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Abstract: We focus on a quasi-one-dimensional Poisson–Nernst–Planck model with small perma-
nent charges for ionic flows of two oppositely charged ion species through an ion channel. Of
particular interest is to examine the dynamics of ionic flows in terms of I–V (current–voltage)
relations with boundary layers due to the relaxation of neutral conditions on boundary concentra-
tions. This is achieved by employing the regular perturbation analysis on the solutions established
through geometric singular perturbation analysis. Rich dynamics are observed, particularly, the
nonlinear interplays among different physical parameters are characterized. Critical potentials
are identified, which play critical roles in the study of ionic flows and can be estimated experi-
mentally. Numerical simulations are performed to further illustrate and provide more intuitive
understandings of our analytical results.
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1. Introduction

Ion channels are pore-forming membrane proteins allowing charged particles to
pass through the channel pore. Ion channels are embedded in cell membranes, which
provide a major medium for cells to communicate with each other and with outside en-
vironment ([1–3]). In this way, ion channels control a wide range of biological functions,
in particular, many varied functions are necessary for life (see [2] for more discussion).
Clinically, malfunctioning channels cause cystic fibrosis, cholera, neuronal disorders,
and many other diseases ([4]). Therefore, it is significant to explore the mechanism of
ion channels.

The study of ion channels generally consists of two related major topics: structures of
ion channels and ionic flow properties. The physical structure of ion channels is defined by
the channel shape and the spacial distribution of permanent charges and the polarity of
these charges. For open channels with given structures, the main interest is in the study
of its electrodiffusion property. The most challenging part in examining the properties of
ionic flows through membrane channels is the characterization of the nonlinear interplays
among specific physical parameters involved in the system, particularly, the boundary
concentrations and membrane potential, permanent charge distribution within the channel,
channel geometry and diffusion coefficients. On the other hand, all present experimental
measurements about ionic flow are of input-output type ([1]); that is, the internal dynamics
within the channel cannot be measured with the current technology. Therefore, it is
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extremely difficult to extract coherent properties or to formulate specific characteristic
quantities from the experimental measurements.

Mathematical analysis plays important and unique roles for generalizing
and understanding the principles that allow control of electrodiffusion, explaining
the mechanics of observed biological phenomena and for discovering new ones, under
the assumption that a more or less explicit solution of the associated mathematical model
can be obtained. Recently, there have been some successes in mathematical analysis
of Poisson–Nernst–Planck (PNP) models for ionic flows through membrane
channels ([5–26] etc.). Particularly, for those that were studied under the dynamical system
framework of geometric singular perturbation analysis, interesting phenomena of ionic
flows were observed for relatively simple setups. However, for all the works mentioned
here, the so-called electroneutrality boundary conditions are reinforced, and the boundary
layers, which play critical roles in the study of ion channel problems, disappear.

To further understand the correlations/interactions among ions, we consider a
PNP model with nonzero but small permanent charges under relaxed electroneutrality
boundary concentration conditions. Of particular interest is the effect on the I–V relations
from boundary layers, which can be mathematically extracted from solutions of the PNP
system. Our study will take great advantage of the work conducted in [11]. To be specific,
in [11], the authors treat the nonzero permanent charge as a small parameter, and employ
the regular perturbation analysis to the solutions, from which they obtain the zeroth-
order and first-order individual fluxes under electroneutrality boundary conditions.
This will be our starting point. More precisely, the individual fluxes obtained in [11]
allow us to define the current–voltage (I–V) relations directly (see (15) in Section 2.2).
To examine the boundary layer effects on the I–V relations, we relax the electroneutrality
boundary conditions by introducing two positive parameters, σ and ρ close to but not
simultaneously equal to 1 (see our discussion in Section 1.3). We next employ the regular
perturbation analysis to these two parameters, in other words, we expand our I–V
relations at (σ, ρ) = (1, 1) up to the first order and neglect higher order terms. Our
main interest is then in the first-order terms, the leading terms that contain boundary
layer effects.

1.1. One-Dimensional Poisson–Nernst–Planck Models

PNP system is a basic macroscopic model for electrodiffusion of charges through ion
channels ([27–36], etc.) Under various reasonable conditions, the PNP system can be de-
rived as a reduced model from molecular dynamics, Boltzmann equations, and variational
principles ([37–40]).

Based on the fact that the channel is narrow and one can effectively view it as a one-
dimensional channel [0, l], where l (with unit nm) is the length of the channel together with
the baths that the channel links. A quasi-one-dimensional steady-state PNP model for a
mixtures of n ion species though a single channel reads (first proposed in [41])

1
h(x)

d
dx

(
εr(x)ε0h(x)

dΦ
dx

)
= −e

( n

∑
s=1

zscs + Q(x)
)

,

dJk
dx

= 0, −Jk =
1

kBT
Dk(x)h(x)ck

dµk
dx

, k = 1, 2, . . . , n,

(1)

where x ∈ [0, 1] is the coordinate along the axis of the channel that is normalized to [0, 1],
h(x) is the area of cross-section of the channel over the location x.

For system (1), we have the following boundary conditions (see [8] for a reasoning),
for k = 1, 2, . . . , n,

Φ(0) = V , ck(0) = Lk > 0; Φ(1) = 0, ck(1) = Rk > 0, k = 1, 2, . . . , n, (2)

where
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• e ≈ 1.60× 10−19 (C = coulomb) is the elementary charge;
• kB ≈ 1.38× 10−23 (JK−1) is the Boltzmann constant;
• T is the absolute temperature (unit K (kelvin)), it is T = 273.16 (K);
• Φ(x) is the electric potential with the unit V = Volt = JC−1;
• Q(x) is the permanent charge density of the channel (with unit 1/m3);
• ε0(x) is the local dielectric coefficient (with unit Fm−1);
• εr(x) is the relative dielectric coefficient (with unit 1);
• h(x) represents the area of the cross-section over the point x (with unit m2);
• n is the number of distinct types of ion species (with unit 1);
• for the jth ion species;

– cj is the number density (with unit 1/m3);
– zj is the valence (the number of charges per particle with unit 1);
– µj is the electrochemical potential (with unit J = CV);
– Jj is the number flux density (with unit 1/s) – the number of particles across each

cross-section per unit time;
– Dj(x) is the diffusion coefficient (with unit m2/s).

1.2. Permanent Charges

It is known that the spatial distribution of side chains in a specific channel defines
the permanent charge of the channel. Although some information could be obtained
without considering the permanent charge and by focusing on the effects of other sys-
tem parameters, such as boundary conditions, ion valences, ion sizes, etc., we believe
that different channel types differ mainly in the distribution of permanent charge ([2]).
To better understand the dependence of ionic flows on permanent charges, we demon-
strate that the role of permanent charges in membrane channels is similar to the role
of doping profiles in semiconductor devices. Semiconductor devices are similar to
membrane channels in the way that they both use atomic-scale structures to control
macroscopic flows from one reservoir to another. Ions move a lot like quasi-particles
move in semiconductors. Roughly, holes and electrons are the cations and anions of
semiconductors. Semiconductor technology depends on the control of migration and
diffusion of quasi-particles of charge in transistors and integrated circuits. Doping is
the process of adding impurities into intrinsic semiconductors to modulate its electrical,
optical, and structural properties ([42,43]). Roughly speaking, one may understand in
the following sense, doping provides the charges that acid and basic side chains provide
in a protein channel. There is no doubt that, for both ion channels and semiconductors,
permanent charges add an additional component—probably the most important one—to
their rich behavior. In general, the permanent charge Q(x) is modeled by a piecewise
constant function, that is, we assume, for a partition x0 = 0 < x1 < · · · < xm−1 < xm = l
of [0, l] into m subintervals, Q(x) = Qj for x ∈ (xj−1, xj) where Qj’s are constants with
Q1 = Qm = 0 (the intervals [x0, x1] and [xm−1, xm] are viewed as the reservoirs where
there is no permanent charge).

In [8], under the framework of geometric singular perturbation theory, the existence
and uniqueness (local) was established for the boundary value problem (1) and (2) with
one cation and one anion and the permanent charge function modeled by

Q(x) = 0 if 0 < x < a; Q(x) = Q0 if a < x < b; Q(x) = 0 if b < x < 1, (3)

where Q0 is some nonzero constant. Due to the challenge in obtaining explicit expressions
of the I–V relation with nonzero permanent charges, in [11], the author studied the case
with Q0 in (3) being small and employed regular perturbation analysis (viewing Q0 as a
small perturbation to the solutions of the system (1) and (2)) to further study the effects
on ionic flows from the permanent charges. The analysis in [11] (Proposition 4.11 and its
following discussion) indicates that to optimize the effect of the permanent charge, a short
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and narrow neck within which the permanent charge is confined, is expected. This indicates
the critical role that the permanent charge plays in the study of ionic flow properties
of interest.

1.3. Relaxed Electroneutrality Boundary Conditions

To describe the actual behavior of channels or useful transistors, macroscopic reser-
voirs linked by ion channels must be included ([30,31,44,45]). Macroscopic boundary
conditions that describe such reservoirs introduce boundary layers of concentration and
charge. If those boundary layers reach into the part of the device that performs atomic
control, they prominently influence its behavior. Particularly, boundary layers of charge
are probably to produce artifacts over long distances because the electric field spreads a
long way.

The boundary layer should be handled more carefully in the study of such problems,
particularly for ion channel problems. In [8,13,26], the boundary layer is characterized
partially, mainly in establishing the existence and local uniqueness result of the PNP system.
However, the effects from the boundary layers on ionic flows, which in general carry more
rich information, are not analyzed. This is because, very often, when examine the qualitative
properties of ionic flows through ion channels, electroneutrality boundary conditions are
naturally enforced at both ends of the channel (see, e.g., [5,6,11,12,20,21,46–51]). They are
defined as

n

∑
s=1

zsLs =
n

∑
s=1

zsRs = 0. (4)

However, under the condition (4), the two boundary layers disappear (see [52] for
more detailed discussion).

To better understand the mechanism of ionic flows through membrane channels,
the boundary layer effects should be carefully considered during the study. Meanwhile,
due to the sensitivity of electric potentials on boundary layers, a first but natural step is
to study the state that is not neutral but close to. More precisely, one may assume (taking
n = 2 in (4), for example)

−z2L2

z1L1
= σ and

−z2R2

z1R1
= ρ, (5)

where σ and ρ are some positive constants close to but not equal to 1 simultaneously
(σ = 1 = ρ in (5) implies neutral state). Following this idea, some recent works (see [22,52,53]
for examples) have shown that more rich qualitative properties of ionic flows were observed
while boundary layers are involved. Particularly, the authors in [52] analyzed the bound-
ary layer effects on individual fluxes via PNP system with nonzero but small permanent
charges. All the works indicate the importance of the role played by the boundary layer in
the study of ionic flow properties of interest.

1.4. Problem Set-Up

In this work, we take the same setting as that in [11] but without assuming electroneu-
trality boundary conditions (4) for n = 2, which includes:

(A1).We consider two charged particles (n = 2) with z1 > 0 and z2 < 0;
(A2).The PNP model only includes the ideal component µid

i (X) of the electrochemical
potential defined by

µid
k (x) = zkeΦ(x) + kBT ln

ck(x)
c0

, (6)

where c0 is some characteristic number density.
(A3).εr(X) = εr and Di(X) = Di.
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We will assume (A1)–(A3) from now on. We first make the following dimensionless
rescaling ([11]). Let

φ =
e

kBT
Φ, V =

e
kBT
V , ε2 =

εrε0kBT
e2 , Jk =

Jk
c0Dk

,

Correspondingly, the boundary value problem (1) and (2) becomes

ε2

h(x)
d

dx

(
h(x)

d
dx

φ

)
= −z1c1 − z2c2 −Q(x),

h(x)
dck
dx

+ zkh(x)ck
dφ

dx
= −Jk,

dJk
dx

= 0, k = 1, 2

(7)

with the boundary conditions

φ(0) = V, ck(0) = Lk; φ(1) = 0, ck(1) = Rk, k = 1, 2. (8)

2. Methods

We take the advantage of the work done in [11], and further employ regular perturba-
tion analysis on the parameters σ and ρ introduced in (5).

2.1. Previous Results

To get started, we first recall some results from [11], which are fundamental for our
following discussion. Treating the nonzero permanent charge |Q0| small compared to the
boundary concentrations Lk’s and Rk’s, the authors in [11] expanded the individual flux
Jk(V; Q0) along Q0 = 0:

Jk(V; Q0) = Jk0(V) + Jk1(V)Q0 + o(Q0), (9)

where Jk = Dk Jk. It follows that Jk0 = Dk Jk0 and Jk1 = Dk Jk1, where

J10 =
(cL

1 − cR
1 )(z1V + ln L1 − ln R1)

H(1)(ln cL
1 − ln cR

1 )
, J20 =

(cL
2 − cR

2 )(z2V + ln L2 − ln R2)

H(1)(ln cL
2 − ln cR

2 )
,

J11 =
A(z2(1− B)λ + 1)
(z1 − z2)H(1)

(z1λ + 1), J21 =
A(z1(1− B)λ + 1)
(z2 − z1)H(1)

(z2λ + 1),

(10)

with

λ =
φL − φR

ln cL
1 − ln cR

1
, A =

(cL
1 − cR

1 )(c
b
10 − ca

10)

ca
10cb

10(ln cL
1 − ln cR

1 )
,

B =
ln cb

10 − ln ca
10

A
=

(ln cL
1 − ln cR

1 )(ln cb
10 − ln ca

10)

(cL
1 − cR

1 )(c
b
10 − ca

10)
ca

10cb
10.

(11)

Here,

φL = V − 1
z1 − z2

ln
−z2L2

z1L1
, z1cL

1 = −z2cL
2 = (z1L1)

−z2
z1−z2 (−z2L2)

z1
z1−z2 ,

φR = − 1
z1 − z2

ln
−z2R2

z1L1
, z1cR

1 = −z2cR
2 = (z1R1)

−z2
z1−z2 (−z2R2)

z1
z1−z2 ,

ca
10 = cL

1 + α(cR
1 − cL

1 ), cb
10 = cL

1 + β(cR
1 − cL

1 ),

(12)

where, with H(x) =
∫ x

0
1

h(s)ds,

α =
H(a)
H(1)

and β =
H(b)
H(1)

. (13)



Membranes 2023, 13, 131 6 of 19

We define the following function, which will be used often in our analysis. For t > 0, set

γ(t) =
t ln t− t + 1
(t− 1) ln t

for t 6= 1 and γ(1) =
1
2

. (14)

One establishes easily that

Lemma 1. For t > 0, one has

0 < γ(t) < 1, γ′(t) > 0, lim
t→0

γ(t) = 0 and lim
t→∞

γ(t) = 1.

2.2. Main Interest and Regular Perturbation Analysis

The most basic function of membrane channels is to regulate the permeability of
membranes for a given species of ions and to select the types of ions and to facilitate
and modulate the diffusion of ions across cell membranes. Currently, the permeation
and selectivity properties of ion channels are usually characterized by the I–V relations
measured experimentally [27,54]. Our main interest is to analyze the qualitative properties
of the I–V relations and characterize the nonlinear interplays between physical parameters.
More precisely, we consider

I(V; ε, Q0) = I0(V) + I1(V; λ)Q0 + o(Q0), (15)

where

I0 =z1D1 J10 + z2D2 J20

=
z1D1

(
cL

1 − cR
1
)
(z1V + ln L1 − ln R1)

H(1)(ln cL
1 − ln cR

1 )
+

z2D2
(
cL

2 − cR
2
)
(z2V + ln L2 − ln R2)

H(1)(ln cL
2 − ln cR

2 )
,

I1 =z1D1 J11 + z2D2 J21

=z1D1
A(z2(1− B)λ + 1)
(z1 − z2)H(1)

(z1λ + 1) + z2D2
A(z1(1− B)λ + 1)
(z2 − z1)H(1)

(z2λ + 1).

Note that the assumption (5) implies that, for fixed L1 and R1,

cL
1 =σ

z1
z1−z2 L1, cR

1 = ρ
z1

z1−z2 R1, cL
2 = − z1

z2
σ

z1
z1−z2 L1, cR

2 = − z1

z2
ρ

z1
z1−z2 R1,

λ(σ, ρ) =
V − 1

z1−z2
(ln σ− ln ρ)

θ(σ, ρ)
, A(σ, ρ) =

(α− β)
(
σ

z1
z1−z2 L1 − ρ

z1
z1−z2 R1

)2

θ(σ, ρ)ω(β; σ, ρ)ω(α; σ, ρ)
,

B(σ, ρ) =θ(σ, ρ)ω(β; σ, ρ)ω(α; σ, ρ)
ln ω(β; σ, ρ)− ln ω(α; σ, ρ)

(α− β)
(
σ

z1
z1−z2 L1 − ρ

z1
z1−z2 R1

)2
,

where

ω(x; σ, ρ) =(1− x)σ
z1

z1−z2 L1 + xρ
z1

z1−z2 R1,

θ(σ, ρ) =
z1

z1 − z2
(ln σ− ln ρ) + ln L1 − ln R1.

(16)

For convenience, we define five functions P00 = P00(σ, ρ), P01 = P01(σ, ρ),
P10 = P10(σ, ρ), P11 = P11(σ, ρ) and P12 = P12(σ, ρ) by
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P00 =
z1
(
σ

z1
z1−z2 L1 − ρ

z1
z1−z2 R1

)
H(1)θ(σ, ρ)

(
(D1 − D2)(ln L1 − ln R1)− D2(ln σ− ln ρ)

)
,

P01 =
z1(z1D1 − z2D2)

(
σ

z1
z1−z2 L1 − ρ

z1
z1−z2 R1

)
H(1)θ(σ, ρ)

,

P10 =
A

(z1 − z2)H(1)

[
z1z2(z1D1 − z2D2)(1− B)(ln σ− ln ρ)2

(z1 − z2)2θ2(σ, ρ)

−
(
z1z2(D1 − D2)(1− B) + z2

1D1 − z2
2D2

)
(ln σ− ln ρ)

(z1 − z2)θ(σ, ρ)
+ z1D1 − z2D2

]
,

P11 =
A

(z1 − z2)H(1)

[
− 2z1z2(z1D1 − z2D2)(1− B)(ln σ− ln ρ)

(z1 − z2)θ2(σ, ρ)

+
z1z2(D1 − D2)(1− B) + z2

1D1 − z2
2D2

θ(σ, ρ)

]
,

P12 =
z1z2(z1D1 − z2D2)(1− B)A

(z1 − z2)H(1)θ2(σ, ρ)
.

(17)

Then, I0 and I1 can be rewritten as

I0(V; σ, ρ) =P00(σ, ρ) + P01(σ, ρ)V,

I1(V; σ, ρ) =P10(σ, ρ) + P11(σ, ρ)V + P12(σ, ρ)V2.
(18)

Recall that our main interest in this work is to examine the qualitative properties of the
I–V relations close to the state of electroneutrality, more precisely, based on our set-ups, it is
the case as (σ, ρ)→ (1, 1). We now employ the regular perturbation analysis and expand
Ik(V; σ, ρ) for k = 0, 1 at (σ∗, ρ∗) = (1, 1) up to the first order and neglect higher orders.
Careful calculations give

I0(V; σ, ρ) =P00(1, 1) +
∂P00

∂σ
(1, 1)(σ− 1) +

∂P00

∂ρ
(1, 1)(ρ− 1) +

[
P01(1, 1)

+
∂P01

∂σ
(1, 1)(σ− 1) +

∂P01

∂ρ
(1, 1)(ρ− 1)

]
V,

I1(V; σ, ρ) =P10(1, 1) +
∂P10

∂σ
(1, 1)(σ− 1) +

∂P10

∂ρ
(1, 1)(ρ− 1) +

[
P11(1, 1)

+
∂P11

∂σ
(1, 1)(σ− 1) +

∂P11

∂ρ
(1, 1)(ρ− 1)

]
V +

[
P12(1, 1)

+
∂P12

∂σ
(1, 1)(σ− 1) +

∂P12

∂ρ
(1, 1)(ρ− 1)

]
V2,

(19)

where

P00(1, 1) =
z1(D1 − D2)

H(1)
(L1 − R1),

∂P00

∂σ
(1, 1) = − z1(z1D1 − z2D2)

(z1 − z2)H(1)

(
f0(L1, R1)−

z1(D1 − D2)

z1D1 − z2D2
L1

)
,

∂P00

∂ρ
(1, 1) =

z1(z1D1 − z2D2)

(z1 − z2)H(1)

(
f0(L1, R1)−

z1(D1 − D2)

z1D1 − z2D2
R1

)
,
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P01(1, 1) =
z1(z1D1 − z2D2)

H(1)
f0(L1, R1),

∂P01

∂σ
(1, 1) = −

z2
1(z1D1 − z2D2)

(
f0(L1, R1)− L1

)
(z1 − z2)H(1)(ln L1 − ln R1)

,

∂P01

∂ρ
(1, 1) =

z2
1(z1D1 − z2D2)

(
f0(L1, R1)− R1

)
(z1 − z2)H(1)(ln L1 − ln R1)

,

P10(1, 1) =
(z1D1 − z2D2)A(1, 1)

(z1 − z2)H(1)
,

∂P10

∂σ
(1, 1) =

1
(z1 − z2)H(1)

(
−

z1z2(D1 − D2)(1− B(1, 1)) + z2
1D1 − z2

2D2

(z1 − z2)(ln L1 − ln R1)
A(1, 1)

+ (z1D1 − z2D2)
∂A
∂σ

(1, 1)
)

,

∂P10

∂ρ
(1, 1) =

1
(z1 − z2)H(1)

(
z1z2(D1 − D2)(1− B(1, 1)) + z2

1D1 − z2
2D2

(z1 − z2)(ln L1 − ln R1)
A(1, 1)

+ (z1D1 − z2D2)
∂A
∂ρ

(1, 1)
)

,

P11(1, 1) =
z1z2(D1 − D2)(1− B(1, 1)) + z2

1D1 − z2
2D2

(z1 − z2)H(1)(ln L1 − ln R1)
A(1, 1),

∂P11

∂σ
(1, 1) =

1
(z1 − z2)H(1)

[
z1z2(D1 − D2)(1− B(1, 1)) + z2

1D1 − z2
2D2

ln L1 − ln R1

∂A
∂σ

(1, 1)

− z1

(
z2(1− B(1, 1))

(
z1(D1 − D2) + 2(z1D1 − z2D2)

)
+ z2

1D1 − z2
2D2

(z1 − z2)(ln L1 − ln R1)2

+
z2(D1 − D2)

ln L1 − ln R1

∂B
∂σ

(1, 1)
)

A(1, 1)
]

,

∂P11

∂ρ
(1, 1) =

1
(z1 − z2)H(1)

(
z1z2(D1 − D2)(1− B(1, 1)) + z2

1D1 − z2
2D2

ln L1 − ln R1

∂A
∂ρ

(1, 1)

+ z1

[
z2(1− B(1, 1))

(
z1(D1 − D2) + 2(z1D1 − z2D2)

)
+ z2

1D1 − z2
2D2

(z1 − z2)(ln L1 − ln R1)2

− z2(D1 − D2)

ln L1 − ln R1

∂B
∂ρ

(1, 1)
)

A(1, 1)
]

,

P12(1, 1) =
z1z2(z1D1 − z2D2)(1− B(1, 1))A(1, 1)

(z1 − z2)H(1)(ln L1 − ln R1)2 ,

∂P12

∂σ
(1, 1) =

z1z2(z1D1 − z2D2)

(z1 − z2)H(1)

[
(1− B(1, 1)) ∂A

∂σ (1, 1)− ∂B
∂σ (1, 1)A(1, 1)

(ln L1 − ln R1)2

− 2z1(1− B(1, 1))A(1, 1)
(z1 − z2)(ln L1 − ln R1)3

]
,

∂P12

∂ρ
(1, 1) =

z1z2(z1D1 − z2D2)

(z1 − z2)H(1)

[ (1− B(1, 1)) ∂A
∂ρ (1, 1)− ∂B

∂ρ (1, 1)A(1, 1)

(ln L1 − ln R1)2

+
2z1(1− B(1, 1))A(1, 1)
(z1 − z2)(ln L1 − ln R1)3

]
.
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Here

f0(L1, R1) =
L1 − R1

ln L1 − ln R1
, A(1, 1) =

(α− β)(L1 − R1)

ω(β; 1, 1)ω(α; 1, 1)
f0(L1, R1),

B(1, 1) =ω(β; 1, 1)ω(α; 1, 1)
ln ω(β; 1, 1)− ln ω(α; 1, 1)
(α− β)(L1 − R1) f0(L1, R1)

,

∂A
∂σ

(1, 1) =
z1(α− β) f0(L1, R1)

(z1 − z2)ω(α; 1, 1)ω(β; 1, 1)

[
2L1 − f0(L1, R1)

− (1− β)ω(α; 1, 1) + (1− α)ω(β; 1, 1)
ω(α; 1, 1)ω(β; 1, 1)

L1(L1 − R1)

]
,

∂A
∂ρ

(1, 1) =
z1(α− β) f0(L1, R1)

(z1 − z2)ω(α; 1, 1)ω(β; 1, 1)

[
− 2R1 + f0(L1, R1)

− βω(α; 1, 1) + αω(β; 1, 1)
ω(α; 1, 1)ω(β; 1, 1)

R1(L1 − R1)

]
,

∂B
∂σ

(1, 1) =
1

A2(1, 1)

[
z1(α− β)L1R1 A(1, 1)

(z1 − z2)ω(α; 1, 1)ω(β; 1, 1)

−
(

ln ω(β; 1, 1)− ln ω(α; 1, 1)
)∂A(σ, ρ)

∂σ
(1, 1)

]
,

∂B
∂ρ

(1, 1) =− 1
A2(1, 1)

[
z1(α− β)L1R1 A(1, 1)

(z1 − z2)ω(α; 1, 1)ω(β; 1, 1)

+
(

ln ω(β; 1, 1)− ln ω(α; 1, 1)
)∂A(σ, ρ)

∂ρ
(1, 1)

]
,

where ω(α; 1, 1) = (1− α)L1 + αR1 and ω(β; 1, 1) = (1− β)L1 + βR1.

3. Results

In this section, based on the regular perturbation analysis provided in Section 2.2, we
further examine the qualitative properties of ionic flows with boundary layers. To pro-
vide more intuitive illustrations of the analytical results obtained in Sections 3.1 and 3.2,
numerical simulations under different set-ups are performed in Section 3.3.

To examine the effects on the I–V relations from the boundary layers, we consider

I0d := I0(V; σ, ρ)− I0(V; 1, 1) and I1d := I1(V; σ, ρ)− I1(V; 1, 1), (20)

respectively. Correspondingly, one has

Id = I0d + QI1d + o(Q). (21)

From (19), one has

I0d =
∂P00

∂σ
(1, 1)(σ− 1) +

∂P00

∂ρ
(1, 1)(ρ− 1) +

[
∂P01

∂σ
(1, 1)(σ− 1)

+
∂P01

∂ρ
(1, 1)(ρ− 1)

]
V,

I1d =
∂P10

∂σ
(1, 1)(σ− 1) +

∂P10

∂ρ
(1, 1)(ρ− 1) +

[
∂P11

∂σ
(1, 1)(σ− 1)

+
∂P11

∂ρ
(1, 1)(ρ− 1)

]
V +

[
∂P12

∂σ
(1, 1)(σ− 1) +

∂P12

∂ρ
(1, 1)(ρ− 1)

]
V2.

(22)

3.1. Analysis on I0d

Note that I0d is a linear function in the potential V. The sign of the slope is of particular
interest for us, and the following result can be established.
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For t = L1/R1, direct computation gives

∂P01

∂σ
(1, 1)(σ− 1) +

∂P01

∂ρ
(1, 1)(ρ− 1) =

z2
1(z1D1 − z2D2)R1

(z1 − z2)H(1) ln2 t
h(t),

where h(t) = (σ− 1)t ln t + (1− ρ) ln t + (ρ− σ)(t− 1). For the function h(t), one has

Lemma 2. Assume (σ, ρ)→ (1, 1) with σ > ρ and t = L1/R1 > 1. One has

(i) h(t) > 0 if σ + ρ > 2 with σ > 1;
(ii) h(t) < 0 if σ + ρ < 2 with σ < 1;
(iii) There exists a unique t∗ > 1 such that for (σ, ρ) → (1+, 1−) with σ + ρ < 2, one has

h(t) < 0 if 1 < t < t∗ and h(t) > 0 if t > t∗. In particular, t∗ is the root of h(t) = 0.

Proof. The proof is straightforward, and we omit it here.

It follows from Lemma 2 that

Theorem 1. Assume (σ, ρ)→ (1, 1) with σ > ρ and t = L1/R1 > 1. One has

(i) I0d is increasing in the potential V if one of the following conditions holds

(i1) σ + ρ > 2 with σ > 1;
(i2) t > t∗ with σ + ρ < 2 and σ > 1.

Furthermore, there exists a unique zero Vd
01 of I0d(V; σ, ρ) = 0 such that

I0d(V; σ, ρ) > 0 (respectively, I0d(V; σ, ρ) < 0) if V > Vd
01 (respectively, V < Vd

01),
equivalently, the effect from boundary layers enhances (respectively, reduces) I0 for V > Vd

01
(respectively, V < Vd

01).
(ii) I0d is decreasing in the potential V if one of the following conditions holds

(ii1) σ + ρ < 2 with σ < 1;
(ii2) t < t∗ with σ + ρ < 2 and σ > 1.

Furthermore, there exists a unique zero Vd
02 of I0d(V; σ, ρ) = 0 such that

I0d(V; σ, ρ) > 0 (respectively, I0d(V; σ, ρ) < 0) if V < Vd
02 (respectively, V > Vd

02),
equivalently, the effect from boundary layers enhances (respectively, reduces) I0 for V < Vd

02
(respectively, V > Vd

02).

3.2. Analysis of I1d

We first consider the sign of the coefficient of V2 in I1d(V). For convenience, we define
g(β) = ∂P12

∂σ (1, 1)(σ− 1) + ∂P12
∂ρ (1, 1)(ρ− 1). For t = L1/R1, one has

g(β) =
z1

2z2(z1D1 − z2D2)

(z1 − z2)2ω1(α; 1, 1)ω1(β; 1, 1)H(1) ln3 t
g1(β),

where

g1(β) = 2ω1(α; 1, 1)ω1(β; 1, 1)(σ− ρ) ln
ω1(β; 1, 1)
ω1(α; 1, 1)

+ (α− β)

[
t(ρ− σ)ln t + (t− 1)

(
2t(σ− 1)− 2(ρ− 1) +

3(t− 1)(ρ− σ)

ln t

− t− 1
ω1(α; 1, 1)ω1(β; 1, 1)

(
t(σ− 1)[(1− β)ω1(α; 1, 1) + (1− α)ω1(β; 1, 1)]

+ (ρ− 1)[βω1(α; 1, 1) + αω1(β; 1, 1)]
))]

,

ω1(α;1, 1) = (1− α)t + α, ω1(β; 1, 1) = (1− β)t + β.
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Lemma 3. Assume (σ, ρ)→ (1, 1) with σ > ρ and t = L1/R1 > 1. Let α1 = t−
√

t
t−1 , one has

(i) If α ∈ (0, α3), then g(β) > 0;
(ii) If α ∈ [α3, α1), then g(β) < 0;
(iii) If α ∈ [α1, α4), then there exists a unique β1 > α such that g(β) < 0 for β ∈ (α, β1) and

g(β) > 0 for β ∈ (β1, 1);
(iv) If α ∈ [α4, 1), then g(β) > 0.

Here, α3 and α4 are two roots of g2(α) = 0 with

g2(α) = (1− t)
(

2tln t + 3(1− t)ω1(α; 1, 1)
)
+ tω1(α; 1, 1)ln2 t− 2(t− 1)ω2

1(α; 1, 1)ln t.

They are given by

α3 =
−3(1− t)2 − t ln2 t + 4t(t− 1) ln t−

√
p(t)

4(t− 1)2 ln t
,

α4 =
−3(1− t)2 − t ln2 t + 4t(t− 1) ln t +

√
p(t)

4(t− 1)2 ln t
,

where p(t) = 9(t− 1)4 + t2 ln4 t− 10t(t− 1)2 ln2 t.

Proof. It is clear that g(β) has the opposite sign as that of g1(β). Note that

lim
β→α

g1(β) = 0, lim
β→α

g′1(β) =
σ− ρ

ω1(α; 1, 1)ln t
g2(α), lim

β→α
g′′1 (β) =

2(σ− ρ)(t− 1)2

ω2
1(α; 1, 1)

g3(α),

where g3(α) = ω2
1(α; 1, 1)− t.

For t > 1, g3(α) is a quadratic function in α, and concave upward, it follows that
g3(α) = 0 has two roots given by α1 and α2 = t+

√
t

t−1 > 1. For (σ, ρ) → (1, 1), σ > ρ and
t = L1/R1 > 1, if α ∈ (0, α1], then g3(α) ≥ 0 and lim

β→α
g′′1 (β) ≥ 0; if α ∈ (α1, 1), then

g3(α) < 0 and lim
β→α

g′′1 (β) < 0.

For t > 1, g2(α) is a quadratic function in α, and concave downward, it follows that
g2(α) = 0 has two roots given by α3 and α4. For (σ, ρ)→ (1, 1), σ > ρ and t = L1/R1 > 1,
if α ∈ (0, α3] ∪ [α4, 1), then g2(α) ≤ 0 and lim

β→α
g′1(β) ≤ 0; if α ∈ (α3, α4), then g2(α) > 0 and

lim
β→α

g′1(β) > 0.

Direct computation gives 0 < α3 < α1 < α4 < 1, for (σ, ρ) → (1, 1), σ > ρ and
t = L1/R1 > 1. Since lim

β→α
g1(β) = 0, one has

(i) If α ∈ (0, α3), then lim
β→α

g′′1 (β) > 0 and lim
β→α

g′1(β) < 0. We can easily get g1(1) < 0,

and hence g1(β) < 0;
(ii) If α ∈ [α3, α1), then lim

β→α
g′′1 (β) > 0 and lim

β→α
g′1(β) ≥ 0, hence g1(β) > 0;

(iii) If α ∈ [α1, α4), then lim
β→α

g′′1 (β) ≤ 0 and lim
β→α

g′1(β) > 0. We can easily get g1(1) < 0,

and hence, there exists a unique β1 > α such that g1(β) > 0 for β ∈ (α, β1) and
g1(β) < 0 for β ∈ (β1, 1);

(iv) If α ∈ [α4, 1), then lim
β→α

g′′1 (β) < 0 and lim
β→α

g′1(β) ≤ 0, hence g1(β) < 0.

This completes the proof.

Form Lemma 3, the following result can be established.

Theorem 2. Assume (σ, ρ) → (1, 1) with σ > ρ and t = L1/R1 > 1. There exists a unique
critical potential Vc

1 such that
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(i) For α ∈ (0, α3), one has I1d(V) increases (respectively, decreases) in the potential V if
V > Vc

1 (respectively, V < Vc
1 );

(ii) For α ∈ [α3, α1), one has I1d(V) increases (respectively, decreases) in the potential V if
V < Vc

1 (respectively, V > Vc
1 );

(iii) For α ∈ [α1, α4), then there exists a unique β1 > α such that I1d(V) decreases in the potential
V for β ∈ (α, β1) and increases in V for β ∈ (β1, 1);

(iv) For α ∈ [α4, 1), I1d(V) increases in the potential V.

We now turn to the sign of I1d(V). We first consider the sign of g4(α), which will be
used in the proof of Theorem 3. Here, g4(α) is defined by

g4(α) =

(
4t2ln2 t− 8t(t− 1)ω1(α; 1, 1) ln t + 3(t− 1)2ω2

1(α; 1, 1)
)[

(z2
1D1 − z2

2D2)
2

+ z1z2(α− γ(t))
(

8z1z2D1D2 − 2(z2
1D1 + z2

2D2)(D1 + D2)

)
ln t

+ z2
1z2

2(D1 − D2)
2(α− γ(t))2ln2 t

]
+ (t− 1)2ω2

1(α; 1, 1)
(

z2
1D1 − z2

2D2

+ z2(2z2D2 − z1D1 − z1D2)(α− γ(t))ln t
)2

+ 2z2
(
t ln t− (t− 1)ω1(α; 1, 1)

)
ln t

×
(
(z2

1D1 − z2
2D2)(z1D1 + z1D2 − 2z2D2)− z2

1z2(D1 − D2)
2(α− γ(t))ln t

)
ω2

1(α; 1, 1).

For the function g4(α), the following result can be established.

Lemma 4. Assume t = L1/R1 ∈ (1, 2) and γ(t) be as in (14). For the function g4(α), there
exists a unique zero α∗ such that g4(α) > 0 for α < α∗, and g4(α) < 0 for α > α∗.

Proof. The discussion is then straightforward, and we omit it here.

Remark 1. The function g4(α) defined above is very complicated to analyze. The number of zeros
depends on the parameter t sensitively. In this work, we just consider the simplest case.

If g(β) 6= 0, then I1d = 0 is a quadratic equation in V, whose discriminant is

∆ =
∆1

(z1 − z2)2H2(1)(ln L1 − ln R1)2 ,

where ∆1 = ∆10 + ∆11 + ∆12 + ∆13 + ∆14 with

∆10 =

[
z1z2(1− B(1, 1))

(
8z1z2D1D2 − 2(z2

1D1 + z2
2D2)(D1 + D2)

)
+ (z2

1D1 − z2
2D2)

2 + z2
1z2

2(D1 − D2)
2(1− B(1, 1))2

]
×
(

∂A
∂σ

(1, 1)(σ− 1) +
∂A
∂ρ

(1, 1)(ρ− 1)
)

×
(

∂A
∂σ

(1, 1)(σ− 1) +
∂A
∂ρ

(1, 1)(ρ− 1) +
2z1(ρ− σ)A(1, 1)

(z1 − z2)(ln L1 − ln R1)

)
,

∆11 =
z2

1(σ− ρ)2 A2(1, 1)
(z1 − z2)2(ln L1 − ln R1)2

(
z2

1D1 − z2
2D2

+ z2(1− B(1, 1))(2z2D2 − z1D1 − z1D2)

)2

,
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∆12 = z2
1z2

2(D1 − D2)
2
[

z1(α− β)(σ− ρ)L1R1 A(1, 1)
(z1 − z2)ω(α; 1, 1)ω(β; 1, 1)

−
(

∂A
∂σ

(1, 1)(σ− 1) +
∂A
∂ρ

(1, 1)(ρ− 1)
)

ln
ω(β; 1, 1)
ω(α; 1, 1)

]2

,

∆13 =
2z1z2(ρ− σ)

(z1 − z2)(ln L1 − ln R1)

(
− z2

1z2(D1 − D2)
2(1− B(1, 1))

+ (z2
1D1 − z2

2D2)(z1D1 + z1D2 − 2z2D2)

)[
z1(α− β)(σ− ρ)L1R1 A(1, 1)
(z1 − z2)ω(α; 1, 1)ω(β; 1, 1)

−
(

∂A
∂σ

(1, 1)(σ− 1) +
∂A
∂ρ

(1, 1)(ρ− 1)
)

ln
ω(β; 1, 1)
ω(α; 1, 1)

]
,

∆14 =
2z1z2

A(1, 1)

(
2(z1D1 − z2D2)

2 − z1z2(D1 − D2)
2(1− B(1, 1))

− (D1 − D2)(z2
1D1 − z2

2D2)

)[
z1(α− β)(σ− ρ)L1R1 A(1, 1)
(z1 − z2)ω(α; 1, 1)ω(β; 1, 1)

−
(

∂A
∂σ

(1, 1)(σ− 1) +
∂A
∂ρ

(1, 1)(ρ− 1)
)

ln
ω(β; 1, 1)
ω(α; 1, 1)

]
×
(

∂A
∂σ

(1, 1)(σ− 1) +
∂A
∂ρ

(1, 1)(ρ− 1)
)

.

Theorem 3. Assume (σ, ρ)→ (1, 1) with σ > ρ and t = L1/R1 ∈ (1, 2). With 0 < α3 < α∗ <
α1 < α4 < 1, one has

(i) If α ∈ (0, α3), then ∆ > 0, and there exist two critical potentials Vd
11 and Vd

12 (assuming
Vd

11 < Vd
12 for convenience) such that

(i1) If V = Vd
11 or V = Vd

12, then I1d(V) = 0;
(i2) If V ∈ (Vd

11, Vd
12), then I1d(V) < 0;

(i3) If V /∈ (Vd
11, Vd

12), then I1d(V) > 0;

(ii) If α ∈ (α3, α∗), then ∆ > 0, and there exist two critical potentials Vd
13 and Vd

14 (assuming
Vd

13 < Vd
14 for convenience) such that

(i1) If V = Vd
13 or V = Vd

14, then I1d(V) = 0;
(i2) If V ∈ (Vd

13, Vd
14), then I1d(V) > 0;

(i3) If V /∈ (Vd
13, Vd

14), then I1d(V) < 0;

(iii) If α ∈ (α∗, α1), then ∆ < 0, and hence I1d(V) < 0;
(iv) If α ∈ (α1, α4), then ∆ < 0, and there exists a unique β1 > α such that I1d(V) < 0 for

β ∈ (α, β1) and I1d(V) > 0 for β ∈ (β1, 1);
(v) If α ∈ (α4, 1), then ∆ < 0, and hence I1d(V) > 0.

Proof. It is clear that ∆ has the same sign as that of ∆1. For 1 < t < 2, one has

lim
β→α

∆1 = 0, lim
β→α

∆′1 = 0,

lim
β→α

∆′′1 =
2z2

1(t− 1)2(σ− ρ)2

(z1 − z2)2ω6
1(α; 1, 1) ln4 t

g4(α).

From Lemma 4, we can easily obtain the sign of lim
β→α

∆′′1 , and hence know the sign

of ∆1.

Remark 2. In Theorem 3, the result established further depends on the order of some critical values
related to channel geometry, α∗, α1, α3 and α4. We demonstrate that the order is not unique, which
further depends on the nonlinear interaction between other system parameters, particularly, a, b,
the jumping points of the permanent charge, and L1, R1, the boundary concentrations. However,
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similar result should be obtained. Moreover, the result stated in Theorem 3 indicates that under
different conditions on the channel geometry, the small positive permanent charge Q0 can either
enhance the current I0d(V; σ, ρ) or reduce it. Taking the statement (i) as an example, for α ∈
(0, α∗) with Vd

11 < Vd
12, one has the small permanent charge Q0 enhances I0d(V; σ, ρ) for V ∈

(−∞, Vd
11) ∪ (Vd

12, ∞), while reduces it for V ∈ (Vd
11, Vd

12). Furthermore, the result stated in
Theorem 2 provides an efficient way to adjust the effects from the leading term I1d that contains
small permanent charge.

3.3. Numerical Simulations

In this part, numerical simulations are performed to provide more intuitive illustra-
tions of some analytical results. To be specific, we numerically identify the critical potentials
Vd

01, Vd
11, Vd

12 and Vc
1 , which characterized the effects caused by the appearance of boundary

layers. To further illustrate the boundary layer effects on ionic flows, we also numerically
obtain the zeroth-order (respectively, the first-order) I–V relations in small positive Q0
without and with boundary layers, respectively. Corresponding critical potentials for each
setup are identified, from which one is able to observe the effects on ionic flows from
boundary layers clearly.

To get started, we rewrite the system (7) and (8) as a system of first-order ordinary
differential equations. Upon introducing u = ε d

dx φ, one has

ε
d

dx
φ =u,

ε

h(x)
d

dx
(h(x)u) = −z1c1 − z2c2 −Q(x),

ε
d

dx
c1 =− z1c1u− ε

J1

h(x)
, ε

d
dx

c2 = −z2c2u− ε
J2

h(x)
,

d
dx

J1 =
d

dx
J2 = 0,

(23)

with boundary conditions

φ(0) = V, ck(0) = Lk; φ(1) = 0, ck(1) = Rk, k = 1, 2. (24)

In our simulations to system (23) and (24), we take z1 = −z2 = 1, L1 = 12, R1 = 8,
ε = 0.01, Q0 = 0.008, a = 0.4, b = 0.48, D1 = 2.032, D2 = 1.334,

Q(x) =


0, 0 < x < a,
Q0, a < x < b,
0, b < x < 1,

and h(x) =


π
(
− x + r0 + a

)2, 0 ≤ x < a,
πr2

0, a ≤ x < b,
π
(

x + r0 − b
)2, b ≤ x < 1.

We comment that the choice of h(x) is based on the fact that the ion channel is cylinder-
like, and the variable cross-section area is chosen to reflect the fact that the channel is not
uniform and much narrower in the neck (0.4 < x < 0.48) than other regions ([11]). We
further take r0 = 0.5 and the function h(x) is then continuous at the jumping points a = 0.4
and b = 0.48. Different models for h(x) may be chosen, and similar numerical results
should be obtained.

Our numerical simulations show that:

(A) The term I0d(V) is increasing in the potential V, and there exists a unique zero Vd
01

such that I0d(V) > 0 for V > Vd
01 while I0d(V) < 0 for V < Vd

01. This is consistent
with the first statement in Theorem 1 (see the left figure in Figure 1);

(B) The term I1d(V), as a quadratic function, under our setup, it is concave up with
two zerosVd

11 and Vd
12. At Vc

1 , the critical point, I1d(V) attains its global minimum.
Furthermore, I1d(V) > 0 (respectively, I1d(V) < 0) for V ∈ (−∞, Vd

11) ∪ (Vd
12, ∞)

(respectively, V ∈ (Vd
11, Vd

12)); I1d(V) is increasing for V > Vc
1 while it is decreasing

for V < Vc
1 . The numerical results are consistent with the first statement in Theorem 2

and Theorem 3, respectively (see the right figure in Figure 1).

To further illustrate the boundary layer effects on the I–V relations, we also per-
formed numerical simulations to the system with electroneutrality boundary concentra-
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tion conditions (no boundary layers, the left figures in both Figures 2 and 3) and relaxed
electroneutrality boundary conditions (appearance of boundary layers, the right figures
in both Figures 2 and 3), respectively. In each setup, the corresponding critical potentials
are identified. To be specific, VEN

01 , VEN
11 and VEN

12 are the critical potentials detected
under electroneutrality boundary conditions, while Vbd

01 , Vbd
11 and Vbd

12 are the ones with
boundary layers. From the numerical simulations, one observes VEN

01 < Vbd
01 , VEN

11 > Vbd
11

and VEN
12 > Vbd

12 . The observation indicates the important role played by the bound-
ary layers. We take I0(V) as an example. For many studies on PNP type models,
electroneutrality boundary conditions are applied, based on our numerical result, this
means I0(V; 1, 1) > 0 for V > VEN

01 . However, if the boundary layers are considered,
I0(V; σ, ρ) < 0 for VEN

01 < V < Vbd
01 , even for (σ, ρ)→ (1, 1). The dynamics of ionic flows

are totally different.
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Figure 1. Numerical simulations for effects on I–V relations from boundary layers with small positive
permanent charge.

Remark 3. For our numerical simulation, we only considered the case with D1 > D2. Interested
readers can follow our argument to consider the case with D1 < D2.
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Figure 2. Numerical simulations of I0(V), the zeroth-order I–V relations in Q0 for two different
setups. The left figure is under electroneutrality boundary conditions, while the right one is with
boundary layers.
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Figure 3. Numerical simulations of I1(V), the first-order I–V relations in Q0 for two different
setups. The left figure is under electroneutrality boundary conditions, while the right one is with
boundary layers.

4. Concluding Remarks

We study a one-dimensional steady-state Poisson–Nernst–Planck system with two
oppositely charged ion species and small but nonzero permanent charges. The main
purpose is to understand the problem from the mathematical point of view, which should
provide some insights into related studies of ion channel problems. Particularly, we focus
on the qualitative properties of the I–V relations with boundary layers due to the violation
of the electroneutrality boundary conditions, which are studied from two directions:

(i) Boundary layer effects on the zeroth-order (in Q0) I–V relations in terms of the function
I0d(V; σ, ρ);

(ii) Boundary layer effects on the first-order (in Q0) I–V relations in terms of the function
I1d(V; σ, ρ).

Detailed analysis along each direction is provided, which includes the signs of
I0d(V; σ, ρ) and I1d(V; σ, ρ) and their monotonicity. From the study, one can better under-
stand the mechanism of ionic flows through membrane channels, particularly the internal
dynamics of ionic flows, which are non-intuitive and cannot be detected by current technol-
ogy. Critical potentials that balance the small permanent charge effects on the I–V relations
are identified, and their critical roles played in the study of ionic flow properties are charac-
terized. Numerical simulations are performed to provide more intuitive illustrations of the
analytical results, and they are consistent. Among others, we find

(I) The monotonicity of I0d depends sensitively on the parameter t defined by L1/R1 and
the boundary layers through the parameters σ and ρ;

(II) The sign of I1d depends sensitively on the interplays among system parameters,
particularly, the parameter t defined by the ratio L1/R1, and the parameter α =
H(a)/H(1) representing the channel geometry, while the monotonicity of I1d is only
sensitive on α.

Finally, we comment that the setup in this work is relatively simple, and the study
in this work is the first step in the analysis of more realistic models. The simple model
considered allows us to obtain a more explicit expression of the I–V relations in terms of
physical parameters of the problem so that we are able to extract concrete information of
the effects from boundary layers and small but nonzero permanent charges. Moreover,
the analysis in this simpler setting provides further understanding of the qualitative
properties of the I–V relations through membrane channels, and detailed characterization
of the nonlinear interplay among different system parameters. The critical potentials
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identified in this work are critical for one to observe different ionic flow properties
through membrane channels. More importantly, some of them can be approximated
experimentally.
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