PS) (Espinoza et al., 2014) for treatment of wastewater.
Most polymeric membranes are either hydrophobic or have low hydrophilicity. TPU
(thermoplastic polyurethane) is an engineered thermoplastic polymer with good mechanical
characteristics. TPU network structure is made up of soft and rigid segments, giving it
qualities resembling rubbery and unstructured thermoplastics. To improve the features of
TPU such as hydrophilic nature, smooth surface, the charge on the surface, and antibacterial
activity, selective advancement in the membrane could be carried out to increase water
permeability (Riaz et al., 2016). Functionalized nanoparticles and pore-forming agents are
gaining attention of scientific community to improve the physicochemical characteristics of
TPU. Due to its excellent mechanical characteristics, high surface area, ease of creation of
dense membrane structures, and superior water dispersal ability graphene oxide (GO) have
emerged as a potential membrane nanomaterial [16]. Multiple oxygen functional groups
in GO such as COOH, epoxy, carbonyl, and -OH, improve its hydrophilicity and provide
remarkable characteristics [17–23]. Functionalized carboxylated graphene oxide-based
membranes may be used to remove ionic dyes [24], and changing hydroxyl groups and
ether linkages into carboxyl groups might increase the membrane’s performance.

Here we proposed the fabrication of novel carboxylated graphene oxide polyurethane
membrane (c-GO/TPU) by NIPS method. Different concentrations of c-GO were selected to
form TPU based composite membranes. All the membranes were well characterized in term
of surface morphology using SEM, surface functional groups using FTIR, and membranes
crystallinity using XRD analysis. Moreover, the mechanical strength of pristine TPU and
c-GO embedded TPU membranes were checked using tensile strength estimation approach.
The pure water flux potential and dye rejection efficiency of membranes were also analyzed.
The effect of c-GO content addition on the hydrophilicity of membranes was analyzed using
water contact angle measurements. The DSC approach was accessed to analyze the thermal
characteristics of selected membranes. The extensive analysis of c-GO based TPU composite
membranes suggest that the addition of c-GO content improves the surface morphology,
hydrophilicity, and mechanical strength characteristics. Therefore, depending upon the
application area, the proposed membranes can be an efficient candidate in multiple domains
of environmental remediation. Furthermore, the improved dye rejection characteristics
of proposed composite membranes suggest that the membranes can be best suited for
wastewater treatment as well.

2. Materials and Methods
2.1. Materials

Thermoplastic polyurethane was obtained from Townsend Corporation (RE-FLEX585-
XU, MW = 25KD). Graphite powder (average particle size of <20 µm), and phosphoric
acid (H3PO4) were bought from Sigma-Aldrich. Potassium permanganate (KMnO4 Mw
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~158.03, Assay = 99.5%) was purchased from AnalaR®. Sodium hydroxide pellets (NaOH:
98% Analytic-ACS) were purchased from ICON CHEMICAL. Polyvinyl pyrrolidone (PVP
of Mw ~40,000 Da), sulfuric acid (H2SO4 Assay 98.5%), Hydrogen peroxide (H2O2; 30%)
aqueous solution, and N, N-Dimethyl formamide (DMF) were purchased from DAEJUNG.
Chloroacetic acid (C2H3C.lO2: 94.49 g/mol−1) was purchased from Merck, Germany.
Deionized water (DI) used in this study was produced through an integrated system of a
Milli-Q (Merck Millipore, Ireland). All compounds were of analytical rank and were used
exactly as directed.

2.2. Synthesis
2.2.1. Preparation of Graphene Oxide

Graphene oxide was fabricated using modified Hummer’s method. The detailed
process is described somewhere else [25].

2.2.2. Synthesis of Carboxylated Graphene Oxide (c-GO)

Carboxylated graphene oxide was synthesis by the reaction of chloroacetic acid with
sodium hydroxide. For this 0.5 g of graphene oxide was added into 250 mL distilled
water and sonicated for 1 h to form suspension. After complete dispersion, 3.6 g of
sodium hydroxide was added, and solution was again sonicated for 1 h. Then, the 10 g
of chloroacetic acid was added into the reaction mixture and ultra-sonicated for 1 h. The
obtained c-GO was washed several times with DI water until the pH of the solution becomes
neutral. The c-GO was then dried in the oven overnight at 70 ◦C.

2.2.3. Fabrication of Carboxylated Graphene Oxide Based TPU Membranes

Carboxylated graphene oxide TPU based membranes were fabricated by phase in-
version method. In the first step, c-GO was sonicated in DMF for 1 h 15 percent TPU
was dissolved in DMF to make the membrane casting solution. Under magnetic stirring,
different quantities of c-GO (Table 1.) with fixed number of pore-forming agents (PVP) was
introduced to the TPU solution for full dissolution. The solution was then allowed to stir
for 4 to 6 h to remove air bubbles and to make it homogeneous. The obtained solution
was cast on a 500 µm thick film applicator. The casted membrane was immersed into
the distilled water bath for solvent exchange. After two minutes, the c-GO embedded
TPU membrane was detached from the casting plate. The membrane was dried at room
temperature. All the membranes with different concentrations of carboxylated graphene
were fabricated using similar approach. The schematic representation of membrane casting
process is presented in Figure 1.

Table 1. Compositions of c-GO based TPU membranes.

Membrane TPU (wt %) PVP DMF c-GO

TPU 15% 0% 85% -

c-GO 0 15% 0% 84.9% 0.1%

c-GO 1 15% 5% 79.8% 0.2%

c-GO 2 15% 5% 79.7% 0.3%

c-GO 3 15% 5% 79.6% 0.4%

c-GO 4 15% 5% 79.5% 0.5%
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Figure 1. Schematic representation of phase inversion method.

2.3. Characterization of GO and c-GO and TPU Composite Membranes

Characterization of fabricated composite membrane was carried out by different
techniques such as FE-SEM, XRD, FTIR spectroscopy, contact angle and tensile strength.
Field emission scanning electron microscopy was used to examine the surface morphology
of membranes (FEI, Quanta FEG 450). Membrane samples were copper taped to the grid
and sputtered with gold using a sputter coater (Quorum Q150R ES, Quorum Technologies
Ltd., Ashford, Kent, England). The presence of functional groups at different blend and
solution formulations was identified using FTIR spectroscopy (FTIR; Bruker Tensor 27,
Billerica, MA, USA). XRD analysis was used to examine the micro sheet samples (Bruker-
AXS diffractometer, Karlsruhe, Germany). A goniometer OCA15EC was used to measure
the contact angle of water on membrane surfaces using the sessile drop method at ambient
temperature (Dataphysics, Karlsruhe, Germany). Thermal analysis was conducted at a
10 ◦C/min heating rate under nitrogen atmosphere using DSC technique.

2.4. Measurement of Water Contact Angle, Pure Water Flux and Dye Rejection Rate

The contact angle was measured using a contact angle measuring device and the
sessile-drop technique. A droplet of water was placed on the membrane surface and the
contact angle of the droplet with the surface was computed using this approach. The
contact angle was measured at five random points on each membrane to minimize the
research error, and the average of results is reported. A cross-filtration equipment was used
to assess the membrane’s pure water flow.

Hydrophilic properties of all fabricated membranes were examined by Attension
Theta Tensiometer using measurement of water contact angle. To do so, water was utilized
by means of probe liquid. The fixed contact angle (made between the drop of water and the
surface of membrane) was determined at room temperature via the sessile drop mode using
goniometer device. The contact angle was calculated by averaging five measurements
performed at various points across the surface of membrane [11,18].

The tensile strength of the c-GO based membranes were measure using Instron tensile
test equipment. Membranes were cut into a standard form prior to testing. The thermal
characteristics of c-GO/TPU membranes were determined using differential scanning
calorimeter (DSC 250 from TA, New Castle, USA) instrument. Prepared membranes
weighing 10 mg were encapsulated in an aluminum pan and tested at temperatures ranging
from 25 to 300 degrees Celsius at a rate of 10 degrees Celsius per minute under a N2
environment [11].

A lab-scale cartridge filter was used at cross-end mode operation to examine the
permeate flux of water as well as rejection of dye by c-GO/TPU membranes. Pressure
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gauges are the major constituents of the filtration system, a 2-L feed tank (having mixer and
temperature control), low as well as high pressure feed pumps (1–15 bar), and stainless-steel
flat membrane module (effective area of 8.6 cm2) were equipped with the reaction system.
Before measurements of flux, membranes remained soaked in distilled water for 24 h. The
membranes were then compacted for 30 min at less than 2 bar of distilled water until a
steady flow was attained. The pressure instantly decreased to 1 bar, and a pure water flux
test was carried out for 1 h. The volume of filtrate was collected and measured after every
5 min. In conclusion, the Equation (1) was used to compute the flow [26].

J =
V

A∆T
(1)

where V stands for the permeated volume of pure water (L), A is the operative membrane
area (m2), ∆T stands for the sampling time (h) and Jw is the pure water flux (L/m2 h).

The dye rejection potential of all membranes was analyzed using aqueous solution of
Coomassie Blue dye. The feed solution was prepared by 0.01 g/cm3 Coomassie Blue in
ethanol. This solution was used as feed solution to make 2 L of aqueous solution with the
dye concentration of 10 ppm at neutral pH (25 ◦C). The formula given Equation (2) below
was used to calculate dye rejection [27].

R =

(
1 −

Cp

C f

)
× 100 (2)

In above equation R is membrane rejection, Cf is dye concentration in the feed and Cp
is dye concentration at permeate side.

2.5. Membrane Porosity Determination Using Gravimetric Method

Gravimetric method was used to determine the membrane porosity. To do so, all
membranes were oven dried and weighed before experiment. The membranes were then
immersed in kerosene oil for 24 h and reweighed. The average porosity was determined in
terms of overall void fraction which can be calculated as the pore volume divided by the
total membrane volume. The average porosity was calculated using the formula given in
Equation (3):

εm % =

[
W1 − W2

Dk

]
/

[
W1 − W2

Dk
+

W2

Dpol

]
× 100 (3)

where
W1 = weight o f wet membrnae, W2 = weight o f dry membrane,

Dk = denisty o f kerosene oil
(

0.82 g
cm3

)
, Dpol = density o f polymer

3. Result and Discussion
3.1. Characterization of Nanoparticles

The FTIR spectral information is presented in Figure 2. Figure 2 presents the FTIR spec-
tra of GO and c-GO. The stretching vibrations of the hydroxyl (O-H) groups upon graphene
oxide are represented by a broad peak in the upper-frequency band of 3445 cm−1 [28,29].
The absorption peaks at 2850 cm−1 show the stretching vibration of CH2. The ketone group
is responsible for the appearance of a peak at 1627 cm−1, and sp2 hybridization is responsi-
ble for the primary graphitic domain of the peak at 1544 cm−1. The C-O is shown by the
band at 1457 cm−1, whereas the C-O stretching of epoxy groups is indicated by the band at
1243 cm−1. The C-O-C stretching of alkoxy groups is revealed by the mode at 1087 cm−1.
Compared to spectra of GO and c-GO, the vibration band of C-O-C has observed on the
1052 cm−1 and OH shows absorption peak on the 1349 cm−1. The absorption peak of C=O
was around 1620 cm−1 become broader and high strength. This peak was overlapped
the –COOH peak at 1720 cm−1. Between 3000 and 3500 cm−1, a hydroxyl group (-OH)
adsorption band was identified, indicating a substantial quantity of carboxyl group on
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the graphene surface. the results also support clear evidence about successful formation
of c-GO as the peaks corresponding to carboxylic groups i.e., peaks at 1728 cm−1 and
1614 cm−1 showed clear enhancement in C-GO. Similarly, the peak ascribed to aromatic
group also showed clear enhancement in c-GO [30].
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Figure 2. FTIR spectra of (a) GO and c-GO, (b) pristine TPU and c-GO embedded TPU membranes.

Figure 2b represents the FTIR spectra of thermoplastic polyurethane membrane, PVP-
based TPU membranes, and TPU membrane with different concentrations of carboxylated
graphene oxide. The FTIR spectra of TPU exhibit a transmittance peak at 3330 cm−1

corresponds to the –NH gorup. The peak positioned at 2960 cm−1 is ascribed to the CH2.
Another peak at 1215 cm−1 is representative of the C-N-H bonding. The functional groups
of C-O-C in TPU exhibits peak at 1120 cm−1. The spectrum of TPU-PVP shows absorption
bands at 1639 cm−1 and 1215 cm−1 which denote carbonyl and amide groups. Carboxylated
graphene oxide-based TPU membranes exhibit peaks at 3330 cm−1, 2960 cm−1, 1687 cm−1,
1516 cm−1, 1215 cm−1, and 1120 cm−1. All these peaks are present in the carboxylated
graphene oxide ensuring succesful insertion of c-GO into thermoplastic polyurethane
membranes matrix.

3.1.1. SEM Analysis

SEM investigation confirms the surface morphology of TPU and TPU composite
membranes, as shown in Figure 3. The SEM pictures of TPU composite membranes with
varying quantities of c-GO content demonstrate the presence of particles on the membrane’s
surface. Water addition during casting solution preparation may have generated a rough
picture that correlates to fractures and ridges in c-GO 4 (0.5 wt percent). Particle aggregates
appear on the surface of the c-GO 4 membrane at intervals, indicating particle dispersion
inside the polymeric substance. The insertion of c-GO in pristine TPU (Figure 3a) results
extraordinary improvement in morphology of composite membranes. The improved
morphology is attributed to the increased surface roughness owing to the nano-dimensional
c-GO loading. High surface roughness is effective is generating surface defects which
contribute towards improved adsorption properties of membranes as well.
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3.1.2. XRD

Figure 4 presents the XRD analysis of all c-GO based TPU membranes. A broad peak
in the range of 11◦–20◦ is ascribed to the amorphous nature of TPU. Insertion of c-GO
into the matrix of TPU dose not significantly changed the peak structure. However, peak
broadening supports the incorporation of c-GO. C-GO exhibits characteristic peak around
2θ = 10◦ [31], no clear indication of peaks located at 2θ = 10◦ in composite membrane
suggests that c-GO was well incorporated with TPU matrix [32].
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3.1.3. Contact Angle

Membrane contact angle measurements are commonly used to determine membrane
surface hydrophilicity. Figure 5 presents that the contact angle of pristine TPU membrane
is 76.95 decreased with the addition of different concentrations of carboxylated graphene
oxide into membranes to 68.86, 61.01, 57.97, and 54.00 for c-GO 1, c-GO 2, c-GO 3, and c-GO
4, respectively. This suggested that the surface hydrophilicity has improved as a result of
the addition of c-GO micro sheets, as previously observed [33] and corroborated by the
pure water flow. A huge number of the micro sheets’ –COOH groups orient themselves
towards the water, inducing hydrophilic characteristics on the membrane, which promotes
water adsorption and hence improves water permeability [34].
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3.1.4. DSC

DSC curves of prepared TPU/c-GO membranes with different concentrations in this
study are given in Figure 6. The Tg (Glass transition temperature) is generally used
for interpretation of membrane structure while employing the thermal analysis upon
membrane. The glass transition temperature of the pristine TPU is greater than the TPU/c-
GO composite membranes (i.e., c-GO 0 and c-GO 4). With the addition of the carboxylated
graphene oxide Tg of TPU decreased slightly i.e., 204 ◦C for pristine TPU to 202 ◦C and
201 ◦C for c-GO 0 and c-GO 4, respectively. Aside from c-GO, the reduction may be
attributed to PVP’s plasticization effect since PVP can be used as a stabilizer and plasticizer
for polymers [35]. The slight thermal degradation of c-GO 0 and c-GO 4 could be due to the
interactions of c-GO and PVP with TPU network and good thermal conductivity of c-GO
resulting in creation of degradation centers in composite membranes.
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3.1.5. Pure Water Flux of Membranes

One of the most important characteristics to consider when evaluating the performance
of a manufactured membrane is its permeability to pure water. Figure 7 showed that with
the addition of c-GO to the membrane matrix, the penetration fluxes of the membranes
were improved. The water flux of the pure TPU membrane was 21.81 LMH and c-GO 4 was
142 LMH. Due to the addition of c-GO to membrane, porosity increase that causes high
water flux. The oxygen-rich functional groups of the c-GO that have migrated to the top
surface of the membranes have also increased the membranes’ hydrophilicity. Furthermore,
c-GO nanofillers demonstrated a reduction in contact angle, which might help to improve
water permeability [36]. Furthermore, the results of membrane porosity support the
conclusion that increased membrane porosity by increasing c-GO content helps improve
water flux (Table 2).
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Table 2. Porosity (%) of TPU based c-GO composite membranes.

Sr# Membranes Porosity (%)

1 TPU 72.48
2 c-GO 0 74.70
3 c-GO 1 87.54
4 c-GO 2 88.53
5 c-GO 3 90.42
6 c-GO 4 91.26

3.1.6. Dye Rejection by Composite Membrane

Due to its excellent removal performance, and low operating cost, many types of
membrane technology have been used to remove synthetic colours from wastewater. The
dye rejection rate of the membrane rises when nanoparticles are added to it (due to im-
proved morphology). Therefore, the dye rejection experiment was performed and results
are presented in Figure 7. Increasing the c-GO content in TPU matrix improved the sur-
face morphology in term of surface defect thereby imporving the adsoption capability of
composite membranes which results in high dye rejection [37].

The results of membranes porosity calculated by gravimetric analysis is presented
in Table 2. A rapid increase in membrane porosity was observed when pristine TPU
membranes were composited with c-GO. The membrane porosity of pristine TPU was
observed as 72.48% which increases to 87.54% with the addition of c-GO (1 wt %). Increased
water flux can be correlated with the improved structure in term of membrane porosity.
Among c-GO based TPU membranes an increasing trend of membrane porosity was
observed by increasing c-GO content which also support the porosity induction is due to
c-GO insertion.

4. Conclusions

In conclusion, the phase inversion method was used to produce TPU membranes
containing variable c-GO content. All the membranes were well characterized in term of
SEM, FTIR, and XRD analysis. Moreover, the mechanical strength of pristine TPU and c-GO
embedded TPU membranes were checked using tensile strength estimation approach. The
pure water flux potential and dye rejection efficiency of membranes were also analyzed.
The effect of c-GO content addition on the hydrophilicity of membranes was analyzed using
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water contact angle measurements. With the addition of c-GO nanoparticles to the TPU
polymer matrix, water absorption was increased while the contact angle was reduced. c-GO-
4 had the highest water flow while having a lowest contact angle among all membranes. The
DSC approach was accessed to analyze the thermal characteristics of selected membranes
and little reduction in Tg was observed when TPU was composited with c-GO (owing
to the degradation centers generation due to good thermal conductivity of c-GO). The
extensive analysis of c-GO based TPU composite membranes suggest that the addition of
c-GO content improves the surface morphology, hydrophilicity, and mechanical strength
characteristics. Therefore, depending upon the application area, the proposed membranes
can behave as efficient candidate in multiple domains of environmental remediation.
Moreover, the improved dye rejection characteristics of proposed composite membranes
suggest that the membranes can be best suited for wastewater treatment as well.
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