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Abstract: Water resources management is one of the most important issues nowadays. The necessity
of sustainable management of water resources, as well as finding a solution to the water shortage crisis,
is a question of our survival on our planet. One of the most important ways to solve this problem is
to use water purification systems for wastewater resources, and one of the most necessary reasons for
the research of water desalination systems and their development is the problem related to water
scarcity and the crisis in the world that has arisen because of it. The present study employs a carbon
nanotube-containing nanocomposite to enhance membrane performance. Additionally, the rise in
flow brought on by a reduction in the membrane’s clogging surface was investigated. The filtration
of brackish water using synthetic polyamide reverse osmosis nanocomposite membrane, which has
an electroconductivity of 4000 Ds/cm, helped the study achieve its goal. In order to improve porosity
and hydrophilicity, the modified raw, multi-walled carbon nanotube membrane was implanted using
the polymerization process. Every 30 min, the rates of water flow and rejection were evaluated. The
study’s findings demonstrated that the membranes have soft hydrophilic surfaces, and by varying
concentrations of nanocomposite materials in a prescribed way, the water flux increased up to
30.8 L/m2h, which was notable when compared to the water flux of the straightforward polyamide
membranes. Our findings revealed that nanocomposite membranes significantly decreased fouling
and clogging, and that the rejection rate was greater than 97 percent for all pyrrole-based membranes.
Finally, an artificial neural network is utilized to propose a predictive model for predicting flux
through membranes. The model benefits hyperparameter tuning, so it has the best performance
among all the studied models. The model has a mean absolute error of 1.36% and an R2 of 0.98.

Keywords: desalination; polyamide reverse osmosis membrane; carbon nanotubes; artificial neural
network; machine learning

1. Introduction

One of the most necessary reasons for research on water desalination systems and
their development is the problem of water shortage and the resulting crises in the world.
More than half of the world is considered to be arid and semi-arid areas; therefore, it
is not unreasonable to expect a water crisis in it [1–3]. Therefore, the need to renew
water resources and find a solution to the water shortage crisis is vital. One of the most
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important ways to mend this problem is to use water purification systems for wasted water
resources [4–8]. Among the purification systems with desalination, reverse osmosis has
been used for many years due to the reduction in energy consumption and high efficiency.
At first, reverse osmosis was used to desalinate sea and salt water [9,10].

The lack of water resources, qualitatively and quantitatively, is considered a serious
threat to the world’s population, especially developing countries. 13% of the world’s
population still does not have access to safe water sources [11]. However, the common
methods of water purification are not the answer to the existing problems. This research
tries to solve this problem with nanotechnology methods and compounds. In recent years,
nanoparticles have been researched in various areas, including multiphase flows [12–15]
and catalysts [16]. Nanofluids are extensively studied to enhance heat transfer capabili-
ties [17,18]. However, recently, nanoparticles have been developed for water purification
worldwide. Water purification is divided into filtration and disinfection, and nanotech-
nology is used in both parts [19,20]. Nanotechnology provides many nanomaterials for
the treatment of surface water, underground water, and wastewater and the removal of
toxic metal and organic, inorganic pollution and microorganisms. This research solves
the problems in the field of water purification based on various nanomaterials. Using
nanofiltration, natural organic substances, microbial and organic pollution, nitrate, and
arsenic can be removed from the surface and underground water [21]. Utilizing reverse
osmosis, organic and inorganic compounds and microbial contamination can be removed
from the water and desalinated [22]. Nanomaterials can eliminate the contamination of
toxic metal ions, inorganic and organic compounds, and microorganisms in surface water,
underground water, and wastewater [23]. With the help of nano adsorbents, catalysts,
and nanomembranes, microbial and chemical pollution of water can be removed [24].
Many research studies are related to the utilization of nanomembranes in reverse osmosis
desalination [25–30]. A thorough review of the methods is presented in the following.

The increased industrial demands to conserve water, reduce energy consumption,
control corrosion, and recycle useful materials from waste streams led to the creation of new
and economic applications for these membranes [31–36]. In addition, the advancement of
biotechnology and pharmaceutical knowledge, along with the development of membrane
use, made the method of using membranes a vital step in the separation operation in
order to save energy and prevent the heat loss of products, preferably to the distillation
method [37]. Scientific research on membrane principles was established by FILMTEC with
the production of the FILMTECFT30 membrane in 1963 [38].

With the development of reverse osmosis membrane technology, many changes have
been made to optimize membrane performance and energy [39,40]. After the construction of
asymmetric membranes, thin-shell composite membranes made significant progress due to
the high potential of modification in the structure and optimization of membrane efficiency.
Thin shell membranes consist of three layers, including the bottom layer of non-woven
fabric, the middle layer of polymers such as polysulfone or polyether sulfone, and the
upper layer of thin shell membranes, which are generally made by surface polymerization.
The last layer, which is called the polyamide layer, is the most effective layer for salt
purification and making a reverse osmosis membrane because it minimizes the holes on the
membrane surface to the point where only water molecules can pass through the membrane
surface [41,42].

With the development of nanoscience, the water treatment industry has undergone
significant changes. Nanoparticles have been used in the absorption of various heavy metals
such as lead [43], chromium [44], virus removal from drinking water [45,46], and removal
of other pollutants from water. Additionally, in the synthesis of polyamide membranes,
nanoparticles have been used to improve the surface. All nanocomposite membranes have
had better performance and higher efficiency compared to simple polyamide membranes.
Among all the nanocomposites used in membrane synthesis, carbon nanotubes are used in
a variety of research [47] because of their special structure and unique features.
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In order to optimize the performance of membranes, various materials have been used
to modify the nanotubes, and new nanocomposites have been produced, among which
silver nanotubes and multiwalled carbon nanotubes can be used to improve the influx
by 20% [48]. By using different percentages of HNO3 and H2SO4 acid, Kim et al. [49]
created the O-H functional group for more hydrophilicity. Moreover, Barona et al. [50] used
single-walled carbon nanotubes along with aluminosilicate for a significant increase in the
influx. Additionally, Chan et al. [41] used single-walled carbon nanotubes with zwitterion
groups to improve the reverse osmosis polyamide membrane and increase the influx from
12 L

m2h to 32.8 L
m2h .

Working for long periods of time, current membranes, and in general, simple polyamide
membranes are faced with the clogging phenomenon. This clogging can significantly
reduce the membrane influx. Therefore, several methods have been used to prevent the
reduction of the influx and the occurrence of concentration polarization on the surface of
the membrane [51]. Since the mechanism of reverse osmosis membranes is the diffusion
of particles on the membrane surface, the modification of the membrane surface by using
materials that can improve the diffusion of water particles and reduce the concentration
of fat and salt on the membrane surface has increased. Nanoparticles, especially those
with hydrophilic groups on their surface, have been effective in this field. Researchers
have shown that membranes with hydrophilic nanocomposites increase the influx and
significantly reduce clogging [52].

While using conventional methods to develop the predictive model was common [53–57]
in all areas, recently, more research has been devoted to studying the predictive models
proposed using machine learning algorithms [58–63]. To this end, some studies have been
concerned with using artificial neural networks (ANN) [64,65], genetic algorithms, and
other machine learning algorithms [66–68] in engineering problems. Ruiz-Garcia and
Feo-Garcia [69] applied artificial neural networks to a seawater reverse osmosis (SWRO)
and estimated the system’s cost. Joy et al. [70] utilized response surface methodology
and machine learning algorithms to find the optimized case for the removal of organics
from reverse osmosis. The output parameters of their study were the total organic carbon
removal and chemical oxygen demand removal. Salgado-Reyna et al. [71] carried out an
experiment in a can manufacturing process. They studied the wastewater from this system,
and they used the wastewater to desalinate it using reverse osmosis. Through this process,
they gathered data to propose models for predicting total dissolved solids and maximum
effluent recovery. Their model had a coefficient of determination of more than 0.97.

In this research, a nanocomposite containing carbon nanotubes was made due to the
mentioned effects in improving the performance of the membranes with carbon nanotubes.
However, because of the increase in the hydrophilicity of the membrane surface, materials
with hydrogen bonds were selected. Finally, the use of raw carbon nanotubes coated
with pyrrole as a new nanocomposite was investigated to check the performance of the
membrane. Additionally, the increase of the influx by these changes, the decrease in the
amount of membrane surface clogging in a specific period of time, and the long-term
stability of the membrane surface are determined. Finally, using the data of the research,
we have proposed predictive models using artificial neural networks to predict the influx
of the membrane and the clogging of the membrane.

2. Materials and Methods

Multiwalled carbon nanotubes (with a length of about 10 to 20 µm, an outer diam-
eter of 20 to 30 nm, and an inner diameter of 5 to 10 nm) were purchased from CNT
Co., Ltd., (Yeonsu-Gu, Incheon, Republic of Korea). 250 mL of pyrrole was purchased
from Sigma Aldrich (St. Louis, MO, USA). The polysulfone grains for making the ultra-
filtration layer were obtained from BASF, Ludwigshafen, Germany. Other materials used
include methylphenylenediamine (MPD), dimethylformamide (DMF), camphor sulfonic
acid, polyvinylpyrrolidone (PVP), Sodium dodecyl sulfate powder, triethylamine (TEA),
and an inorganic solvent was provided, which is Hexane from Merck, Darmstadt, Germany.
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In order to perform the clogging test, 250 g of bovine serum albumin (BSA) was purchased
from Merck. Hollytex 3329 non-woven fabric was obtained from Merck, Germany, with
a thickness of 170 µm. Other materials used for the synthesis of Multiwalled carbon
nanotubes, including toluene sulfonic acid and aluminum persulfate, were also obtained
from Merck.

2.1. Membrane Synthesis

To synthesize the membrane in this research, we first made the ultrafiltration support,
and then it was stretched on the non-woven fabric. Then, the membrane was placed in three
different baths, including the MPD bath (in the synthesis of the nanocomposite membrane,
nanotubes are also added to this bath), the TMC bath, and finally the hexane bath to make
the top layer.

The reverse osmosis thin-shell membrane was fabricated in two steps. First, the
polysulfone support was formed on the non-woven fabric by the phase separation method,
and then a selective polyamide layer was made on it by the interfacial polymerization
method by the reaction of two monomers. To make the support, polysulfone powder
was first poured into the DMF solution, and then it was stirred in a mixer for 24 h at
a temperature of 50 degrees Celsius at a constant speed until it dissolved. Finally, the
prepared solution was placed in a dark space to reduce the number of bubbles. The
polyester substrate was used for membrane strength. Then, the prepared solution was
poured on the same substrate, and a layer of it with a thickness of about 170 microns was
stretched on the polyester layer by elastic film, and then it was quickly immersed in the
anti-solvent water bath until it solidified [72].

The support prepared for the reverse osmosis membrane was placed in two separate
baths containing MPD and TMC, and after combining the MPD solution with distilled
water for 10 min, it was poured onto the polyether sulfone membrane, and the rest of the
MPD was removed from the membrane by a plastic roller tube. After that, the membrane
was saturated with MPD for 2 min in the solution containing 0.15% by the weight of TMC
and placed in hexane solvent. After performing these steps and the final washing in hexane,
in order to produce a dense polyamide layer, the constructed membrane was kept at
70 degrees Celsius for 10 min. Finally, the prepared membrane was kept in distilled water.

In the next step, a raw carbon nanotube coated with polypyrrole was prepared. For
this purpose, 95.15 g of ammonium persulfate was mixed with 375 mL water for 10 min.
Then, the combination of toluene sulfonic acid, including 37.13 g of acid and 25 mL of
water, was added to the previous solution and stirred for 15 min. After performing the
mentioned steps, 5 mL of pyrrole was mixed with water, 0.048 g of multiwalled carbon
nanotube was added to the solution, and it was ultrasonicated for 10 min. Then, the
solution was slowly stirred into the acid solution for 4 h at room temperature. Next, to
separate the black solution from the bottom of the container, a centrifuge was used with a
maximum speed of 4200 rpm for 8 min. Finally, the obtained black material was placed in
a vacuum oven at a temperature of 60 degrees Celsius for 48 h to dry the solution. After
making the nanocomposite for the synthesis of nanocomposite membranes, the modified
carbon nanotubes powder was placed in the TMC solution in the first stage of surface
polymerization, i.e., in the TMC solution, and the ultrafiltration membrane was made
like simple polyamide membranes was placed in this solution for 10 min. The rest of the
steps were carried out in the same way as the simple polyamide membrane synthesis. The
fabricated membranes were evaluated in influx, desalination, and clogging test parameters.

2.2. Membrane Quality Check

To identify the nanoparticles and how they combine and form the polyamide layer on
the membrane, SEM analysis was used by the TESCAN measurement device made in the
Czech Republic. Based on the identification of surface roughness and the topology on the
membrane surface, AFM analysis was used. To calculate the roughness in the membrane
analysis, three parameters were used: height difference between the highest edge and the
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lowest with the Sy parameter, the uniformity of the ups and downs with the Sq parameter,
and the average roughness of the entire membrane surface with Sa. The device used to
evaluate membrane surface roughness was DualScope C-26, DME Corp. Denmark, and
DME/AFM software version 2.1.1.2 was used to calculate the mentioned parameters.

FTIR analysis was used to detect the chemical bonds made after the reaction. In
this analysis, new compounds of the manufactured composite material were identified,
and the existence of bonds formed after the material was modified or combined with
new materials was confirmed [73]. In this research, FTIR analysis was used to modify
multiwalled carbon nanotubes and the presence of hydroxide groups on the nanotube
surface. All FTIR analyses were performed with an ABB-104 Bomem FTIR spectrometer
(MB) (ABB Ltd., Zürich, Switzerland).

Contact angle analysis was used to evaluate the hydrophilicity of the manufactured
nanocomposites. If the contact angle of water molecules with the membrane surface is
lower, the hydrophilicity of the membrane surface is higher. The contact angle measuring
device was G10, Kruss, made in Germany.

2.3. Membrane Analysis and Test

All fabricated membranes were tested in the device. The test device is made of a
pump, feed tank, and tube with an effective surface of 36 cm2 (9 cm× 4 cm) with the lateral
flow, the membrane is placed in the tube, and the water passes through the membrane and
returns to the tank. Figure 1 shows the details of this study’s reverse osmosis purification
system. According to Figure 1, three cells are placed side by side, and water enters the cells
from the feed tank through a pump. The pressure gauge is set at the beginning of each
cell, which is about 16 bar in the first cell, 15 bar in the second cell, and about 14 bar in
the third cell. The average pressure is calculated and assumed constant for all results for
influx calculations.
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The amount of water passing through the membrane enters the container for mea-
suring water volume through the tube at the end of it, and the water permeability is
determined by Equation (1) [74].

J =
Vp

A × t
(1)

In this equation, J is the passing flux of water in terms of L/m2h, Vp is the volume of
water passing through the membrane in liters, A is the effective surface of the membrane in
square meters, and t is the time of the passing water in a certain measured volume in hours.
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To determine the amount of salt removal, an electrical conductivity meter model TES
made in Taiwan was used. The salt ion concentration in the tank and in the purified water,
after passing through the membrane, is measured by Equation (2) [74].

R =

(
1 −

cp

c f

)
× 100 (2)

where Cp is the concentration of salt in the purified water, and C f is the concentration in
the feed solution in terms of microsiemens/cm.

All experiments were carried out under salt pressure in the feed tank equivalent to the
electrical conductivity of 4000 microsiemens/cm. It should be noted that all concentrations
were calculated based on microsiemens/cm using an electrical conductivity meter and
finally included in the mentioned formulas to calculate the influx and the percentage of salt
rejection. The water temperature in the feed tank was kept almost constant. Changes were
made only in the type of membrane, and different membranes (simple polymer membrane
and modified nanoparticle membrane) with different amounts of salt removal and clogging
effects were investigated. The membrane clogging resistance test was done by the same
device with BSA protein solution filtration. All the membranes were prepared for the
clogging test for 24 h after the influx and rejection tests.

In the present study, raw multiwalled carbon nanotubes coated with pyrrole in four
different weight percentages (0.001, 0.002, 0.005, and 0.01) were prepared for the test.
To check the performance of the membrane, each of these concentrations was brought
with the code R-CNT-P(1,2,3,4), which represents raw carbon nanotubes with pyrrole.
Additionally, to show simple polyamide membranes in the diagrams, the Bare-PA code was
used. Each test consisted of two stages, and the first test was conducted for 90 min of each
membrane to evaluate the amount of water passing through the surface of the membrane
and to measure its percentage. At this stage, there was only salt-water solution with a
concentration of 4000 microsiemens/cm water-salt in the feed tank. In the second stage
of the test, 0.4 g of serum albumin fat was added to the water-salt solution with the same
specified concentration. Each clogging test lasted for 24 h, and the water flow rate was
measured every hour.

For each specific weight percentage with a specific carbon nanotube, six similar mem-
branes with an area of 36 cm2 were made, although a simple polyamide membrane was made
and tested to compare the difference between a simple membrane and a nanocomposite.

3. Results and Discussion

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Investigation of Synthesized Membranes for Reverse Osmosis Process

Figure 2 shows the SEM analysis for raw carbon nanotubes with different concentra-
tions of pyrrole. The amine group on the surface of the pyrrole-containing membranes has
made them denser, which can be seen in Figure 2.

In the results of [75], it is mentioned that, in raw carbon nanotubes with pyrrole, the
surface of the nanotube is softer than without pyrrole, and this is due to the structure of the
bonds created by the pyrrole coating, which has caused a significant increase in influx and
improved clogging.

Figure 3 shows the FTIR analysis for raw and pyrrole-coated multiwalled carbon
nanotubes. For the modified carbon nanotube, two new peaks related to the hydrogen band
with wavelengths of 687 (N-H) and 3300 (C-H) were observed, and the presence of the
hydrogen group is proof of the modification of the carbon nanotube. These hydrogenated
bonds contribute to the hydrophilicity of the carbon nanotube and improve the passage of
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water through the membrane. Additionally, the peaks of 1385 and 1540 are created due to
the type 2 amine functional group on the surface of the nanotube [76].
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Contact angle analysis was used to determine the hydrophilicity of membranes. Ac-
cording to Figure 4, the contact angle of water with the membranes with raw nanotubes
coated with pyrrole is significantly lower than the rest of the manufactured membranes,
and this means that water droplets are absorbed by the raw nanotubes coated with pyr-
role. The absorption of water droplets into raw nanotubes along with pyrrole creates a
hydrophilic layer on the surface of the membrane and prevents fat from reaching it, which
leads to a reduction in clogging. This increase in the hydrophilic surface in the fabricated
nanocomposite is due to the presence of hydrogen bonds on the surface of carbon nan-
otubes. Therefore, the hydrophilicity of modified carbon nanotubes is higher than other
polyamide membranes [77].
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AFM analysis was performed to check the surface roughness and prove the clogging
performance based on the used nanocomposites. This test was performed for three types
of membranes in three repetitions, and finally, the average data obtained are presented
in Table 1. The surface roughness parameters were carefully checked by DME/AFM
software version (2.1.1.2), and among these parameters, the most important parameter that
is considered to check the roughness level is the Sa parameter. This parameter considers the
average roughness of the entire surface, and according to the results, the best membrane
in terms of the lowest roughness is the MACNTs-PPy nanocomposite membrane with a
concentration of 0.001%, and it also showed the lowest amount of clogging in the clogging
reduction graph.
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Table 1. The roughness analysis of the surface by DME/APM.

Membrane
Roughness Parameter

Sa (nm) Sq Sv

Bare PA RO 54.6 68.8 431
0.001 R-CNT-P1 16.39 16.39 206.8
0.002 R-CNT-P2 32.11 42 304.2
0.005 R-CNT-P3 54.6 67.5 449.4
0.01 R-CNT-P4 28.71 34.98 210.1

The roughness in the nanocomposite membranes with pyrrole decreased to a suitable
ratio, but with the addition of nanoparticle concentration higher than 0.005, the roughness
increased again. This increase may be due to the ionic interaction between the new groups
added on the surface of the membrane, which in some areas leads to folding and increasing
the roughness. Two reasons can be proposed for the change of membrane surface roughness
compared to simple polyamide membranes. First, with the addition of N-H groups, the
empty spaces on the membrane surface have been filled and made the membrane smoother,
and the second reason can be attributed to the migration of carbon nanotubes on the
membrane surface after being dipped with membrane-forming materials and making the
surface uniform with its particles [78]. Surface topology analysis, according to Figure 5,
showed that the roughness has decreased compared to the plain polyamide membrane, and
the surface of the membrane has become smoother. In general, the structure is observed in
all simple polyamide membranes and nanocomposite membranes.
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3.2. The Performance of Reverse Osmosis Membrane in Transmittance and Rejection

The transmittance and percentage of salt removal from raw nanotube membranes are
given in Figure 6. As can be seen, the water flux passed through the membranes with raw
nanotubes higher than the membrane without nanotubes. This phenomenon can be due to
the hydrogen bond and the sliding of water molecules from the surface of nanoparticles,
as well as the tubular structure of carbon nanotubes and the passage of water through
the nanotube channels [79]. As seen in the SEM analysis, the carbon nanotubes made the
membrane surface smoother than the membranes without nanoparticles. Therefore, the
amount of water passing through these membranes is higher. The amount of water flux
increases with the increase in the concentration of nanotubes, so that, at the concentration
of 0.001%, the amount of passing water flux is 29.5 L/m2h, but at the next concentrations,
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especially at 0.005%, the flux is 30.8 L/m2h. According to Figure 6, the salt rejection in
all membranes with pyrrole is higher than the normal membrane, and it is above 95%.
According to Figure 6, the highest amount of salt removal is related to raw nanotubes with
pyrrole at a concentration of 0.001%, which can be due to the good spread on the surface
of the membrane and the way the molecules are placed on it, the functional groups with
hydrogen on the surface of the membrane, which has happened well in this membrane [80].
Indeed, other membranes also significantly remove NaCl salt from the feed solution,
with a very small difference compared to this membrane. Additionally, compared to the
commercially made membranes and according to the method of synthesis of the membrane,
it can be said that it has an acceptable performance compared to the materials used.
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3.3. Membrane Clogging

Membrane clogging is one of the most important parameters of membrane investi-
gation. In general, the lower the clogging, the better the performance of the membrane.
Nowadays, various technologies are used to improve membrane performance. The amount
of clogging in membranes with nanotechnology has been significantly reduced [81,82]. The
clogging of the fabricated nanocomposite membranes and the comparison with the plain
membrane are shown in Figure 7. As can be seen in Figure 7, all nanocomposite membranes
have a higher flow rate than polyamide membranes within 24 h. It must be mentioned
that, in order to gather enough data for the artificial neural networks, the membranes
are evaluated every hour, and the data is stored. However, in the following section, the
representatives of the mentioned data are presented. Additionally, among all the tested
nanocomposite membranes, concentrations of 0.001% and 0.005% have the highest flux
even at the end of the 24 h test compared to other membranes. Figure 8 is the normalized
graph of all the nanocomposite membranes. According to Figure 8, all the nanocomposite
membranes have uniform stability, and during 24 h, they are more stable than the simple
polyamide membranes. The most stable membrane in the normalized diagram corresponds
to the concentration of 0.001%. Additionally, in the concentration of 0.005%, proper stability
and uniform flux were observed for 24 h. This concentration has the highest amount of
flux, and it can be said that it has the best performance among all membranes.
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4. Artificial Neural Networks

In order to propose models for the two main parameters of the present study, the
data from the experiments are used. We aim to propose a predictive model for water
influx of a reverse osmosis desalination system using multiwalled carbon nanotubes by
artificial neural networks (ANNs) [83,84]. Therefore, in order to create, more than 125 nu-
merical cases are simulated using the numerical cases with different boundary conditions.
Then, we extracted the data from the simulations and divided the independent data into
two categories, training and testing, the ratio of which is 70–30%. Next, by using the
hyperparameter tuning, we have optimized the prediction capabilities of the presented
models. Additionally, the results are evaluated by using the mean absolute error (MAE)
and coefficient of determination (R2). The following sections present the optimization of
hyperparameters and the results. Figure 9 shows the widely used activation functions.



Membranes 2023, 13, 31 12 of 18

Membranes 2023, 13, x FOR PEER REVIEW 12 of 19 
 

 

flux of a reverse osmosis desalination system using multiwalled carbon nanotubes by 
artificial neural networks (ANNs) [83,84]. Therefore, in order to create, more than 125 
numerical cases are simulated using the numerical cases with different boundary condi-
tions. Then, we extracted the data from the simulations and divided the independent 
data into two categories, training and testing, the ratio of which is 70–30%. Next, by using 
the hyperparameter tuning, we have optimized the prediction capabilities of the pre-
sented models. Additionally, the results are evaluated by using the mean absolute error 
(MAE) and coefficient of determination (𝑅 ). The following sections present the optimi-
zation of hyperparameters and the results. Figure 9 shows the widely used activation 
functions. 

 
Figure 9. The most well-known activation functions. 

4.1. The Hyperparameter Tuning Process 
As was already mentioned, selecting the optimal model to forecast an output pa-

rameter is a process that has to be done carefully. Therefore, the hyperparameter tuning 
of the flux is presented. 

In the first step of this process, as mentioned in [61,63], the structure of the hidden 
layers is investigated. We studied whether increasing the number of hidden layers would 
significantly affect the predictive capabilities of the output parameters. In Table 2, the 
structures are analyzed. The simplest structure comprises one hidden layer with 32 
neurons, but the most complicated one consists of eight layers with different numbers of 
neurons. 

Table 2. The study of hidden layers formation on the predictions. 

Number Input  Hidden Layers MAE (%) 𝑹𝟐 
1 𝑃, 𝐺, 𝑞, 𝑥 , 𝜑 (32) 3.98% 0.95 
2  (32,64) 2.67% 0.96 
3  (32,64,32) 2.61% 0.95 
4  (32,64,64,32) 2.48% 0.96 

5 *  (32,64,128,64,32) 2.06% 0.98 
6  (32,64,128,128,64,32) 2.39% 0.98 
7  (32,64,128,256,128,64,32) 2.30% 0.97 
8  (32,64,128,256,256,128,64,32) 2.41% 0.97 
9  (32,64,128,256,512,256,128,64,32) 2.40% 0.97 

* Finally selected model. 

It is clear that the model improves in accuracy as the number of neurons and hidden 
layers increases; however, when overfitting occurs, this accuracy decreases and the re-
verse trend is shown. Consequently, the chosen model is (32,64,128,64,32). Table 3 ex-
amines the effects of various activation functions for the output layer after choosing the 
number of hidden layers. 
  

Figure 9. The most well-known activation functions.

4.1. The Hyperparameter Tuning Process

As was already mentioned, selecting the optimal model to forecast an output parame-
ter is a process that has to be done carefully. Therefore, the hyperparameter tuning of the
flux is presented.

In the first step of this process, as mentioned in [61,63], the structure of the hidden
layers is investigated. We studied whether increasing the number of hidden layers would
significantly affect the predictive capabilities of the output parameters. In Table 2, the
structures are analyzed. The simplest structure comprises one hidden layer with 32 neurons,
but the most complicated one consists of eight layers with different numbers of neurons.

Table 2. The study of hidden layers formation on the predictions.

Number Input Hidden Layers MAE (%) R2

1 P, G, q, xin, ϕ (32) 3.98% 0.95
2 (32,64) 2.67% 0.96
3 (32,64,32) 2.61% 0.95
4 (32,64,64,32) 2.48% 0.96

5 * (32,64,128,64,32) 2.06% 0.98
6 (32,64,128,128,64,32) 2.39% 0.98
7 (32,64,128,256,128,64,32) 2.30% 0.97
8 (32,64,128,256,256,128,64,32) 2.41% 0.97
9 (32,64,128,256,512,256,128,64,32) 2.40% 0.97

* Finally selected model.

It is clear that the model improves in accuracy as the number of neurons and hidden
layers increases; however, when overfitting occurs, this accuracy decreases and the reverse
trend is shown. Consequently, the chosen model is (32,64,128,64,32). Table 3 examines the
effects of various activation functions for the output layer after choosing the number of
hidden layers.

Table 3. Investigation of output layers activation function.

Number Hidden Layers Output Activation Function MAE (%) R2

1 (32,64,128,64,32) Linear 1.48% 0.98
2 ReLU 2.06% 0.98

3 * Sigmoid 1.45% 0.99

* Finally selected model.

The batch size, or the amount of data points traveling through the feed-forward
process before the backpropagation starts, is another model design component. In other
words, batch size refers to the number of data points the neural network processes before
updating its weights and biases. As shown in Table 4, 32 is the chosen batch size.
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Table 4. The effect of batch size on the results.

Number Hidden Layers Batch Size MAE (%) R2

1 (32,64,128,64,32) 2 1.84% 0.97
2 4 1.46% 0.97
3 8 1.45% 0.97
4 16 1.45% 0.98

5 * 32 1.39% 0.98
6 64 2.47% 0.96

* Finally selected model.

Finally, as seen in Table 5, the number of epochs is contrasted. The model with
20,000 epochs is the ideal option.

Table 5. Study of epochs and their effect on results.

Number Hidden Layers Epochs MAE (%) R2

1 (32,64,128,64,32) 1000 3.81% 0.94
2 2000 2.67% 0.96
3 5000 2.01% 0.97
4 10,000 1.95% 0.98

5 * 20,000 1.36% 0.98
6 30,000 1.39% 0.98
7 40,000 1.38% 0.98
8 50,000 1.38% 0.98

* Finally selected model.

The deepest ANN or the slowest model is not always the most excellent choice for
hyperparameters. Hence, a search for the optimum model architecture should be conducted
before model selection. This selection procedure is carried out to determine the ideal model
architecture for each research outcome. Table 6 displays the final chosen models for all
sizes of interest. Among the examples examined, these models perform the best.

Table 6. The proposed models for the output parameters.

Objective Function Inputs Hidden Layers Epochs Batch Size Activation Function

Flux t, Sa, MWCNT − P, ϕ (32,64,128,64,32) 20,000 32 Sigmoid
Normalized flux (J/J0) t, Sa, MWCNT − P, ϕ (64,64,32,32) 30,000 16 ReLU

Therefore, in the following sections, the results of the predictive models are presented.
The flux is predicted using the ANN model, and the results are illustrated in Figure 10.

This model inherited the hidden layer structure of (32,64,128,64,32). It is run for 40,000 epochs
with a batch size of 8. The input parameters are time, surface roughness, MWCNT-P
concentration, and contact angle. The best case is the y = x line where the predicted and
numerical results are the same. Moreover, 10% error lines are plotted to give a better sense
of the model capabilities.

The results have shown great accuracy. As mentioned previously, 70% of the extracted
data from the experimental results are used for training the models. Then, the other 30% is
utilized for the evaluation and testing of the model. Figure 10 demonstrates the accuracy of
the predictive models, and the mean absolute error is used. Additionally, the R2 is used to
measure the model’s ability to predict flux. The mentioned parameters are 1.38% and 0.98,
respectively.
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4.2. Predictive Model for Normalized Flux

A similar analysis is done on the normalized flux of the reversed osmosis desalination
system. The structure of hidden layers is (64,64,32,32). The batch size is 16, and the model
ran for 30,000 epochs. The activation function of the output layer is ReLU.

Figure 11 shows that the model possesses an MAE of 1.02%. Additionally, the R2

is equal to 0.99. The results prove that the ANN models could be used to replace the
experiments in the mentioned range. The reason behind this is two-fold. First, the accuracy
of the predictive models are so good that in some cases they are equal to the experimental
results. Second, the experimental expenses are way higher than ANN’s. This is also proved
to be correct in [19]. In the present study, the simulation time for the ANN models is almost
3% of the experiments. Therefore, it seems logical to use this model for further utilization
of the models to design new thermal systems.
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5. Conclusions

Synthesized nanocomposites using a modification of carbon nanotubes and an increase
in functional groups on the surface of synthesized membranes have shown acceptable
performance. Considering the two important factors of the diffusion coefficient and sol-
ubility coefficient on the surface of reverse osmosis membranes, materials that can help
the hydrophilicity of the membrane surface can increase the flux and salt rejection. In this
research, new results were obtained about membrane performance due to the use of new
nanocomposites. Among the notable results is the efficiency of more than 97% in salt re-
moval. Additionally, the increase in flux in all nanocomposite membranes with pyrrole was
up to 30.8 LMH, which was a 41% improvement compared to plain polyamide membranes.
A significant reduction in clogging in nanocomposite membranes containing a pyrrole
structure was observed. In relation to the hydrophilicity of the membrane surface due to the
presence of hydrogen bonds, the increase in hydrophilicity was associated with an increase
in concentration, and also, due to high hydrophilicity, the spread of water particles on the
membrane surface increased and caused an increase in flux. According to the SEM analysis,
the roughness of the membrane surface due to the increase of N-H groups on the surface
of the membrane was reduced compared to plain polyamide membranes. Finally, it can
be concluded that the use of nanocomposite membranes with pyrrole, due to the presence
of pyrrole monomer on the surface of raw nanotubes, has improved the performance of
the membrane, including flux, salt rejection, and clogging, and these membranes can be
used as the best nanocomposite membrane. Finally, the proposed model proved to be
satisfactorily accurate. Therefore, it could be used to replace further experiments with
the mentioned membranes. This would save a lot of time and resources. The proposed
model utilizes hyperparameter tuning, which gives the model the advantage of optimized
hyperparameters.

Author Contributions: A.A., R.N. and V.S.: Conceptualization, Methodology, Software, Formal anal-
ysis, Investigation, Data Curation, Validation, Writing—Original Draft and Reviewing, Visualization.
M.H.A.: Conceptualization, Formal analysis, Software, Investigation, Resources, Data Curation,
Writing—Review & Editing. M.M.J.: Conceptualization, Methodology, Validation, Writing—Review
& Editing, Supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research at King Khalid University
under grant number RGP.2/57/43.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research
at King Khalid University for supporting this research through Large Groups Project under grant
number RGP.2/57/43.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Wu, R.; Tan, Y.; Meng, F.; Zhang, Y.; Huang, Y.X. PVDF/MAF-4 composite membrane for high flux and scaling-resistant membrane

distillation. Desalination 2022, 540, 116013. [CrossRef]
2. Huang, H.; Schwab, K.; Jacangelo, J.G. Pretreatment for low pressure membranes in water treatment: A review. Environ. Sci.

Technol. 2009, 43, 3011–3019. [CrossRef]
3. Yin, L.; Wang, L.; Keim, B.D.; Konsoer, K.; Zheng, W. Wavelet analysis of dam injection and discharge in three gorges dam and

reservoir with precipitation and river discharge. Water 2022, 14, 567. [CrossRef]
4. Lin, X.; Lu, K.; Hardison, A.K.; Liu, Z.; Xu, X.; Gao, D.; Gong, J.; Gardner, W.S. Membrane inlet mass spectrometry method

(REOX/MIMS) to measure 15N-nitrate in isotope-enrichment experiments. Ecol. Indic. 2021, 126, 107639. [CrossRef]
5. Bai, B.; Bai, F.; Li, X.; Nie, Q.; Jia, X.; Wu, H. The remediation efficiency of heavy metal pollutants in water by industrial red mud

particle waste. Environ. Technol. Innov. 2022, 28, 102944. [CrossRef]

http://doi.org/10.1016/j.desal.2022.116013
http://doi.org/10.1021/es802473r
http://doi.org/10.3390/w14040567
http://doi.org/10.1016/j.ecolind.2021.107639
http://doi.org/10.1016/j.eti.2022.102944


Membranes 2023, 13, 31 16 of 18

6. Wu, H.; Tang, B.; Wu, P. Optimization, characterization and nanofiltration properties test of MWNTs/polyester thin film
nanocomposite membrane. J. Membr. Sci. 2013, 428, 425–433. [CrossRef]

7. Ge, D.; Yuan, H.; Xiao, J.; Zhu, N. Insight into the enhanced sludge dewaterability by tannic acid conditioning and pH regulation.
Sci. Total Environ. 2019, 679, 298–306. [CrossRef]

8. Chen, Z.; Liu, Z.; Yin, L.; Zheng, W. Statistical analysis of regional air temperature characteristics before and after dam construction.
Urban Clim. 2022, 41, 101085. [CrossRef]

9. Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and
future potential. J. Membr. Sci. 2011, 370, 1–22. [CrossRef]

10. Bai, B.; Rao, D.; Chang, T.; Guo, Z. A nonlinear attachment-detachment model with adsorption hysteresis for suspension-colloidal
transport in porous media. J. Hydrol. 2019, 578, 124080. [CrossRef]

11. Liu, W.; Huang, F.; Liao, Y.; Zhang, J.; Ren, G.; Zhuang, Z.; Zhen, J.; Lin, Z.; Wang, C. Treatment of CrVI-Containing Mg(OH)2
Nanowaste. Angew. Chem. 2008, 120, 5701–5704. [CrossRef]

12. Alimoradi, H.; Shams, M.; Ashgriz, N. Bubble behavior and nucleation site density in subcooled flow boiling using a novel
method for simulating the microstructure of surface roughness. Korean J. Chem. Eng. 2022, 39, 2945–2958. [CrossRef]

13. Zaboli, S.; Alimoradi, H.; Shams, M. Numerical investigation on improvement in pool boiling heat transfer characteristics using
different nanofluid concentrations. J. Therm. Anal. Calorim. 2022, 147, 10659–10676. [CrossRef]

14. Roodbari, M.; Alimoradi, H.; Shams, M.; Aghanajafi, C. An experimental investigation of microstructure surface roughness on
pool boiling characteristics of TiO2 nanofluid. J. Therm. Anal. Calorim. 2022, 147, 3283–3298. [CrossRef]

15. Alimoradi, H.; Zaboli, S.; Shams, M. Numerical simulation of surface vibration effects on improvement of pool boiling heat
transfer characteristics of nanofluid. Korean J. Chem. Eng. 2022, 39, 69–85. [CrossRef]

16. Wang, M.R.; Deng, L.; Liu, G.C.; Wen, L.; Wang, J.G.; Huang, K.B.; Tang, H.T.; Pan, Y.M. Porous organic polymer-derived
nanopalladium catalysts for chemoselective synthesis of antitumor benzofuro [2,3-b] pyrazine from 2-bromophenol and isonitriles.
Org. Lett. 2019, 21, 4929–4932. [CrossRef]

17. Alimoradi, H.; Soltani, M.; Shahali, P.; Moradi Kashkooli, F.; Larizadeh, R.; Raahemifar, K.; Adibi, M.; Ghasemi, B. Experimental
investigation on improvement of wet cooling tower efficiency with diverse packing compaction using ANN-PSO algorithm.
Energies 2020, 14, 167. [CrossRef]

18. Alimoradi, H.; Shams, M.; Ashgriz, N. Enhancement in the Pool Boiling Heat Transfer of Copper Surface by Applying Elec-
trophoretic Deposited Graphene Oxide Coatings. Int. J. Multiph. Flow 2022, 159, 104350. [CrossRef]

19. Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water
purification in the coming decades. Nanosci. Technol. A Collect. Rev. Nat. J. 2010, 452, 337–346.

20. Dai, Z.; Ma, Z.; Zhang, X.; Chen, J.; Ershadnia, R.; Luan, X.; Soltanian, M.R. An integrated experimental design framework for
optimizing solute transport monitoring locations in heterogeneous sedimentary media. J. Hydrol. 2022, 614, 128541. [CrossRef]

21. Yang, Y.P.; Weng, H.H. An underground pollution of water purification processing equipment develop. In Advanced Materials
Research; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2013; Volume 807, pp. 1372–1375.

22. Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review.
Desalination 2019, 459, 59–104. [CrossRef]

23. Li, D.; Wang, H. Recent developments in reverse osmosis desalination membranes. J. Mater. Chem. 2010, 20, 4551–4566. [CrossRef]
24. Saleem, H.; Zaidi, S.J. Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination 2020,

475, 114171. [CrossRef]
25. Liu, L.; Xie, X.; Qi, S.; Li, R.; Zhang, X.; Song, X.; Gao, C. Thin film nanocomposite reverse osmosis membrane incorporated with

UiO-66 nanoparticles for enhanced boron removal. J. Membr. Sci. 2019, 580, 101–109. [CrossRef]
26. Lee, T.H.; Oh, J.Y.; Hong, S.P.; Lee, J.M.; Roh, S.M.; Kim, S.H.; Park, H.B. ZIF-8 particle size effects on reverse osmosis performance

of polyamide thin-film nanocomposite membranes: Importance of particle deposition. J. Membr. Sci. 2019, 570, 23–33. [CrossRef]
27. Ding, W.; Meng, Q.; Dong, G.; Qi, N.; Zhao, H.; Shi, S. Metabolic engineering of threonine catabolism enables Saccharomyces

cerevisiae to produce propionate under aerobic conditions. Biotechnol. J. 2022, 17, 2100579. [CrossRef]
28. Zheng, W.; Zhou, Y.; Liu, S.; Tian, J.; Yang, B.; Yin, L. A deep fusion matching network semantic reasoning model. Appl. Sci. 2022,

12, 3416. [CrossRef]
29. Rajakumaran, R.; Boddu, V.; Kumar, M.; Shalaby, M.S.; Abdallah, H.; Chetty, R. Effect of ZnO morphology on GO-ZnO modified

polyamide reverse osmosis membranes for desalination. Desalination 2019, 467, 245–256. [CrossRef]
30. Zheng, W.; Tian, X.; Yang, B.; Liu, S.; Ding, Y.; Tian, J.; Yin, L. A few shot classification methods based on multiscale relational

networks. Appl. Sci. 2022, 12, 4059. [CrossRef]
31. Al Mayyahi, A. Thin-film composite (TFC) membrane modified by hybrid ZnO-graphene nanoparticles (ZnO-Gr NPs) for water

desalination. J. Environ. Chem. Eng. 2018, 6, 1109–1117. [CrossRef]
32. Zou, D.; Lee, Y.M. Design strategy of poly (vinylidene fluoride) membranes for water treatment. Prog. Polym. Sci. 2022,

128, 101535. [CrossRef]
33. Zhang, Z.; Gu, Q.; Ng, T.C.A.; Zhang, J.; Zhang, X.; Zhang, L.; Zhang, X.; Wang, H.; Ng, H.Y.; Wang, J. Hierarchically porous

interlayer for highly permeable and fouling-resistant ceramic membranes in water treatment. Sep. Purif. Technol. 2022, 293, 121092.
[CrossRef]

http://doi.org/10.1016/j.memsci.2012.10.042
http://doi.org/10.1016/j.scitotenv.2019.05.060
http://doi.org/10.1016/j.uclim.2022.101085
http://doi.org/10.1016/j.memsci.2010.12.036
http://doi.org/10.1016/j.jhydrol.2019.124080
http://doi.org/10.1002/ange.200800172
http://doi.org/10.1007/s11814-022-1163-7
http://doi.org/10.1007/s10973-022-11272-0
http://doi.org/10.1007/s10973-021-10666-w
http://doi.org/10.1007/s11814-021-0895-0
http://doi.org/10.1021/acs.orglett.9b01230
http://doi.org/10.3390/en14010167
http://doi.org/10.1016/j.ijmultiphaseflow.2022.104350
http://doi.org/10.1016/j.jhydrol.2022.128541
http://doi.org/10.1016/j.desal.2019.02.008
http://doi.org/10.1039/b924553g
http://doi.org/10.1016/j.desal.2019.114171
http://doi.org/10.1016/j.memsci.2019.02.072
http://doi.org/10.1016/j.memsci.2018.10.015
http://doi.org/10.1002/biot.202100579
http://doi.org/10.3390/app12073416
http://doi.org/10.1016/j.desal.2019.06.018
http://doi.org/10.3390/app12084059
http://doi.org/10.1016/j.jece.2018.01.035
http://doi.org/10.1016/j.progpolymsci.2022.101535
http://doi.org/10.1016/j.seppur.2022.121092


Membranes 2023, 13, 31 17 of 18

34. Pan, D.; Chen, H. Border pollution reduction in China: The role of livestock environmental regulations. China Econ. Rev. 2021,
69, 101681. [CrossRef]

35. Beratto-Ramos, A.; Dagnino-Leone, J.; Martínez-Oyanedel, J.; Aranda, M.; Bórquez, R. Fabrication and filtration performance of
aquaporin biomimetic membranes for water treatment. Sep. Purif. Rev. 2022, 51, 340–357. [CrossRef]

36. Mukherjee, D.; Ghosh, S. Ceramic Membranes in Water Treatment: Potential and Challenges for Technology Development. In
Sustainable Water Treatment: Advances and Technological Interventions; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 325–381.

37. Adam, M.R.; Othman, M.H.D.; Kurniawan, T.A.; Puteh, M.H.; Ismail, A.F.; Khongnakorn, W.; Rahman, M.A.; Jaafar, J. Advances
in adsorptive membrane technology for water treatment and resource recovery applications: A critical review. J. Environ. Chem.
Eng. 2022, 10, 107633. [CrossRef]

38. Petersen, R.J. Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 1993, 83, 81–150. [CrossRef]
39. Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Suzaimi, N.D.; Yogarathinam, L.T.; Raji, Y.O.; El-badawy, T.H. Recent development in

modification of polysulfone membrane for water treatment application. J. Water Process Eng. 2021, 40, 101835.
40. Tong, X.; Liu, S.; Qu, D.; Gao, H.; Yan, L.; Chen, Y.; Crittenden, J. Tannic acid-metal complex modified MXene membrane for

contaminants removal from water. J. Membr. Sci. 2021, 622, 119042. [CrossRef]
41. Chan, W.F.; Chen, H.Y.; Marand, E.; Johnson, J.K. Functionalized carbon nanotube nanocomposite membranes for water desalina-

tion: Experimental study. In Proceedings of the 2013 AIChE Annual Meeting, San Francisco, CA, USA, 3–8 November 2013.
42. Shao, Z.; Zhai, Q.; Han, Z.; Guan, X. A linear AC unit commitment formulation: An application of data-driven linear power flow

model. Int. J. Electr. Power Energy Syst. 2023, 145, 108673. [CrossRef]
43. Qi, L.; Xu, Z. Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2004, 251,

183–190. [CrossRef]
44. Bhaumik, M.; Agarwal, S.; Gupta, V.K.; Maity, A. Enhanced removal of Cr (VI) from aqueous solutions using polypyrrole wrapped

oxidized MWCNTs nanocomposites adsorbent. J. Colloid Interface Sci. 2016, 470, 257–267. [CrossRef]
45. Zheng, X.; Chen, D.; Lei, Y.; Cheng, R. Nano-TiO2 membrane adsorption reactor (MAR) for virus removal in drinking water.

Chem. Eng. J. 2013, 230, 180–187. [CrossRef]
46. Yang, R.; Hou, E.; Cheng, W.; Yan, X.; Zhang, T.; Li, S.; Yao, H.; Liu, J.; Guo, Y. Membrane-Targeting Neolignan-Antimicrobial

Peptide Mimic Conjugates to Combat Methicillin-Resistant Staphylococcus aureus (MRSA) Infections. J. Med. Chem. 2022, 65,
16879–16892. [CrossRef]

47. Ahn, C.H.; Baek, Y.; Lee, C.; Kim, S.O.; Kim, S.; Lee, S.; Kim, S.H.; Bae, S.S.; Park, J.; Yoon, J. Carbon nanotube-based membranes:
Fabrication and application to desalination. J. Ind. Eng. Chem. 2012, 18, 1551–1559. [CrossRef]

48. Kim, E.S.; Hwang, G.; El-Din, M.G.; Liu, Y. Development of nanosilver and multiwalled carbon nanotubes thin-film nanocomposite
membrane for enhanced water treatment. J. Membr. Sci. 2012, 394, 37–48. [CrossRef]

49. Kim, H.J.; Choi, K.; Baek, Y.; Kim, D.G.; Shim, J.; Yoon, J.; Lee, J.C. High-performance reverse osmosis CNT/polyamide
nanocomposite membrane by controlled interfacial interactions. ACS Appl. Mater. Interfaces 2014, 6, 2819–2829. [CrossRef]

50. Baroña, G.N.B.; Lim, J.; Choi, M.; Jung, B. Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite
membranes for reverse osmosis. Desalination 2013, 325, 138–147. [CrossRef]

51. Ghosh, A.K.; Bindal, R.; Prabhakar, S.; Tewari, P.K. Composite polyamide reverse osmosis (RO) membranes–recent developments
and future directions. Barc Newsl. 2011, 321, 43–51.

52. Dumée, L.; Lee, J.; Sears, K.; Tardy, B.; Duke, M.; Gray, S. Fabrication of thin film composite poly (amide)-carbon-nanotube
supported membranes for enhanced performance in osmotically driven desalination systems. J. Membr. Sci. 2013, 427, 422–430.
[CrossRef]

53. Zhao, Y.; Wang, Z. Subset simulation with adaptable intermediate failure probability for robust reliability analysis: An unsuper-
vised learning-based approach. Struct. Multidiscip. Optim. 2022, 65, 1–22. [CrossRef]

54. Zhao, Y.; Joseph, A.J.J.M.; Zhang, Z.; Ma, C.; Gul, D.; Schellenberg, A.; Hu, N. Deterministic snap-through buckling and energy
trapping in axially-loaded notched strips for compliant building blocks. Smart Mater. Struct. 2020, 29, 02LT03. [CrossRef]

55. Gabelich, C.J.; Williams, M.D.; Rahardianto, A.; Franklin, J.C.; Cohen, Y. High-recovery reverse osmosis desalination using
intermediate chemical demineralization. J. Membr. Sci. 2007, 301, 131–141. [CrossRef]

56. Yan, B.; Ma, C.; Zhao, Y.; Hu, N.; Guo, L. Geometrically Enabled Soft Electroactuators via Laser Cutting. Adv. Eng. Mater. 2019,
21, 1900664. [CrossRef]

57. Zhao, Y.; Hu, H.; Bai, L.; Tang, M.; Chen, H.; Su, D. Fragility analyses of bridge structures using the logarithmic piecewise
function-based probabilistic seismic demand model. Sustainability 2021, 13, 7814. [CrossRef]

58. Yao, L.; Li, Y.; Cheng, Q.; Chen, Z.; Song, J. Modeling and optimization of metal-organic frameworks membranes for reverse
osmosis with artificial neural networks. Desalination 2022, 532, 115729. [CrossRef]

59. Foong, L.K.; Zhao, Y.; Bai, C.; Xu, C. Efficient metaheuristic-retrofitted techniques for concrete slump simulation. Smart Struct.
Syst. Int. J. 2021, 27, 745–759.

60. Wu, P.; Liu, A.; Fu, J.; Ye, X.; Zhao, Y. Autonomous surface crack identification of concrete structures based on an improved
one-stage object detection algorithm. Eng. Struct. 2022, 272, 114962. [CrossRef]

61. Alimoradi, H.; Eskandari, E.; Pourbagian, M.; Shams, M. A parametric study of subcooled flow boiling of Al2O3/water nanofluid
using numerical simulation and artificial neural networks. Nanoscale Microscale Thermophys. Eng. 2022, 26, 129–159. [CrossRef]

http://doi.org/10.1016/j.chieco.2021.101681
http://doi.org/10.1080/15422119.2021.1948865
http://doi.org/10.1016/j.jece.2022.107633
http://doi.org/10.1016/0376-7388(93)80014-O
http://doi.org/10.1016/j.memsci.2020.119042
http://doi.org/10.1016/j.ijepes.2022.108673
http://doi.org/10.1016/j.colsurfa.2004.10.010
http://doi.org/10.1016/j.jcis.2016.02.054
http://doi.org/10.1016/j.cej.2013.06.069
http://doi.org/10.1021/acs.jmedchem.2c01674
http://doi.org/10.1016/j.jiec.2012.04.005
http://doi.org/10.1016/j.memsci.2011.11.041
http://doi.org/10.1021/am405398f
http://doi.org/10.1016/j.desal.2013.06.026
http://doi.org/10.1016/j.memsci.2012.09.026
http://doi.org/10.1007/s00158-022-03260-7
http://doi.org/10.1088/1361-665X/ab6486
http://doi.org/10.1016/j.memsci.2007.06.007
http://doi.org/10.1002/adem.201900664
http://doi.org/10.3390/su13147814
http://doi.org/10.1016/j.desal.2022.115729
http://doi.org/10.1016/j.engstruct.2022.114962
http://doi.org/10.1080/15567265.2022.2108949


Membranes 2023, 13, 31 18 of 18

62. Farahbakhsh, J.; Delnavaz, M.; Vatanpour, V. Simulation and characterization of novel reverse osmosis membrane prepared by
blending polypyrrole coated multiwalled carbon nanotubes for brackish water desalination and antifouling properties using
artificial neural networks. J. Membr. Sci. 2019, 581, 123–138. [CrossRef]

63. Eskandari, E.; Alimoradi, H.; Pourbagian, M.; Shams, M. Numerical investigation and deep learning-based prediction of heat
transfer characteristics and bubble dynamics of subcooled flow boiling in a vertical tube. Korean J. Chem. Eng. 2022, 39, 3227–3245.
[CrossRef]

64. Zhao, Y.; Hu, H.; Song, C.; Wang, Z. Predicting compressive strength of manufactured-sand concrete using conventional and
metaheuristic-tuned artificial neural network. Measurement 2022, 194, 110993. [CrossRef]

65. Zhao, Y.; Yan, Q.; Yang, Z.; Yu, X.; Jia, B. A novel artificial bee colony algorithm for structural damage detection. Adv. Civ. Eng.
2020, 2020, 3743089. [CrossRef]

66. Yeo, C.S.H.; Xie, Q.; Wang, X.; Zhang, S. Understanding and optimization of thin film nanocomposite membranes for reverse
osmosis with machine learning. J. Membr. Sci. 2020, 606, 118135. [CrossRef]

67. Zhao, Y.; Foong, L.K. Predicting Electrical Power Output of Combined Cycle Power Plants Using a Novel Artificial Neural
Network Optimized by Electrostatic Discharge Algorithm. Measurement 2022, 198, 111405. [CrossRef]

68. Zhao, Y.; Zhong, X.; Foong, L.K. Predicting the splitting tensile strength of concrete using an equilibrium optimization model.
Steel Compos. Struct. Int. J. 2021, 39, 81–93.

69. Ruiz-García, A.; Feo-García, J. Operating and maintenance cost in seawater reverse osmosis desalination plants. Artificial neural
network based model. Desalination Water Treat. 2017, 73, 73–79. [CrossRef]

70. Joy, V.M.; Feroz, S.; Dutta, S. Artificial intelligence-based multiobjective optimization of reverse osmosis desalination pretreatment
using a hybrid ZnO-immobilized/photo-Fenton process. J. Chemom. 2022, 36, e3434. [CrossRef]

71. Salgado-Reyna, A.; Soto-Regalado, E.; Gómez-González, R.; Cerino-Córdova, F.J.; García-Reyes, R.B.; Garza-González, M.T.;
Alcalá-Rodríguez, M.M. Artificial neural networks for modeling the reverse osmosis unit in a wastewater pilot treatment plant.
Desalination Water Treat. 2015, 53, 1177–1187. [CrossRef]

72. Zarrabi, H.; Yekavalangi, M.E.; Vatanpour, V.; Shockravi, A.; Safarpour, M. Improvement in desalination performance of thin film
nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube. Desalination 2016, 394, 83–90.
[CrossRef]

73. Hollas, J.M. Modern Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2004.
74. Nunes, S.P.; Peinemann, K.V. Membrane Technology; Wiley-VCH: Hoboken, NJ, USA, 2001.
75. Vatanpour, V.; Madaeni, S.S.; Moradian, R.; Zinadini, S.; Astinchap, B. Novel antibifouling nanofiltration polyethersulfone

membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep. Purif. Technol. 2012, 90, 69–82. [CrossRef]
76. Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.A. Introduction to Spectroscopy; Cengage Learning: Boston, MA, USA, 2014.
77. Werder, T.; Walther, J.H.; Jaffe, R.L.; Halicioglu, T.; Noca, F.; Koumoutsakos, P. Molecular dynamics simulation of contact angles of

water droplets in carbon nanotubes. Nano Lett. 2001, 1, 697–702. [CrossRef]
78. Vatanpour, V.; Esmaeili, M.; Farahani, M.H.D.A. Fouling reduction and retention increment of polyethersulfone nanofiltration

membranes embedded by amine-functionalized multiwalled carbon nanotubes. J. Membr. Sci. 2014, 466, 70–81. [CrossRef]
79. Son, M.; Choi, H.G.; Liu, L.; Celik, E.; Park, H.; Choi, H. Efficacy of carbon nanotube positioning in the polyethersulfone support

layer on the performance of thin-film composite membrane for desalination. Chem. Eng. J. 2015, 266, 376–384. [CrossRef]
80. Zhang, L.; Shi, G.Z.; Qiu, S.; Cheng, L.H.; Chen, H.L. Preparation of high-flux thin film nanocomposite reverse osmosis membranes

by incorporating functionalized multiwalled carbon nanotubes. Desalination Water Treat. 2011, 34, 19–24. [CrossRef]
81. Zhao, H.; Qiu, S.; Wu, L.; Zhang, L.; Chen, H.; Gao, C. Improving the performance of polyamide reverse osmosis membrane by

incorporation of modified multiwalled carbon nanotubes. J. Membr. Sci. 2014, 450, 249–256. [CrossRef]
82. Vatanpour, V.; Zoqi, N. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic

monomer blended with carboxylated multiwalled carbon nanotubes. Appl. Surf. Sci. 2017, 396, 1478–1489. [CrossRef]
83. Zhao, Y.; Moayedi, H.; Bahiraei, M.; Foong, L.K. Employing TLBO and SCE for optimal prediction of the compressive strength of

concrete. Smart Struct. Syst. 2020, 26, 753–763.
84. Lejarazu-Larrañaga, A.; Landaburu-Aguirre, J.; Senán-Salinas, J.; Ortiz, J.M.; Molina, S. Thin Film Composite Polyamide Reverse

Osmosis Membrane Technology towards a Circular Economy. Membranes 2022, 12, 864. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.memsci.2019.03.050
http://doi.org/10.1007/s11814-022-1267-0
http://doi.org/10.1016/j.measurement.2022.110993
http://doi.org/10.1155/2020/3743089
http://doi.org/10.1016/j.memsci.2020.118135
http://doi.org/10.1016/j.measurement.2022.111405
http://doi.org/10.5004/dwt.2017.20807
http://doi.org/10.1002/cem.3434
http://doi.org/10.1080/19443994.2013.862023
http://doi.org/10.1016/j.desal.2016.05.002
http://doi.org/10.1016/j.seppur.2012.02.014
http://doi.org/10.1021/nl015640u
http://doi.org/10.1016/j.memsci.2014.04.031
http://doi.org/10.1016/j.cej.2014.12.108
http://doi.org/10.5004/dwt.2011.2801
http://doi.org/10.1016/j.memsci.2013.09.014
http://doi.org/10.1016/j.apsusc.2016.11.195
http://doi.org/10.3390/membranes12090864

	Introduction 
	Materials and Methods 
	Membrane Synthesis 
	Membrane Quality Check 
	Membrane Analysis and Test 

	Results and Discussion 
	Investigation of Synthesized Membranes for Reverse Osmosis Process 
	The Performance of Reverse Osmosis Membrane in Transmittance and Rejection 
	Membrane Clogging 

	Artificial Neural Networks 
	The Hyperparameter Tuning Process 
	Predictive Model for Normalized Flux 

	Conclusions 
	References

