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Abstract: This work aims to encourage the use of natural materials for advanced energy applications,
such as proton exchange membranes in fuel cells. Herein, a new conductive membrane produced
from cassava liquid waste was used to overcome environmental pollution and the global crisis of
energy. The membrane was phosphorylated through a microwave-assisted method with different
phosphoric acid, (H3PO4) concentrations (10–60 mmol). Scanning electron microscopy (SEM), X-ray
diffraction analysis (XRD), dynamic mechanical analysis (DMA), swelling behavior test, and contact
angle measurement were carried out on the membrane doped with different H3PO4 levels. The
phosphorylated NdC (nata de cassava) membrane doped with 20 mmol (NdC20) H3PO4 was suc-
cessfully modified and significantly achieved proton conductivity (maximum conductivity up to
7.9 × 10−2 S cm−1 at 80 ◦C). In addition, the fabricated MEA was assembled using an NdC20 mem-
brane with 60 wt% Pt/C loading of 0.5 mg cm−2 for the anode and cathode. Results revealed that a
high power density of 25 mW cm−2 was obtained at 40 ◦C operating temperature for a single-cell
performance test. Thus, this membrane has the potential to be used as a proton exchange membrane
because it is environment-friendly and inexpensive for fuel cell applications.

Keywords: bacteria cellulose; nanocomposite membrane; conducting membrane; energy application;
fuel cell

1. Introduction

Biopolymers are the primary components of natural materials, and cellulose is one of
the most abundant and common organic carbohydrate polymer materials on Earth [1] and
has a promising role in the structural integrity and function of plants [2]. Cellulose is an
unlimited raw material and a major source of environment-friendly materials for various
applications, such as food, medical [3], energy storage, and electronic industries [4]. In
addition, the development of cellulose as a new conducting membrane with good flexibility
and dimensional stability has received great attention in recent years. This is because of
growing environmental awareness and innovative uses of green technology to solve global
challenges such as population expansion, energy crisis, and pollution [5].

Organic polymers have inherent advantages over synthetic polymers, such as low cost,
biodegradability, and abundance [6]. Researchers and industrial producers are interested in
cellulose derived from plants or bacteria because it is a sustainable green resource that is also
renewable, degradable, biocompatible, and cost-effective. A.J Brown, in 1886, first reported
that cellulose can be produced by microorganisms and was particularly popular in his
country under the name of “vinegar plant” [7]. Herein, cellulose is obtained by the activity
of microorganisms through different bacteria, processes, cultures, etc. [8]. Cellulose can be
produced by Acetobacter, Rhizobium, Agrobacterium, Aerobacter, Achromobacter, Azotobacter,
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Salmonella, Escherichia, and Sarcina [9,10]. The best-known and most studied Acetobacter
xylinum has been used for BC fabrication [11].

A proton exchange membrane should have high conductivity, good thermal stabil-
ity, good absorbency, and low production cost. Bacterial cellulose (BC) is an interesting
renewable green nanomaterial characterized by unique and advantageous properties, such
as excellent mechanical strength, thermal stability, cost-effectiveness, wide availability,
biodegradability, biocompatibility, water absorbance, and high crystallinity. BC is a very
promising green material for various fields, such as food, biomedical [12], electronic, and
energy applications [6–8]. BC has unique physical and chemical properties, such as a
higher crystallinity index (above 60%), cross-sectional dimension in the nanometer range,
hydrophilicity, and different degrees of polymerization (DP) between 2000 and 6000, com-
pared with plant cellulose [5]. BC is also free of lignin, hemicelluloses, and pectin, which
are found in plant-derived celluloses. In particular, the hemicellulose component is highly
hydrophilic and has a high swelling ability, permeability, porosity, and water content [11],
leading to a good flow of fluid across the membrane and high selectivity for mass transport
of plant cellulose marked only 40%–70% of cellulose and required purification; however,
purification of plant cellulose typically requires harsh chemicals [5,10–12].

Pure BC has a deficiency in optical transparency, electrical conductivity, magnetism,
hydrophobicity, and antimicrobial properties [13]. In this regard, its capabilities should be
improved and modified for various applications, such as conducting materials [14–16] and
electrical devices [9,16]. BC is not naturally conducting; as such, it should be first converted
into electrically conductive composites by incorporating conductive materials, such as nano
carbon as fillers [8,15,17], as well as doping with acid and conducting polymers [18,19] in
the form of nanoparticles or nanowires. Several studies produced PEM by using BC. In
2017, Gadim et al. [20] produced proton-conducting electrolytes from BC composite with
poly(4-styrene sulfonic acid) (PSSA) at room temperature, with a yield of 40 mW cm−2 at
125 mA cm−2. Naumi et al. in 2018 [21] developed a polymer electrolyte membrane fuel
cell based on BC with sulfonated polystyrene and phosphoric acid, yielding the proton
conductivity of 7.17 × 10−3; phosphoric acid could improve the proton conductivity of
membranes. Nata de cassava is a type of BC produced from the fermented liquid waste
of cassava with the help of bacteria. The conductivity is very low, and the membrane
is added with phosphate groups to improve the proton conductivity, as the phosphate
group could be a medium for proton carriers to increase conductivity. In this work, a
new conducting membrane was produced from cassava liquid waste. It has high proton
conductivity and low cost and, thus, could be an alternative proton exchange membrane.
The present study aimed to determine the effect of phosphorylation on the ion exchange
capacity, ionic conductivity, swelling index, and contact angle of the membrane. The power
density performance of the membrane was also evaluated in real H2/O2 fuel cells at various
temperatures (25–80 ◦C).

2. Materials and Methods
2.1. Materials

Cassava was purchased from a local market, and A. xylinum bacteria were obtained
from Malaysian Agricultural Research and Development Institute (MARDI). Sucrose, acetic
acid, phosphoric acid, sodium hydroxide (NaOH), and dimethyl formamide (DMF) were
obtained from Fisher Scientific.

2.2. Synthesis of Phosphorylated Nata de Cassava Membrane (NdC)

NdC and phosphorylated NdC were prepared following the procedure in our previous
work, and Figure 1 shows the phosphorylation process [22]. Microwave-assisted organic
synthesis can be used to rapidly explore chemistry space and increase the diversity of
compounds produced [23]. In the present study, microwave irradiation was used to
synthesize phosphorylated NdC. The NdC membrane was purified and dried based on the
previous method [24].
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Figure 1. Phosphorylation process of Nata de Cassava.

2.3. Morphology Characterization

Membrane surface morphology was evaluated using Field-Emission Scanning Electron
Microscope (FESEM) Carl Zeiss/GeminiSEM 500 operating at 5 kV. The samples were
previously coated with platinum and analyzed at a magnification of 10.00 K X.

2.4. XRD Analysis

X-ray diffraction was performed using a PANalytical X’Pert PRO using Cu Kα radia-
tion (λ = 1.541 Å) with a scan of 0.05◦s−1 on a 2θ scale to investigate the crystallinity of the
NdC membranes.

2.5. Proton Conductivity

The membrane proton conductivity was measured using an electrochemical impedance
analyzer (Autolab PGSTAT128N potentiostat). The frequency rate was 30 Hz to 2 MHz at
10 mV. Proton conductivity was measured on a 2 cm2 membrane placed in a Teflon cell
containing two stainless steel electrodes in a controlled temperature chamber. Electrochem-
ical impedance spectroscopy analysis was carried out to select the highest conductivity of
the phosphorylated NdC. Proton conductivity was measured at room temperature up to
120 ◦C. Herein, proton conductivity was calculated by Equation (1) as follows:

σ =
t

A × R
(1)

where:

σ = proton conductivity
t = membrane length
A = membrane surface area
R = ionic resistance

2.6. Ion Exchange Capacity (IEC)

IEC measurement is an important analytical technique for determining the activity of a
substance undergoing an ion exchange process with other ions that exist in the environment.
IEC was measured by titration. The dried phosphorylated NdC membrane was soaked
in 50 mL of NaCl (1 M) solution for 24 h to release all the H+ ions out of the sample. The
sample was then dried in an oven at 80 ◦C. The NaCl solution was titrated with NaOH
solution (0.1 M) with a phenolphthalein as an indicator.
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IEC value was calculated using Equation (2) as follows:

IEC =
(Vb − Vs)[Acid] fp

m
(2)

2.7. Contact Angle and Water Uptake

Contact angle analysis was performed at Research Center for Physics, Indonesian
Institute of Science (LIPI) by using Dino-Lite digital microscope dremler AM3111/3113
series. The sample size in 2 cm2 water droplets (10 µL) was dropped on the membrane
surface, and static contact angles were measured. The water uptake of the phosphorylated
NdC membrane was determined according to a previous method [25] through swelling
thickness. The membrane was weighed first under a dry condition, and its thickness
was measured. The membrane was then soaked in water for 24 h at room temperature.
The thickness of the membrane was measured, and its weight was recorded under a wet
condition. Three samples were measured for each condition, and the average was taken.

Water uptake was calculated using Equation (3) as follows:

Water uptake (%) =
Wwet − Wdry

Wdry
× 100% (3)

2.8. Dynamic Mechanical Analysis (DMA)

The mechanical strength of the membranes was determined using a dynamic mechani-
cal analyzer (PerkinElmer DMA 8000) at a frequency of 1 Hz and a heating rate of 3 ◦C/min
from 25 ◦C to 250 ◦C.

2.9. Single-Cell Performance

PEMFC performance was tested using a fuel cell test station apparatus. The catalyst
loading (60 wt% Pt/C) was set as 0.5 mg cm−2 for both electrodes. The anode and cathode
were placed on both sides of the phosphorylated NdC before hot pressing at 80 ◦C and
30 bar for 3 min. Performance was evaluated in a 5 cm2 single cell from 25 ◦C to 80 ◦C. The
cell was fed with H2 (0.08 L min−1) as fuel and O2 (0.2 L min−1) as an oxidant to evaluate
the single-cell performance simultaneously.

3. Results
3.1. Morphology Characterization

The BC membrane is a 3D network composed of abundant nanoscale fibers. The
surface morphologies at various concentrations of the phosphorylated NdC were evaluated
by field emission scanning electron microscopy (SEM). Figure 2 presents the FESEM images
of the phosphorylated NdC with different concentrations of phosphoric acid. In general,
pure BC has an average diameter of 40–100 nm and a length ranging from micrometers to
dozens of micrometers.

Table 1 shows the diameter of the fiber, which consists of phosphorylated NdC with
different phosphoric acid concentrations (10–60 mmol). The thickness of the cellulose fiber
increased from 67.5 nm to 415.4 nm with increasing phosphoric acid concentration. The
membrane preserved the porous structure of BC, which is expected to significantly improve
the liquid electrolyte adsorption and support the ion transport through the 3D network
channels [26].
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Table 1. Fiber size (diameter) of phosphorylated Nata de Cassava membranes.

NdC Membranes Fiber Size (nm)

Pure NdC 67.5
10 mmol H3PO4 69.1
20 mmol H3PO4 93.0
30 mmol H3PO4 106.5
40 mmol H3PO4 117.2
50 mmol H3PO4 120.5
60 mmol H3PO4 415.4

3.2. XRD Analysis

The X-ray diffraction patterns of the pure NdC and phosphorylated 20 mmol NdC
are shown in Figure 3. Three distinct peaks were observed at 2θ = 14.6◦, 16.7◦, and 23.8◦,
which can be attributed to the (100), (110), and (200) reflections of cellulose peaks [27].
The phosphorylated NdC showed the existence of a phosphate peak at 47◦ and the pres-
ence of a crystalline region, thereby indicating the higher crystallinity of the membrane
phosphorylated with phosphoric acid [28].
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3.3. Ion Exchange Capacity, Proton Conductivity, and Contact Angle of Phosphorylated NdC

The rate of proton transport in electrolytes is a crucial factor for the development of
conducting polymer membranes. In general, the two main proton transport mechanisms
are hopping (or Grotthus) and diffusion (or vehicular), which are both water-dependent.
Water molecules in the membrane matrix can form a network of hydrogen bonds, thereby
increasing the conduction of ions through the vehicular and Grotthuss mechanisms [29]. For
fuel cell applications, the ion exchange capacity (IEC) of the polymer electrolyte membrane
is an important factor because it indicates the number of ionic groups in the polymer
matrix [30]. Hence, in the present work, ion exchange capacity and impedance were
measured at room temperature (25 ◦C) for NdC10–NdC60. The highest measured ion
exchange capacity was observed in NdC20 and proceeded to higher temperatures until
200 ◦C. The schematic diagram of the ion transport mechanism of phosphorylated NdC is
shown in Figure 4.
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As shown in Figure 5a, the addition of phosphoric acid into the NdC membrane
improved the conductivity. NdC20 had the highest conductivity of 7.1 × 10−2 S cm−1

at room temperature. This finding correlates with the highest ion exchange capacity of
NdC20. In Figure 5b, the ion exchange capacity represents the number of active sites or
functional groups responsible for ion exchange in polymer electrolyte membranes. Hence,
ion exchange capacity is a good indicator of ion availability, affects the ionic transfer,
particularly in the Grotthuss mechanism, and is related to proton conduction. Table 2
shows the proton conductivity of NdC20 at various temperatures (25–200 ◦C). The proton
conductivity significantly increased with temperature up to 80 ◦C and started to decrease
sharply after 80 ◦C. The increasing hydronium ion (H3O+) transport is dominated by the
support of the Grotthuss mechanism at high temperatures. However, high temperatures can
decrease the humidity, lead to the disconnection of ion channels and reduce the conductivity
of NdC20 at temperatures above 80 ◦C. Therefore, the role of water in the PEMFC system is
very important because it acts as a bridge between conductive sites [31].
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Table 2. Proton conductivity of NdC20 at various temperatures (25–200 ◦C).

Temperature (◦C) Conductivity (S cm−1)

25 7.1 × 10−2

40 7.3 × 10−2

80 7.9 × 10−2

120 6.4 × 10−4

200 8.4 × 10−6

Meanwhile, BC has a super hydrophilic characteristic because of the presence of vari-
ous hydroxyl groups on the surface of polymer membranes. The highly hydrophilic nature
of BC is the key to allowing proton transport across the membrane. Sufficient humidifica-
tion of the membrane is important to achieve the desired proton conductivity and PEMFC
performance. The high water content of composite membranes is the main reason for the
high ionic conductivity. The presence of hydrophilic groups and the hydrogen bonding
between water molecules and acids influence polymer proton conductivity. The ability
of the electrolyte membrane to absorb water determines its ability to transport protons.
The water contact angle is a critical parameter in determining the hydrophilicity of the
membrane surface [32]. In the present study, the NdC membrane has high hydrophilicity,
leading to a high degree of membrane swelling and low membrane performance. Figure 6
shows the effect of phosphorylation on contact angle. The introduction of phosphate
groups into the NdC membrane decreases the ability of the membrane to absorb much
water, causing the fragility of the phosphorylated NdC membrane. Crosslinked chains
can be formed at high phosphoric acid concentrations because phosphoric acid acts as a
crosslinker for NdC membranes and other polymers. Figure 6h shows that increasing the
concentration of phosphoric acid results in a higher contact angle. Figure 6i shows that
increasing the concentration of phosphoric acid in NdC reduces the hydrophilicity of the
membrane because phosphorylation replaces the hydroxyl groups with less hydrophilic
ones. Hence, the hydrophilicity of the phosphorylated NdC membranes decreases with
phosphoric acid concentration.
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angle of phosphorylated NdC; and (i) effect of phosphoric acid on water uptake of phosphorylated NdC.

3.4. DMA of Phosphorylated NdC

Mechanical properties are strongly influenced by mesh size and fiber diameter. The
mechanical properties of the NdC membranes were evaluated using Dynamic Mechanical
Analysis (DMA). This technique is sensitive and provides data on polymer bulk properties,
thermal transitions, and other minor phase or structural changes [33]. DMA test was con-
ducted on the stretching test model. The results showed that the membrane storage moduli
could represent Young’s moduli and provide information on the mechanical properties and
glass transition of the membrane with high degrees of crystallinity or cross-linking. The tan
δ and loss modulus peaks were represented using the glass transition temperature, with the
tan δ peak occurring at a higher temperature than the loss modulus. Tan δ is well-known
for being a good limit of the leather-like midpoint between the glassy and rubbery states.
The storage modulus limits the recoverable stored strain energy, and the loss modulus
limits the energy consumed and lost as heat [34,35].

In general, DMA was used to determine the effect of the exposure of microcomposites
to elevated temperatures on the stiffness of the polymer [36]. Figure 7 shows the plot of the
tan δ and storage modulus versus the temperature of pure NdC and phosphorylated NdC20
membrane. Tg occurred within 180–235 ◦C for all membranes. NdC20 was selected due to
its high performance in proton conductivity. The Tg values are 234.25 ◦C for pure Ndc and
decrease to around 190 ◦C for the phosphorylated NdC20. The range of Tg peak heights of
pure NdC and phosphorylated NdC20 membranes is approximately 0.12–0.13 based on the
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tan δ curve in Figure 7. The range of Tg peaks mentioned proved that all the membranes
were in the crystalline phase, consistent with the XRD analysis in Section 3.2.
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The storage modulus of pure NdC is 1.67 × 109 at 35 ◦C; it slightly decreased at
75 ◦C, started to slightly increase at 107–175 ◦C, and then decreased again until above
210 ◦C. The phosphorylated NdC membranes decreased from 1.67 × 109 to 1.48 × 109 in
NdC20 at 35 ◦C. The storage modulus values demonstrated that the phosphorylated NdC
membrane has good mechanical stability and could be a promising membrane material for
fuel cell applications.

3.5. MEA and Single Cell Performance of Phosphorylated NdC

In consideration of proton conductivity and IEC results discussed in Section 3.3, the
addition of phosphoric acid into the NdC membrane improved the conductivity of the mem-
brane. The highest conductivity was obtained in NdC20, with a value of 7.9 × 10−2 S cm−1

at 80 ◦C. NdC20 membrane was selected for fabrication of membrane electrode assembly
and PEM fuel cell performance test. Figure 8a shows the polarization curves and power
density profiles of the fuel cell at various operating temperatures from 25 to 80 ◦C. Figure 8b
displays MEA assembly in the PEMFC single-cell set-up. The initial decline in the polariza-
tion curve was caused by a loss of the active catalyst surface area and a reduction in the
electrical connectivity of the catalyst support structure at the electrode [37]. In the present
study, phosphorylated NdC20-based MEA for single-cell performance was lower than the
single-cell performance of commercial membrane fuel cells; however, the value of proton
conductivity was higher than modified bacterial cellulose elsewhere [38].
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Furthermore, these curves indicate that the fuel cell performance was improved to
25 mW cm−2 with increasing temperature from 25 ◦C to 40 ◦C and started to decrease at
60 ◦C. The increase in fuel cell performance between 25 ◦C to 40 ◦C can be clarified by the
increase in the gas diffusivity and membrane conductivity at higher temperatures. Water is
easily condensed at a lower temperature; water flooding may degenerate gas diffusivity
in the catalyst and gas diffusion layer. The gas diffusivity of the fuel cell was improved
with increasing fuel cell temperature; therefore, the performance increased at a higher
temperature. Nonetheless, at 60 ◦C, the membrane conductivity decreased as the relative
humidity of the reactant gases, and the water content in the membrane decreased. As a
result, when the temperature was raised to 80 ◦C, the fuel cell performance suffered. The
rate of water evaporation increased as the temperature increased. When the temperature
reached a critical point where the amount of water evaporated exceeded the amount
of water produced, the membrane began to dry out. As the membranes dried out, the
resistance increased, reducing the current and water production [39].

Herein, the efficiency of a fuel cell is determined by the efficiency of the electrode,
catalyst activity, great ionic conductivity, and IEC, and the membrane should have high
ionic conductivity to achieve higher fuel cell performance [40], although the single-cell
performance of the NdC20 membrane was lower than commercial membrane fuel cells, the
value of proton conductivity was higher than modified bacterial cellulose elsewhere [39]
indicating the promising membrane to be used as a proton exchange membrane which more
environmentally friendly, and inexpensive alternative membrane for fuel cell application.

4. Conclusions

The phosphorylated NdC (nata de cassava) membranes were successfully modified
and doped with phosphoric acid to significantly improve the proton conductivity (max-
imum conductivity up to 7.9 × 10−2 S cm−1 at temperature 80 ◦C), IEC, mechanical
properties, and contact angle. High power density for single-cell performance test at about
25 mW cm−2 was obtained for MEA fabricated using NdC20 membrane with 60 wt% Pt/C
loading of 0.5 mg cm−2 for both anode and cathode. In summary, the phosphorylation pro-
cess on the NdC membrane has successfully improved its properties; hence this membrane
has the potential to be used as a proton exchange membrane in fuel cell applications.
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