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Table S1. Lennard-Jones parameters of MOFs[1]. 

Atom ɛ/kB [K]  σ [Å] Atom ɛ/kB [K] σ [Å] Atom ɛ/kB [K] σ [Å] 

Ac 16.60  3.10  Ge 190.69  3.81  Po 163.52  4.20  

Ag 18.11  2.80  Gd 4.53  3.00  Pr 5.03  3.21  

Al 254.09  4.01  H 22.14  2.57  Pt 40.25  2.45  

Am 7.04  3.01  Hf 36.23  2.80  Pu 8.05  3.05  

Ar 93.08  3.45  Hg 193.71  2.41  Ra 203.27  3.28  

As 155.47  3.77  Ho 3.52  3.04  Rb 20.13  3.67  

At 142.89  4.23  I 170.57  4.01  Re 33.21  2.63  

Au 19.62  2.93  In 301.39  3.98  Rh 26.67  2.61  

B 90.57  3.64  Ir 36.73  2.53  Rn 124.78  4.25  

Ba 183.15  3.30  K 17.61  3.40  Ru 28.18  2.64  

Be 42.77  2.45  Kr 110.69  3.69  S 137.86  3.59  

Bi 260.63  3.89  La 8.55  3.14  Sb 225.91  3.94  

Bk 6.54  2.97  Li 12.58  2.18  Sc 9.56  2.94  

Br 126.29  3.73  Lu 20.63  3.24  Se 146.42  3.75  

C 52.83  3.43  Lr 5.53  2.88  Si 202.27  3.83  

Ca 119.75  3.03  Md 5.53  2.92  Sm 4.03  3.14  

Cd 114.72  2.54  Mg 55.85  2.69  Sn 285.28  3.91  

Ce 6.54  3.17  Mn 6.54  2.64  Sr 118.24  3.24  

Cf 6.54  2.95  Mo 28.18  2.72  Ta 40.75  2.82  

Cl 114.21  3.52  N 34.72  3.26  Tb 3.52  3.07  

Cm 6.54  2.96  Na 15.09  2.66  Tc 24.15  2.67  

Co 7.04  2.56  Ne 21.13  2.66  Te 200.25  3.98  

Cr 7.55  2.69  Nb 29.69  2.82  Th 13.08  3.03  

Cu 2.52  3.11  Nd 5.03  3.18  Ti 8.55  2.83  

Cs 22.64  4.02  No 5.53  2.89  TI 342.14  3.87  

Dy 3.52  3.05  Ni 7.55  2.52  Tm 3.02  3.01  

Eu 4.03  3.11  Np 9.56  3.05  U 11.07  3.02  

Er 3.52  3.02  O 30.19  3.12  V 8.05  2.80  

Es 6.04  2.94  Os 18.62  2.78  W 33.71  2.73  

F 25.16  3.00  P 153.46  3.69  Xe 167.04  3.92  

Fe 6.54  2.59  Pa 11.07  3.05  Y 36.23  2.98  

Fm 6.04  2.93  Pb 333.59  3.83  Yb 114.72  2.99  

Fr 25.16  4.37  Pd 24.15  2.58  Zn 62.39  2.46  

Ga 208.81  3.90  Pm 4.53  3.16  Zr 34.72  2.78  
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   Table S2. Lennard-Jones parameters and charges of adsorbates[2-5]. 

Atom ɛ/kB [K] σ [Å] Charge (e) 

CH4 151.16 3.7314  

H2 

N_N2 

N_com 

O_O2 

O_com 

24.692 

36.0 

0 

49.0 

0 

3.0292 

3.31 

0 

3.02 

0 

 

-0.484 

+0.964 

+0.113 

-0.226 

 

 

 

 

 

 

Table S3. Kinetic diameter of CH4, N2, O2 and H2. 

Gas CH4 N2 O2 H2 

Kinetic diameter (Å) 3.76 3.64 3.47 2.89 
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Figure S1. The relationship between seven descriptors (LCD, ϕ, VSA, PLD, ρ, Q0

st(CH4) and 

KCH4) of MOFs and three performance indexes (DCH4
, Sads(CH4/O2+N2) and Sdiff(CH4/O2+N2)).  
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Figure S2. The relationship between seven descriptors (LCD, ϕ, VSA, PLD, ρ, Q0
st(H2) and 

KH2) of MOFs and three performance indexes (DH2
, Sads(H2/O2+N2) and Sdiff(H2/O2+N2)).  
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Figure S3. The relationship between seven descriptors (LCD, ϕ, VSA, PLD, ρ, Q0
st(CH4) and 

KCH4) of MOFMs and two performance indexes (PCH4 and Sperm(CH4/O2+N2)).  
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Figure S4. The relationship between seven descriptors (LCD, ϕ, VSA, PLD, ρ, Q0

st(H2) and 

KH2) of MOFMs and two performance indexes (PH2 and Sperm(H2/O2+N2)).  
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Figure S5. Diffusion coefficient D and Permeability P versus PLD for N2 and O2 in 6013 

CORE-MOFs.  
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Machine learning methods 

Tree-based pipeline optimization tool 

Tree-based pipeline optimization tool (TPOT) is a great Python automated machine 

learning tool that uses genetic algorithms to programmatically optimize ML pipelines for 

automated feature selection and model selection. The tool enables automatic model generation 

to implement prediction tasks for classification or regression. TPOT will automate the most 

tedious parts of machine learning by intelligently exploring thousands of possible pipelines to 

find the one that best suits the target task. TPOT automates feature selection, feature 

preprocessing, feature construction, model selection, and parameter tuning. It's even possible 

to intelligently explore thousands of possible pipelines to automate the most tedious parts of 

machine learning to find the one that best fits the target task. Once the search is complete, it 

will also output a Python code pipeline that can run independently for subsequent 

optimization and learning. The model schematic is shown in Figure S6. 

 

Figure S6. Tree-based pipeline optimization tool 

 

Decision tree 

Decision tree (DT) are a method of supervised learning that can be used for both 

classification and regression. On the DT nodes, eigenvalues are selected from the most 

important to the next important. The calculations are tried for each eigenvalue by a DT 

algorithm, and then the optimal classification is defined as the parent node after considering the 

attribution of each feature. Furthermore, the independent variable Xi is divided into two or more 

groups according to a certain splitting criterion. A tree is created through a plurality of splitting 

nodes. The most common DT algorithm is the binary branching principle, as shown in Figure 

S7. The independent variable Xi starts from the root node and is divided into two, and the DT is 

finally ended when it reaches the leaf nodes. The DT is created by an optimal splitting criterion. 

If the splitting criterion can make the dependent variable Yi as a test set be the same as the 

calculated Yi’ in the leaf nodes, or within a specified error range, the calculated Yi’ are the 

output by DT. 
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Figure S7. Decision tree. 

 

Random forest 

Random forest (RF) is also one of the most commonly used algorithms because it is simple 

and can be used for both classification and regression. It is an integrated algorithm based on 

the bagging approach, which refers to a model that uses multiple decision trees to train and 

predict samples. It contains multiple decision tree models, each of which grows well and 

continuously splits as input sample prediction. The new sample will be input to each decision 

tree with leaf nodes, and the final consequence is the mean value of each tree prediction result. 

The results of the whole model have high precision and generalization performance. Random 

forest is a flexible and easy-to-use machine learning algorithm that can get good results in 

most cases, even without hyperparameter tuning. We set up 200 trees in Figure S8. 

 

Figure S8. Random forest. 
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k-fold Cross Validation 

In general, k-fold cross validation is used for model tuning to find the hyperparameters that 

makes the model generalization performance optimal. After the model is found, the model is 

retrained on all training sets, and the test set is used to make the final evaluation on the model 

performance, as shown in Figure S13. The so-called k-fold cross validation is to divide the 

data set into k parts (k =5) in equal proportion, namely, the training set (including the 

validation set) and the test set. One of them is used to validate the resulting model, and the k 

-1 of folded data are used to train the model. Finally, the parameter with the lowest average 

error is selected for each parameter. 

 

Figure S9. The diagram of k-fold cross-validation 

 

 

 

 

Evaluation indicators of ML algorithms 

Evaluation indicators can reflect the difference between the actual value and predicted value. 

Several evaluation indicators are widely used for regression models, e.g., mean absolute error 

(MAE), root-mean-square error (RMSE), and R, as calculated in equations S (1) - (3), where xi 

is the GCMC simulated value, yi is the value ML predicted, n is number of MOFs, and y̅ is the 

average of the ML predicted values. 
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Table S4. The constraints for screening the best MOFs/MOFMs under each system. 

Applications CH4/O2+N2 H2/O2+N2 

MOFs 

D (cm2/s) 10-6 10-6 

Sads 5 5 

Sdiff 4 10 

MOFMs 
P (barrer) 3000000 5000 

Sperm 20 16 

 

 

Table S5. Design Strategies of MOFs and MOFMs with high performance 

No. CSD 

Design types The percentage 

of Sads(CH4/O2+N2) 

increased 

The percentage 

of Sdiff(CH4/O2+N2) 

increased 

The percentage 

of DCH4 

increased 

The percentage 

of PCH4 

increased 

The percentage 

of Sperm(CH4/O2+N2) 

increased  Metal Linker Topology 

1 PARHEWa Topology Cd C9H6O6 

rtl

 

55.43% 42.12% 79.39% 57.37% 120.91% 
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MITGUR01b 

 

mmm 

 

2 

VEJYITa 

Zn 

C3H4N2 

 

crb 

 

44.18% 12.64% 516.52% 1789.10% 62.68% 

IMIDZB10b 

sod 
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3 

cg300979c_si

_002a 

Mn 

C9H6O6 

 

pyr 

  

-10.52% 23.79% 262.88% 454.09% 9.20% 

DAPBIHb 

tbo 

 

4 CAXZOSa Co C12H9NO2 

dia 

 

30.53% 91.72% 217.40% 241.14% 156.68% 
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ZILBEDb 

 pts 

 

5 

OSAVEKa 

Linker Ca 

C8H6O6 

 

dmd 

 

16.50% 22.17% 58.20% 238.08% 43.75% 

PARFOFb 

C6H10O4 
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6 

BEDHOJa 

Ni 

C8H6N2O2 

 

dia 

 

38.11% 175.37% 3234.62% 84.37% 281.02% 

UFATEA01b 

C6H5NO2 

 

7 ZISYADa Cu 

C45H32N4 

 

dia 

 

5.28% 43.84% 122.42% 244.48% 50.92% 
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ja5069855_si

_002b 

C9H7N3O2 

 

8 

PEPLIGa 

Metal 

V 
C8H6O4 

 

rna 

 

42.83% 44.22% 61.39% 293.00% 107.93% 

jp102463p_si

_002b 
Cr 
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9 

SACDORa Zn 
C18H12N6 

 

srs 

 

-5.89% 85.28% 128.79% 167.43% 77.63% 

SETPEOb In 

10 FOHCIPa Cd,Hg 

SCNH 

 

mmt

 

4.64% 27.64% 26.63% 52.93% 33.95% 
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XADGAMb Mn,Hg 

No. CSD 

Design types The percentage 

of Sads(H2/O2+N2) 

increased 

The percentage 

of  

Sdiff(H2/O2+N2)incr

eased 

The percentage 

of DH2
 

increased 

The percentage 

of PH2  

increased 

The percentage 

of Sperm(H2/O2+N2) 

increased  Metal Linker Topology 

11 GUPBUPa Topology Cd 

C4H6N2 

 

sod 

 

182.78% -7.03% 170.08% 503.81% 166.30% 
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GUPBOJ01b 

ict

 

12 

XAZGEKa 

Ag 

C6H12N4 

 

mog

 

99.48% 143.40% 490.68% 657.25% 378.40% 

BAHMAZb 

hcb 
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13 

XIGHIFa 

Zn 

C18H12N6 

 

ths 

 

28.32% 6.26% 85.94% 53.93% 36.29% 

SOMCONb 

srs 

 

14 PARHASa Linker Ca 

C6H10O4 

 

dmd 

 

-44.12% 175.99% 446.30% 1683.03% 30.60% 
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LEZZEXb 

C8H12O4 

 

15 

QOZSIJa 

Zn 

C35H23N3O4 

 

ths 

 

47.38% 7.51% 173.53% 301.08% 60.19% 

LUCDOEb 

C18H12N6 
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16 

FUSWIAa 

Cu 

C6H4N5 

   

bcu 

 

297.28% 21.24% 73.36% 34.53% 382.40% 

HAWZEMb 

C6H5O2N 

 

17 PIBPIAa Metal Zn C8H6O4 bcg 63.47% 27.63% 71.57% 114.93% 106.77% 
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VEGMIE01b Co 

  

18 

FUTCAZa Mn 
C9H6O6 

 

srs 

 

160.71% 37.18% 136.66% 207.41% 245.74% 

HUYJUGb Ni 
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19 

MUVJIXa Fe 
C9H6N12 

 

the 

 

14.78% 26.19% 182.26% 197.29% 44.29% 

VEXYONb Cu 

20 HEBTEPa Zn C12H8O4 

lim 

 

67.05% 102.80% 952.58% 644.99% 223.63% 
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a High-performance MOFs in the same group; b Poor performance MOFs in the same group. 

SETFUTb Cd 
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