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Abstract: The presence of contaminants of emerging concern (CEC), such as pharmaceuticals, in 

water sources is one of the main concerns nowadays due to their hazardous properties causing 

severe effects on human health and ecosystem biodiversity. Niflumic acid (NFA) is a widely used 

anti-inflammatory drug, and it is known for its non-biodegradability and resistance to chemical and 

biological degradation processes. In this work, a 10 wt.% TiO2/PVDF–TrFE nanocomposite mem-

brane (NCM) was prepared by the solvent casting technique, fully characterized, and implemented 

on an up-scaled photocatalytic membrane reactor (PMR). The photocatalytic activity of the NCM 

was evaluated on NFA degradation under different experimental conditions, including NFA con-

centration, pH of the media, irradiation time and intensity. The NCM demonstrated a remarkable 

photocatalytic efficiency on NFA degradation, as efficiency of 91% was achieved after 6 h under 

solar irradiation at neutral pH. The NCM proved effective in long-term use, with maximum effi-

ciency losses of 7%. An artificial neural network (ANN) model was designed to model NFA’s pho-

tocatalytic degradation behavior, demonstrating a good agreement between experimental and pre-

dicted data, with an R2 of 0.98. The relative significance of each experimental condition was evalu-

ated, and the irradiation time proved to be the most significant parameter affecting the NFA degra-

dation efficiency. The designed ANN model provides a reliable framework l for modeling the pho-

tocatalytic activity of TiO2/PVDF-TrFE and related NCM. 

Keywords: artificial neural network; modelling; nanocomposite membrane; niflumic acid; 

photocatalysis; photocatalytic membrane reactor 

 

1. Introduction 

Water contamination is an alarming global concern nowadays due to its direct influ-

ence on human health and ecosystem biodiversity [1]. Due to their extensive use and un-

controlled release, pharmaceuticals are among the most critical contaminants of emerging 
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concern (CEC) for water. Their presence in aqueous effluents is detected at concentrations 

from ng/L to mg/L, representing a detrimental impact on aquatic ecosystems and humans 

[2]. 

Niflumic acid (NFA), which is extensively used as an analgesic, anti-arthritic, and 

anti-rheumatic, has been gaining special attention among the non-steroidal anti-inflam-

matory drugs, mainly due to its high solubility in water and non-biodegradability, mak-

ing it frequently detected in wastewater treatment plants [3]. The extended presence of 

NFA might be responsible for irreparable damage to the environment and human health, 

such as physiological disorders, skeletal and dental fluorosis, and kidney damage, as well 

as in plants, inhibiting germination, leading to ultra-structural malformations, and reduc-

ing photosynthetic capacities and productivity [4]. 

The extensive presence of NFA in water bodies is caused by its ineffective removal 

from water effluents by traditional wastewater treatment technologies, such as ozonation 

[5], gravity separation [6], ultrasonic separation [7], adsorption [8], and 

coagulation/flocculation [9], among others. Further, these techniques present some 

drawbacks, such as implementation and operation costs and the generation of secondary 

pollutants [10]. To surpass the limitations associated with these conventional techniques, 

strong efforts are being carried out to develop more advanced approaches that can ensure 

effective removal of this contaminant from wastewater. In this scope, advanced oxidation 

processes and, in particular, photocatalysis, arise as interesting approaches for removing 

CECs [11]. 

Photocatalysis allows a complete degradation of CECs into smaller and harmless 

compounds through oxidation reactions with free radicals generated by a photocatalyst 

[12]. Titanium dioxide (TiO2) is one of the most used photocatalysts, as it presents high 

photocatalytic activity, chemical and thermal stability, superhydrophilicity, large surface 

area, reduced toxicity, and low cost [13]. Despite these properties, applying TiO2 nanopar-

ticles (NPs) in wastewater treatment implies further treatments for their recovery and re-

use. To overcome this limitation, its immobilization into polymeric substrates, whose po-

rosity and pore size can be controlled, is an attractive alternative [14]. 

Membrane-based technologies, in particular, membranes based on poly(vinylidene 

fluoride) (PVDF) and its copolymers are of high interest for wastewater treatment due to 

their outstanding properties such as mechanical, chemical, thermal, and UV stability [15]. 

Membranes based on PVDF have been investigated for the removal of different contami-

nants from water, such as heavy metals [15], natural organic matter [16], proteins [17], 

volatile organic compounds [18], desalination [19], and organic dyes [20]. Among the dif-

ferent PVDF co-polymers, poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) pre-

sents high UV, bio and chemical stability, biocompatibility, and allows the production of 

membranes with a controlled porosity and pore size [21]. The incorporation of TiO2 into 

polymeric membranes has already proven to be suitable for wastewater treatment, show-

ing remarkable photocatalytic activity in the degradation of tartrazine, with sunlight pho-

tocatalytic degradation of 78% over 5 h [13]. 

The implementation of a nanocomposite membrane (NCM) containing TiO2 and 

PVDF-TrFE in a photocatalytic membrane reactor (PMR) improves the process efficiency 

and stability, since it allows the reutilization of the photocatalyst, controls the contact time 

between photocatalyst and contaminant, and allows a continuous process, making PMR 

an efficient, environmentally friendly and low-cost wastewater treatment technology [22]. 

Further, the predictive evaluation of the contaminant degradation efficiency is also 

of great interest since it allows the formulation of models capable of forecasting the per-

formance when it comes to the degradation of a specific contaminants, and properly tune 

materials and methods to optimize the functional application or the photocatalytic mem-

branes [23,24]. 

In recent years, artificial neural network (ANN) has become a powerful tool capable 

of resolving complex problems of classification, pattern recognition, clustering, and pre-

diction [25]. It has been widely applied in different fields, including the mining industry 
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[26], civil engineering [27], geotechnical and geoengineering [28], disaster risk assessment 

[29] and environmental engineering [30], among others. 

ANNs are empiric models inspired by the structure and functioning of biological 

neural networks, based on the concept that a highly interconnected system composed of 

simple processing elements, called neurons or nodes, empowers the learning of complex 

non-linear relationships between input and output variables [31]. In the architecture of an 

ANN, neurons are associated by weights in a parallel structure consisting of: (1) an input 

layer, which contains neurons as independent variables of the problem; (2) hidden layers, 

which will receive information from the input layer and implement calculations following 

training algorithms; (3) an output layer, where the prediction is displayed [32]. Neurons, 

or nodes, are the primary units in each layer and are connected between all the layers by 

algorithms and weights. Therefore, the neurons are passive since they are only used to 

receive the data patterns from the external source and transmit them to the subsequent 

hidden layer. Hidden layers are the key to learning the data pattern and introducing the 

nonlinearity into the network [33,34]. 

In the context of this work, an ANN was used to develop a predictive model for the 

performance of the TiO2/PVDF-TrFE membrane in NFA photocatalytic degradation, 

demonstrating the suitability of this material to be implemented in an up-scaled photo-

catalytic membrane reactor as an efficient approach for the degradation of NFA under 

solar irradiation and environmental conditions. 

2. Experimental 

2.1. Chemicals 

Poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE), with a molecular weight of 

350,000 g/mol, was purchased from Solvay (Brussels, Belgium). TiO2 (P25-AEROXIDE) 

NPs were acquired from Evonik Industries AG (Essen, Germany). N, N-dimethylforma-

mide (DMF) was purchased from Merck (St. Louis, MO, USA). Niflumic acid, 

C13H9F3N2O2, with a molecular weight of 282.22 g/mol and a maximum absorption wave-

length of 286 nm, was purchased from Glenmark Pharmaceutical (Mumbai, India). So-

dium hydroxide (NaOH) and hydrochloric acid (HCl) were obtained from HACH Com-

pany (Loveland, CO, USA). 

2.2. Production of TiO2/PVDF-TrFE Nanocomposite Membranes 

The 10 wt.% TiO2/PVDF-TrFE nanocomposite membranes were prepared by the 

solvent casting technique, according to previous works [20,35]. Briefly, a defined amount 

(10 wt.%) of TiO2 NPs were dispersed in DMF by ultrasonication for 3 h, to obtain a ho-

mogeneous dispersion. The amount of TiO2 NPs used was defined concerning previous 

works [20] to optimize the performance of the membranes while preserving their mechan-

ical properties and preventing the detachment of the NP from the polymer matrix. After-

wards, PVDF-TrFE was added to the dispersion, achieving a polymer/solvent ratio of 

10:90 v/v, and the solution was magnetically stirred until complete dissolution of the 

polymer. Finally, the solution was poured into a glass support at room temperature for 

slow solvent evaporation. NCMs with the same dimensions of the photoreactor surface 

(38 cm × 12 cm × 600 µm) were precisely cut out after the complete evaporation of the 

solvent. 

2.3. Nanocomposite Membranes Characterization 

The crystalline structure of the TiO2 NPs was evaluated by X-ray diffraction (XRD), 

using a Bruker D8 Discover diffractometer with an incident Cu Kα radiation (40 kV and 

30 mA). Scanning Electron Microscopy (SEM) was performed to access the morphology 

and microstructure of NCM, using a Thermo Fisher Quanta 650 SEM apparatus with an 

accelerating voltage of 10 kV. Before SEM analysis, the NCM was coated with a thick gold 

layer by magnetron sputtering. Fourier transformed infrared spectroscopy (FTIR), in 
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attenuated total reflectance (ATR) mode, was employed using a Jasco FT/IR-4100 appa-

ratus. Analyses were performed in the spectral range from 650 to 4000 cm−1, using 64 scans 

with a resolution of 4 cm−1. Differential scanning calorimetry (DSC) analysis was 

performed using a Mettler Toledo DSC 822e apparatus in the temperature range of 25–

200 °C, a heating rate of 10 °C/min, and flowing nitrogen atmosphere. The wetting 

characteristics of the NCMs were evaluated through contact angle measurements using a 

Physics SCA20 microscope (DataPhysics Instruments GmbH, Filderstat, Germany). Three 

measurements were performed, and the average contact angle was estimated using digital 

images. 

2.4. Photocatalytic Degradations of Niflumic Acid 

Two sets of photocatalytic degradations tests were performed, one with natural and 

the other with artificial sunlight, with different UV radiation intensities. The photocata-

lytic degradation of NFA under artificial sunlight radiation was performed using a UV 

lamp from Phillips (PL-L 24W/10/4P) with a maximum wavelength peak at 365 nm and 

intensity near 6 W/m2. The lamp was kept at 15 cm from the photoreactor containing the 

NCM and the NFA solution for 6 h. The photocatalytic degradation of NFA with natural 

sunlight radiation was performed in a solar photoreactor located north of Algeria (latitude 

36.39°; longitude 2.42°; sea level). The experiments were performed during the summer 

season (August 2021), from 10 a.m. to 4 p.m. A Pyranometer CMP 11 (Kipp and Zonen), 

with a spectral range between 285 and 2800 nm, was used to measure the UV radiation 

intensity. 

The photoreactor, developed at the Solar Equipment Development Unit (UDES) in 

Algeria, was fabricated from Pyrex glass with a capacity of 1 L (38 × 12 × 8.5 cm), and the 

TiO2/PVDF-TrFE NCM was placed at the bottom of the reactor, as illustrated in Figure 1. 

A flow rate of 28 mL/s was used to recirculate the NFA solution, so the NCM was always 

covered with the contaminant solution. Furthermore, the photoreactor was entirely 

covered with glass to avoid evaporation during the photocatalytic experiments. 

 

Figure 1. (a) Real image and (b) schematic representation of the developed solar photoreactor. 

For the photocatalytic assays, 1 L of an NFA standard solution was added to the 

membrane’s photoreactor tank and kept in the dark under stirring for 30 min. Later, the 

solution and the NCM were irradiated for 6 h, and aliquots were withdrawn at specific 

time intervals. Different NFA concentrations were tested, ranging from 10 to 30 mg/L, as 

well as different pH values: 3, 4.7, and 9. 

The concentration of NFA was measured by UV–Vis spectrophotometry, using a Shi-

madzu-1800 spectrophotometer, and by measuring the absorbance intensity at 287 nm, as 

reported in previous works [36,37] and after observation of the maximum absorption 

peak. The degradation efficiency and the photocatalytic degradation kinetics were esti-

mated using the Equations (1) and (2), respectively. 
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where C represents the degraded NFA concentration, and it corresponds to (Co–Ct). Co and 

Ct are the NFA initial concentration and the one at a specific reaction time t (min), respec-

tively. Kapp is the pseudo-first-order rate constant (min−1). 

High-performance liquid chromatography (HPLC) was employed to assess NFA 

mineralization, using the following experimental conditions: Walters, USA, with a UV 

detector at 358 nm; a Diamonsil (R) C18 column (5 µm × 150 mm × 4.6 mm ID); mobile 

phase composed by a combination of distilled water and acetonitrile (90/10, v/v). The flow 

rate was set at 0.4 mL/min, the injection volume was 2 µL, and the temperature of the 

column chamber was kept at 25 °C. A ChemStation software recorded the data. 

3. Artificial Neural Network 

In this study, a three-layered feed-forward neural network with a back-propagation 

algorithm is considered to predict the photocatalytic degradation efficiency of NFA by the 

TiO2/PVDF-TrFE NCM under solar radiation. The approach followed for determining the 

optimal network architecture consists of implementing a loop in the MATLAB software 

to vary the number of the hidden neurons from 1 to 10. Four inputs were considered for 

the ANN modelling–initial NFA concentration, pH of the media, irradiation time, and 

radiation intensity (Table S1). The removal efficiency of the pollutant was selected as the 

output. Statistical parameters such as a root-mean-squared error (RMSE), mean squared 

error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), 

calculated according to previous works [38,39], were used for the evaluation of ANN 

model accuracy. This study selects the correlation coefficient (R2) between the experi-

mental and simulated output as an assessment tool. The network architecture with mini-

mum RMSE, MSE, MAE, and MAPE, and maximum correlation coefficient R2 during val-

idation is optimal. The R2 between the experimental and simulated output is selected as 

an assessment tool in this study. 

4. Results and Discussion 

4.1. Nanocomposites Characterization 

NCMs morphology was evaluated by SEM images (Figures 2a and S1). A well-dis-

tributed porous microstructure, along with interconnected spherical pores with an aver-

age diameter of ≈60 µm was promoted by the slow evaporation of the solvent [1]. It was 

found that the incorporation of TiO2 NPS slightly affected the morphology of the mem-

brane, as observed by the presence of inner spaces between the pores as a result of possible 

chemical interactions between NPs and polymeric chains. Additionally, TiO2 agglomer-

ates inside the membrane pores and attached to the pore walls were identified by the 

presence of round white dots (see inset in Figure 2a). 
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Figure 2. (a) Representative SEM cross-section images of TiO2/PVDF–TrFE NCMs with different 

magnifications; (b) FTIR spectra and (c) contact angle of PVDF-TrFE membranes and TiO2/PVDF–

TrFE NCMs. 

The crystalline structure of TiO2 nanoparticles was assessed by XRD (Figure S2). The 

obtained diffractogram shows the characteristic peaks of anatase (25.2°, 37.8°, 47.9°, and 

62.7°) and rutile (27.3°, 54.1°, and 55.2°) crystalline phases of TiO2. The diffraction peaks 

are similar and in agreement with the standard spectra (JCPDS nos:88-1175 and 84-1286) 

[40]. 

FTIR allowed us to identify the polymer phase and possible chemical interactions 

between photocatalyst and polymer substrate. The FTIR spectra of TiO2/PVDF–TrFE 

NCMs shown in Figure 2b is characterized by the PVDF vibrational modes in the β-phase 

(840, 1288, and 1400 cm−1), characteristic of the co-polymer at the present co-polymer ratio 

(70/30) [35]. Additionally, the vibration spectra and the polymer phase remain unchanged 

after TiO2 immobilization in the polymeric matrix, indicating that the presence of the NPs 

does not influence the crystallization phase of the polymer and that no chemical bonds 

were detected between polymer and photocatalyst, are reported in previous works related 

to the immobilization of TiO2 in PVDF-based substrates [20]. 

Membranes’ wettability was evaluated through contact angle measurements (Figure 

2c). Pristine PVDF-TrFE and TiO2/PVDF-TrFE NCMs shown contact angles of 97° and 76°, 

respectively. These results indicated a vital improvement in terms of wettability, as result 

of the change from the hydrophobic nature of PVDF-TrFE to hydrophilic nature of NCM, 

allowing a higher interaction between the photocatalyst and the contaminant. The surface 

chemistry modifications, as result of inclusion of the nanoparticles, can partially explain 

these differences. Chemical interactions between TiO2 NPs and the polymeric chains re-

sult in the formation of inner spaces and consequent formation of pores, as seen by SEM 

images. The formation of these inner spaces, particularly on the NCM surface, induces a 

different topography and an increase of hydrophilicity and pore interconnectivity [13]. 
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4.2. Photocatalytic Degradation of Niflumic Acid 

The evaluation of the photocatalytic efficiency of the TiO2/PVDF-TrFE NCMs was 

performed under different experimental conditions, including the initial NFA concentra-

tion (10, 20, and 30 mg/L), pH (3, 7, and 9), irradiation source (solar and simulated), and 

radiation intensity (552 and 816 W/m2). 

Two initial experiments were conducted as a control to understand the role of ad-

sorption and photolysis on NFA degradation process (Figure S3). For the adsorption as-

say, the solution was placed in contact with the NCM without any light source. The NFA 

solution was placed under solar radiation for the photolysis assay without the NCM. After 

6 h of experiment, an adsorption of 18% of NFA was observed, indicating that the NCMs 

have a slight affinity for NFA. The photolysis experiment showed no degradation after 6 

h, confirming the high stability and resilience of NFA and the need for photocatalytic pro-

cesses [13]. 

4.2.1. Effect of the Initial Concentration of Niflumic Acid 

From a practical point of view, the initial concentration of NFA is one of the main 

operational parameters affecting degradation efficiency. Therefore, this dependence was 

evaluated by performing degradation assays using different NFA initial concentrations 

(Figure 3a). 

 

Figure 3. Effect of (a) initial NFA concentration (recirculation time: 6 h; pH = 7), (b) pH ([NFA] = 10 

mg/L; recirculation time: 6 h), (c) irradiation source, and (d) radiation intensity on the photocatalytic 

degradation of niflumic acid ([NFA] = 10 mg/L; recirculation time: 6 h; pH = 7). 

The results confirmed that the degradation efficiency is strongly dependent on the 

initial NFA concentration, decreasing from 91% to 59% with increasing concentration 
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from 10 to 30 mg/L. Degradation efficiencies, pseudo-first-order rate constants, and the 

corresponding R2 values are presented in Table S2, where it is confirmed the decrease of 

the degradation rate constants from 0.28 to 0.11 min−1 with the increase of the NFA con-

centration from 10 to 30 mg/L. 

The degradation efficiency and kinetics are related to the TiO2 surface area available 

for the generation of hydroxyl radicals. The amount of photocatalyst remained constant 

and, therefore, the amount of hydroxyl radicals generated, while the NFA concentration 

increased. Thus, the ratio of OH· radicals/NFA molecules decreased for higher concen-

trations, which lead to a decrease in photocatalytic efficiency [13]. 

4.2.2. Effect of pH of the Media 

The pH of the media is one of the most affecting parameters concerning the photo-

catalytic efficiency, as it can affect the surface charge of the photocatalyst and contaminant 

species, which can be determinant for NFA adsorption along the process [41]. The effect 

of the pH on the NFA degradation efficiency was evaluated in the pH range of 3–9. Figure 

3b shows that the removal efficiency of NIF is not significantly affected by the pH of the 

media. NFA has been reported as positively charged in acidic environments and nega-

tively charged under alkaline conditions, being its point of zero charges (PZC) at a pH of 

around 5 [42]. Further, TiO2 presents a similar surface charge profile, being its PZC at a 

pH of 6.5 [43]. The similar surface charges of both photocatalyst and contaminant is thus 

related to the similar degradation efficiencies for the different pH’s under evaluation. The 

lower degradation kinetics under neutral pH conditions is associated with the lack of sur-

face charge for both photocatalyst and NFA molecules once this pH is close to their PZC, 

leading to unfavorable conditions for the adsorption of NFA molecules on the NCM sur-

face [44]. 

4.2.3. Effect of Irradiation Source and Radiation Intensity 

The effect of the irradiation source was evaluated under artificial and natural solar 

radiation. The obtained results are present in Figure 3c. Under solar radiation, a degrada-

tion efficiency of 91% was achieved, while under artificial solar radiation, just 33% of NFA 

was degraded. These differences may be attributed to the range and energy of both artifi-

cial and natural solar radiation. Artificial solar radiation presented an intensity of 6 W/m2, 

while natural solar radiation can achieve much higher intensities. Considering that a more 

energetic UV radiation (short ultraviolet radiation, λ < 300 nm) is present in solar radia-

tion, and that some of the visible radiation have energy higher than bang gap energy of 

the photocatalyst, under these circumstances TiO2 is activated by highly energetic UV and 

visible radiations and generates a larger amount of hydroxyl radicals, increasing the deg-

radation efficiency [45]. 

To investigate the effect of weather conditions on the degradation efficiency, the pho-

tocatalytic removal was evaluated under solar radiation on a sunny day and cloudy day, 

presenting different radiation intensities: 816 and 552 W/m2, respectively (Figure 3d). It 

was thus proven that a higher radiation intensity lead to higher degradation efficiency 

and rate, mainly due to the higher energy of activation provided to TiO2 and consequent 

higher amount of hydroxyl radicals generated [41]. A degradation efficiency decrease of 

58% was observed between the experiments performed on sunny and cloudy days. 

4.3. Reusability of the Nanocomposite Membranes 

The reusability of the TiO2/PVDF-TrFE NCM was assessed by three consecutive 

photocatalytic degradation cycles. Between each cycle, the NCMs were washed with UP 

water and were dried at room temperature. Afterwards, a new NFA solution was placed 

in contact with the NCM, and the next cycle was performed under the same experimental 

conditions. The results are presented in Figure 4. 
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Figure 4. Photocatalytic degradation of NFA with the TiO2/PVDF–TrFE nanocomposite membranes 

in three consecutive uses, under solar irradiation ([NFA] = 10 mg/L; recirculation time: 6 h; pH = 7). 

After the first cycle, all the NFA was degraded after 6 h. In the second and third 

cycles, an efficiency of 91% was obtained, representing an efficiency decrease of 9% when 

compared to the first cycle. The efficiency loss between the first and second cycles is at-

tributed to the loss of ineffectively attached TiO2 NPs on the NCM surface, which are de-

tached during the washing process after the first cycle [46]. As all the efficiently attached 

NPs remain in the polymeric matrix, no efficiency loss was observed between 2nd and 3rd 

cycles. The reusability ability of the NCMs is a relevant feature since it allows us to reduce 

operating costs and environmental impact of the wastewater treatment processes. The re-

sults indicate the suitability of the herein prepared TiO2/PVDF–TrFE nanocomposite 

membrane as a promising approach for the long-term degradation of organic pollutants. 

4.4. Mineralization and Degradation Pathways 

The photocatalytic degradation of organic compounds typically results in the decom-

position of their chemical structure and may result in the formation of intermediary by-

products or in their complete mineralization to H2O, CO2, and NH4+. To understand the 

potential formation of intermediate by-products through the degradation process, the 

NFA presence was monitored before and after the degradation process through HPLC 

(Figure 5). 

 

Figure 5. Photocatalytic degradation of NFA with the TiO2/PVDF–TrFE nanocomposite membranes 

under solar irradiation. Inset: HPLC chromatogram of NFA samples before and after 6 h of degra-

dation ([NFA] = 10 mg/L; recirculation time: 6 h; pH = 7). 

A significant difference was noted by comparing the HPLC chromatograms before 

and after the degradation process. Besides the substantial decrease of the NFA peak 
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intensity, there was no additional peaks observed, which indicated that, under these con-

ditions, there was no formation of intermediary compounds after 6 h of degradation. 

The degradation mechanism of NFA still remains a challenge nowadays. Previous 

works reported the analysis of by-products of NFA degradation by advanced oxidation 

processes and the degradation of similar organic compounds using TiO2-based photocata-

lysts [5,47], allows us to propose a degradation mechanism (Figure 6). 

 

Figure 6. Schematic representation of the proposed photocatalytic degradation mechanism NFA 

(adapted from [5,47]). 

According to previous works [5,47], a possible pathway for NFA degradation starts 

with the adsorption of the NFA molecule on the NCM surface, where further reactions 

occurred with the hydroxyl radicals generated by the TiO2. The first step is the split of 

both aromatic rings through amine hydrolysis–breaking the N–C bond from the second-

ary amine and left-aromatic ring, respectively. As a consequence, by-products I and II are 

formed [5]. Then, by-product I suffers consequent photohydrolysis of –CF3 bonds until 

the formation of by-product III, due to the electron-withdrawing effect of the carboxylic 

functional group, which hinders the release of an halogen ion unless it is helped by heter-

olytic scission of H2O [47]. In by-product II, the amine group’s C–N bond is broken to 

generate by-product IV. Then, both by-products III and IV continue to react with HO
·
 

radicals, resulting in the phenolic by-products V and VI [48]. Finally, the opening of aro-

matic rings happens (VII and VIII), and the complete mineralization of all by-products 

into CO2, H2O, and NH4+ is achieved. 

4.5. Artificial Neural Network Modeling Results 

An ANN model was developed to investigate the predictability of NFA degradation 

efficiency. Data results were obtained by changing the different experimental conditions 

and dividing them into input and output matrices. The input layer contained the four 

operational variables: initial NFA concentration, pH of the media, irradiation time, and 

radiation intensity. The output layer consisted of only one neuron, the NFA degradation 

efficiency. After data scaling, a random splitting of the dataset was performed into learn-

ing (60%), validation (20%) and test (20%) sets. 

The plot of the variation for the RMSE for both training, validation, and test sets, as 

a function of the number of the hidden neurons is provided in Figure 7a. The accumulated 

RMSE values close to the y = 0 line indicate the suitability of the ANN model. For a suitable 

model structure, all the RMSE values must be positioned between –1 and 1 [45]. As ob-

served, the network topology with eight hidden neurons layer achieved the minimal val-

idation RMSE (0.0031) and, therefore, it represented the best perdition result among the 

10 networks generated by the MATLAB program. 
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Figure 7. (a) Variation of RMSE for training, validation, and test sets, as function of hidden neurons 

number; (b) experimental results versus predicted ones for training, validation, and test sets; (c) 

structure of the optimal neural network (4:8:1). 

To assess the accuracy of the optimal model (4:8:1), which contained four input neu-

rons, eight hidden neurons and one output neuron, the predicted output values were com-

pared to the corresponding experimental values (Figure 7b). The R2 for training, validation 

and test sets were 0.98, 0.997, and 0.96, respectively. The accumulated values close to the 

y = x regression indicate the suitability of the ANN model to predict NFA degradation, as 

they show a strong linear relationship between experimental and predicted data. So, the 

4:8:1 artificial neural network model (Figure 7c) provides an effective tool to simulate the 

non-linear behavior of the photocatalytic degradation of niflumic acid by the 10 wt.% 

TiO2/PVDF-TrFE nanocomposite membranes, and it is highly recommended to predict the 

NFA degradation efficiency. 

Statistical parameters were required to understand further the suitability of the ANN 

model to predict NFA degradation by NCMs. In this scope, R2, RMSE, MAE, and MAPE 

were used to evaluate the accuracy of the ANN model (Table 1). The low RMSE, MAE, 

and MAPE values show a good fit for the ANN model, and, in addition, the R2 value close 

to 1 indicates an excellent correlation between experimental and predicted results. These 

results demonstrate that ANN modelling can forecast the performance for NFA degrada-

tion, considering irradiation time, media pH, radiation intensity, and initial NFA concen-

tration. 
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Table 1. Statistical parameters of the developed ANN model. 

Statistical Parameters Value 

R2 0.98 

RMSE 0.013 

MAE 0.020 

MAPE 0.079 

ANN modelling has been increasingly applied in many fields as a fundamental tool 

to resolve forecasting challenges. Nonetheless, these empirical models are usually consid-

ered unable to clarify the contribution of the independent variables to the dependent ones. 

Taking this into account, extensive research on the analysis of the relative impact of the 

input variables on the neural network response to make ANNs more interpretable has 

been made [49]. The relative relevance values of the different input variables were evalu-

ated using Garson’s algorithm [50]. According to this algorithm, the input–hidden and the 

hidden–output weights of the model are subdivided. The absolute values of the weights 

are used to calculate the relative relevance of the input variables on the output response. 

The available data are divided into two subsets: (1) training and validation data; and (2) 

testing data. The weights matrix of the optimal neural network is given in Table S3. The 

main purpose of applying the Garson’s algorithm was to understand the relevance of each 

experimental parameter and their contribution to the prediction of the NFA degradation 

efficiency by the NCM. The results are summarized in the Table 2. 

Table 2. Relative relevance of the process input variables. 

Input Variable Relative Relevance (%) Rank 

Initial NFA concentration (mg/L) 18.2 4 

Initial pH 25.7 2 

Irradiation time (h) 33.4 1 

Solar irradiation intensity (W/m2) 22.7 3 

From Table 2, it is possible to observe that the input variables have a substantial effect 

on NFA degradation efficiency. The irradiation time is considered the most critical pa-

rameter affecting the NFA degradation, with a relative relevance of 33.4%. The pH of the 

media (25.7%) and radiation intensity (22.7%) have a significant impact on NFA degrada-

tion, while initial NFA concentration (18.2%) proves to be the less relevant parameter. 

These results agree with previous works reporting the use of TiO2-based photocatalysts 

for the photocatalytic degradation of pharmaceuticals, as it is essential for the generation 

of hydroxyl radicals, triggering further reactions and the cleavage of compound chemical 

bonds [41]. This deep understanding of the relative relevance of experimental parameters 

represents a critical step for effectively implementing water remediation systems based 

on photocatalytic reactors to remove contaminants of emerging concern from water 

sources. 

5. Conclusions 

Developing new strategies for the efficient photocatalytic degradation of persistent 

and hazardous contaminants from water is a pressing concern. The present work reported 

the development of 10 wt.% TiO2/PVDF–TrFE nanocomposite membranes by solvent cast-

ing and their implementation on a solar photocatalytic reactor for the degradation of NFA. 

The prepared NCMs present a homogeneous micrometric porous structure and a ho-

mogeneous distribution of the TiO2 nanoparticles within the interconnected pores. The 

photocatalytic performance of the NCM was evaluated through the degradation of NFA 

under solar irradiation and different experimental conditions, such as the initial NFA con-

centration, pH of the media, irradiation time and radiation intensity. Irradiation time was 
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the most significant parameter affecting the performance of the NCM, and an equilibrium 

was achieved after 6h of irradiation. Initial NFA concentration proved to be a predomi-

nant parameter affecting the photocatalytic efficiency, and a maximum efficiency was 

achieved in the presence of a 10 mg/L NFA solution (91%), which decreased by increasing 

the NFA concentration (59% for a 30 mg/L NFA concentration). The pH of the media did 

not significantly affect the performance of the system, being relevant point out that the 

maximum performance was obtained under a neutral environment (91%). The NCM 

proved to be more effective when irradiated by solar light, achieving a significantly higher 

efficiency when compared by artificial solar radiation (91 vs. 33%). Also, the solar radia-

tion intensity and the effect of weather conditions was evaluated, and an efficiency de-

crease of 58% was noted by decreasing the radiation intensity from 816 to 552 W/m2. The 

reusability of the NCM after three consecutive uses caused an efficiency loss of 9%. Fur-

ther, the system was theoretically evaluated by an ANN model. The ANN model was 

successfully implemented to predict the photocatalytic process, as a good fit was achieved 

for the comparison between experimental and predicted results, as well as the high R2 

(0.98) and reduced RMSE values (0.013). In addition, the ANN model allowed us to esti-

mate the relative relevance of the experimental parameters, making the irradiation time 

the most affecting parameter for the NFA degradation efficiency (33.4%). 

Thus, the 10 wt.% TiO2/PVDF–TrFE nanocomposite membranes and its implementa-

tion on a solar photocatalytic reactor represent a suitable up-scalable technological ap-

proach for the degradation of niflumic acid and related pollutants from water under solar 

irradiation. 

Supplementary Materials: The supporting information can be downloaded at: www.mdpi.com/ar-
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