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Abstract: The global scarcity of freshwater resources has greatly contributed to the development of
desalination technologies, in which electrodialysis desalination is one of the most widely used and
highly regarded methods. In this work, the first step was to design and assemble a experiment module
for electrodialysis desalination. The ion removal efficiency and single membrane mass transfer flux
of electrodialysis desalination were investigated. The results show that the desalination performance
of the module is improved by increasing the voltage gradient, increasing the concentration of
seawater and electrolyte and decreasing the membrane surface flux and that the optimum operating
conditions for the module at 24 V operating voltage are feedstock concentration of 35 g/L, electrolyte
concentration of 1.42 g/L which and system flow rate of 15 L/h. The results of the study will help to
better investigate electrodialysis desalination technology.

Keywords: seawater; desalination; electrodialysis

1. Introduction

With the increasing shortage of freshwater resources worldwide, desalination technol-
ogy has become a major method of obtaining freshwater in many water-scarce regions [1–3].
Currently, desalination technologies can be divided into two main categories: evaporation
and thin-membranes methods [4]. Among them, evaporation method has serious scaling
and corrosion problems, while the thin film method has become the mainstream method
for building plants internationally due to its low energy consumption and high recovery
rate [5].

The membrane involving method is mainly divided into two categories: reverse
osmosis and electrodialysis. The former has disadvantages, such as high requirements
for water quality, low fresh water yield and easy scaling of membranes [6]. As an old
desalination method, the latter has the advantages of low requirements for pretreatment,
convenient operation and maintenance, less chemical dosage, low energy consumption
and long service life of the device and has certain advantages in high brine treatment [7].
Therefore, electrodialysis seawater desalination has become a research hotspot.

Laura [8] designed an electrodialyser in a laboratory consisting of a combination of six
negative and seven positive membranes to determine the optimum operating conditions
of the electrodialysis system by desalinating brine with a salt concentration of 5 to 10 g/L.
Desalination of brine with a salt concentration of 1 to 35 g/L was also conducted, and we
found that an operating voltage of 12 V was used to bring the brine solution up to the
drinking water standard. We successfully concluded that the desalination function of the
electrodialysis system was related to the operating voltage used by the electrodialyser and
the salt concentration of the feed.

Mourad [9], in order to further investigate the effect of different operating parameters
of the electrodialyser on the desalination effect, used a laboratory electrodialyser, by varying
the operating voltage of the electrodialyser, the concentration of the feed brine and the flow
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rate size of the feed and found that changes in these following factors all had a great effect
on the system’s desalination efficiency.

Yoshinobu [10] further investigated the operational performance of the electrodialyser
by developing mathematical models for different operations of the electrodialyser and
specifically analysed the operational performance of the electrodialyser under continuous,
semi-continuous and intermittent operations. The dissociation of water from anion and
cation exchange membranes was also investigated, and it was concluded that the metal
hydroxides attached to the cation exchange membranes or the functional groups consisting
of sulphonic acid groups and quaternary amine groups on the cation exchange membranes
can catalyse the dissociation of water and accelerate its dissociation.

As the dissociation of water can lead to scaling of the equipment, the cation exchange
membrane needs to be replaced with a new membrane after a certain number of years
to reduce the occurrence of dissociation. The question of the cost of desalination in the
electrodialysis process was answered by Nikonenko [11] who developed a convection–
diffusion model. Using this model, when the operating environment of the electrodialyser
is one of high linear flow rates and small membrane spacing, it is economical to reduce
costs by reducing the area of the membrane. However, on the other hand, when the
membrane performance is superior, a single reduction in membrane area increases the
total cost, although energy consumption is reduced; however, the overall operating cost is
increased.

Recently, the impact of multivalent ions in seawater on the effectiveness of multistage
electrodialysis desalination. Specifically, genuine seawater was employed as the feed so-
lution, and two alternative approaches-using both standard cation exchange membranes
(CEMs) and CEMs with selective removal of multivalent ions-were examined. They discov-
ered that the removal of calcium and magnesium was greater for both CEMs compared
with the removal of sodium and that operating at low current density had no impact. The
multivalent ion permeable CEMs allowed for the removal of more magnesium [12].

Moreover, the removal of the nitrate, arsenic and fluoride by electrodialysis from
brackish groundwater were also investigated by Aliaskari et al. [13]. In this study, a batch
electrodialysis system was used to explore the effects of operational (flowrate and elec-
tricpotential) and water quality (salinity, contaminant feed concentration and pH) factors
on brackish water decontamination. However, the composition of the saline groundwater
used in the study differed somewhat from that of seawater.

In summary, studies in the literature on electrodialysis desalination have focused
on setting up experiments to investigate the factors affecting the desalination process
and the operational performance of electrodialysis desalination. However, few studies
have discussed the factors influencing desalination performance comprehensively. In
this work, the ion removal efficiency and mass transfer flux of the whole module of
the desalination process are experimentally calculated, and the major and minor factors
affecting the desalination process are quantitatively analysed.

2. Experimental Materials

The most important aspect of electrodialysis desalination experiments is the selection
of anion and cation exchange membranes as this directly determines the selective transmis-
sion of anions and cations in seawater and affects the desalination effect. The commercially
available membranes produced by John yong in Neihu District, Taipei, used in this study
with the following models: cation exchange membrane (MA-7500) and anion exchange
membrane (MC-3475), and the basic information for each commercial membrane is shown
in Table 1. The ion exchange membranes used in the system are mainly embedded in the
compartment between the electrodialysis modules, and their function is mainly to adsorb
anions and cations from the solution to achieve the purpose of purification of the treated
water.
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Table 1. The basic information for commercial membranes used in this work.

Items MA-7500 MC-3475

Total weight (oz./sq.yd.) 11.43 3.46
Membrane thickness (mm) 0.53 0.38

Capacity (meq./g.) 1.116 0.70
Water permeability
(cc/hr./ft@5psig) 4.49 30

Chemical Stability (pH) 1∼10 1∼10
Ionic Form Sodium Chloride

The equipment used in the experiment includes a DC power supply, peristaltic electric
pump, conductivity meter, pH meter, triple meter, magnet stirrer, balance, deionised water
maker, oven, etc. The DC power supply ensures that a stable voltage input is provided to
the module, while the experimental brine, deionised water and electrolyte are pumped
into the respective chambers via a peristaltic electric pump. The conductivity meter is used
to measure the conductivity value of the solution in each chamber before and after the
experiment, and the pH meter is used to measure the pH value of the solution in each
chamber before and after the experiment. The instrument manufacturers and models are
shown in Table 2.

Table 2. Manufacturers and models of the laboratory equipment used.

Instrument Name Manufacturer Instrument Model

DC Power Supply Jehan Technology Ltd GPR-3060D
Peristaltic Electric Pump Cole-Parmer 7524-40

Conductivity Meter Suntex SP-700
pH Meter Suntex SP-701

Triple Use Electricity Meter TES TES-2801
Magnet Stirrer Corning CP-420

Balance Precisa 3100C
Balance AND ER-120A

Deionized Water Maker Millipore SA-67120
Oven Deng Yong DS-45

The reagents used in the experiments are shown in Table 3.

Table 3. Reagents used in the experiment.

Name of Reagent Manufacturer Remarks

Sodium chloride Shimakyu Pharmaceutical Co. Analytical purity

Sodium sulfate anhydrous EMD Millipore Corporation,
Germany Analytical purity

Deionized water Laboratory Analytical purity

3. Experimental Platform

The electrodialysis experimental module in this study is shown in Figure 1. Inside the
module are sequentially arranged anion and cation exchange membranes, which separate
the electrodialysis tank into five compartments, with electrode chambers on the left and
right sides. The anions and cations in one of the chambers pass through the anion and
cation exchange membrane under the action of the power plant and enter the next two
chambers, then the conductivity of the solution in that chamber decreases, and the chamber
is said to be a low concentration chamber (LCC). The two chambers adjacent to the left and
right accept the ions coming from the LCC and prevent them from continuing to migrate
into the polar chambers on either side, the ion concentration gradually increases, and these
two chambers are called the concentrated chambers.
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The raw water is pumped into the LCC by a peristaltic pump and the extracted solution
is pumped into the concentrated chamber by a peristaltic pump, where it is sampled and
analysed according to the individual residence times, while the electrode chambers on the
left and right are steadily fed with electrode solution by another peristaltic pump. The
spacer frame of the system is made of an acrylic plate with dimensions of 50 cm long by
30 cm wide by 12 cm thick, the volume of water stored inside the spacer frame is 1600 mL,
and the electrode plate used is a graphite plate with dimensions of 50 cm long by 30 cm
thick as the anode and a stainless steel plate with dimensions of 50 cm long by 30 cm thick
as the cathode. The two electrode chambers are connected in series as a circulation loop,
and the treated water from the light electrode chamber is drained.

Figure 1. Electrodialysis experiment module.

The entire electrodialysis desalination system is divided into a pair of electrodes and
two pairs of anion and cation exchange membranes. The anion and cation exchange mem-
branes are sandwiched between the individual chambers so that each chamber becomes a
separate space and finally secured with a C-clamp. The electrode terminals at each end are
secured with insulating tape to the two wires which are then connected to the DC power
terminals. The anion and cation exchange membrane is cut into small rectangular pieces
with an effective area of 25 × 45 cm in size according to the machined dimensions of the
acrylic sheet. To simplify the problem under study, NaCl solution was used as the raw
water for this experiment.

4. Experimental Procedure

Experimental parameters designed as shown below.
Input parameters:

• Fixed factors: simplified model source of seawater, electrodialysis equipment, conduc-
tivity measuring instrument and pH measuring instrument.

• Control factors: energising voltage, operating time, flow rate and concentration.

Output parameters:

• Ion removal efficiency, pH value of the solution in each chamber and electrical con-
ductivity of the solution in each chamber.

(1) The various parts of the electrodialysis module are connected together to form a
desalination system as shown in Figure 2. Before the test is performed, the module needs to
be tested for water seal, and if the seal is not good enough, then silicon is used to reinforce
it until there is no leakage of any kind.
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At the same time, it is also necessary to attempt to run with electricity to see if there is
a short circuit in the equipment. If there is a short circuit, it can be overcome by applying
grease, white glue and spray paint to the metal nuts or even by abandoning the use of
screws for fastening and clamping with C-clamps for fastening of the equipment and by
applying silicon to one ring of the equipment so that the equipment finally achieves the
requirement of neither leakage nor short circuit.

Figure 2. Diagram of the electrodialysis laboratory platform.

(2) Prepare 4 L of Na2SO4 solution at a concentration of 0.01 mol/L, which is pumped
into the electrode chamber via a peristaltic pump at a flow rate of 15 L/h according to the
operational optimum efficiency.

(3) Prepare 6 L of NaCl solution at a concentration of 3.5% and pump it through the
peristaltic pump into the light electrode chamber at a flow rate of 15 L/h according to the
optimum operating efficiency.

(4) After connecting the power supply box to the equipment with the wire, turn on
the power supply and quickly adjust the voltage to the voltage value we need, for this
experiment, respectively, for the voltage gradients of 1 and 2 V/cm, i.e., the corresponding
voltages are 12 and 24 V, respectively.

(5) Samples were taken every 5 min from the LCC, concentrated and electrode cham-
bers, respectively. Using a conductivity meter and a pH meter, respectively, to measure the
corresponding conductivity and pH values and record the corresponding currents.

(6) From the above experimental data, the ion removal efficiency was calculated and
analysed and discussed to arrive at the most suitable voltage value, flow rate and removal
time for this equipment under certain conditions in order to obtain fresh water.

5. Results and Discussion
5.1. Effect of Different Voltage Gradients on Ion Removal Efficiency

The ion removal efficiency as a function of voltage gradient is shown in Figure 3. As
can be seen from the image, the ion removal efficiency increases with increasing voltage
gradient and with increasing operating time. The power supply used in this experiment
is limited to a maximum voltage of 30 V, i.e., a maximum of 24 V is used to ensure that
the experiment provides a voltage gradient of 2 V/cm. Therefore, it is possible that as the
voltage gradient increases, the ion removal efficiency will not be increased more effectively.
This is because it is possible that the ion diffusion rate on the membranes surface does not
accelerate with a higher voltage gradient, resulting in a failure to accelerate the ion removal
efficiency. This is a possible scenario with increasing voltage gradients; however, for this
set-up, only a voltage gradient of 2 V/cm is discussed.



Membranes 2022, 12, 767 6 of 11

Figure 3. Effect of different voltage gradients on ion removal efficiency (A) and variation of pH in
each chamber at different voltage gradients (B), the concentrated chamber (C) and electrode chambers
(D).

5.2. Variation of pH in Each Chamber at Different Voltage Gradients

The 3.5% brine has a pH of 6.41 when it is not in the electrodialysis system. When it is
pumped into the LCC, the pH changes as shown in Figure 3B. 1 V/cm and 2 V/cm voltage
gradients make little difference to the pH, which initially drops slightly, and when the
working time increases, there is a slight alkalinisation. When deionised water is pumped
into the concentrated reaction tank, its pH specifically changes as shown in Figure 3C.

Again, the pH drops slightly at first; however, as the time increases, there is a slight
rise in pH of the solution at both voltage gradients, with a slight alkalinisation, and the
change curve of pH at a voltage gradient of 2 V/cm is always above 1 V/cm. Furthermore,
comparing the concentrated chamber with the LCC, it can be seen numerically that the
degree of alkalinisation is higher in the concentrated chamber than in the LCC.

The reason for the micro-alkalisation may be due to the hydrolysis reaction on the
surface of the membrane, especially as the ion concentration in the brine decreases, the
water molecules are easily decomposed of polarisation, producing H+ or OH− on the
different membrane surfaces, thus, causing the micro-alkalisation phenomenon. It is
important to note that the pH value of the brine is still in the neutral range after treatment,
which has a positive technical value.



Membranes 2022, 12, 767 7 of 11

The change in pH within the two electrode chambers, as shown in Figure 3D, at the
beginning, the pH of the aqueous solution will gradually increase, which is due to the
decomposition of water molecules on the surface of the electrode process H+ or OH−,
with the extension of time, the reaction of the long born H+ is more intense, the pH will
gradually decrease, when the role to about 20 min—that is, to reach a stable state.

5.3. Variation of the Conductivity of the Chambers at Different Voltage Gradients

A higher conductivity value indicates a higher concentration of metal ions within the
solution and can therefore be used to quantify the ion removal efficiency of this electro-
dialysis module. 3.5% brine has an initial conductivity value of 52.7 mS/cm. As shown
in Figure 4A, the solution in the LCC shows a significant decrease in conductivity as the
working time increases.

Conversely, as shown in Figure 4B, the solution in the concentrated chamber showed
a significant increase in conductivity as the working time increased, and the larger the
voltage gradient, the greater the amount of change in conductivity. Furthermore, at a
voltage gradient of 2 V/cm, the electrodialysis module needs to work for approximately
3 h before the conductivity values within the LCC are between 200 and 350 µs/cm, while
the conductivity of normal tap water, between 200 and 500 µs/cm [14], are comparable.

Figure 4. Variation of the conductivity of the chambers at different voltage gradients ((A) LCC),
the concentrated chamber (B), electrode chambers (C) and current consumption at different voltage
gradients (D).

The solution inside the electrode chamber, as shown in Figure 4C, shows a gradual
decrease in conductivity as the solution is continuously reacted and the number of ions
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inside slowly decreases as the electrolysis progresses. Furthermore, at a voltage gradient
of 2 V/cm, the conductivity inside the electrode chamber decreases faster than at 1 V/cm,
and the slope of the curve is larger.

5.4. Current Consumption at Different Voltage Gradients

As shown in Figure 4D, at different voltage gradients, the current change of the
electrodialysis system shows that the initial current is proportional to the voltage gradient—
that is, the larger the voltage gradient causes the faster the migration of free electrons in
the solution, as the faster the migration of electrons can generate a larger current. Thus,
with the increase of the voltage gradient, a higher removal efficiency can be achieved,
in addition, as the working time increases, the solution becomes less free electrons, the
movement of ions will become slower, so the current will decrease with the reduction of
the system conductivity value.

5.5. Effect of Seawater Concentration on Mass Transfer Fluxes

As can be seen from Figure 5, the single membrane mass transfer flux gradually
increases as the brine concentration increases, all other conditions being held constant.
This is because in this group of electrodialysis equipment, deionised water is used as the
drawing fluid, which ensures that the brine The concentration of the brine will always be
much higher than the concentration of the draw solution, and the anions and cations in the
brine will migrate towards the concentration chambers on either side of the brine due to
the difference in concentration potential and potential potential difference.

The concentration difference between the brine and the draw solution is the driving
force for ion migration. In the case of a certain voltage gradient and draw solution concen-
tration, gradually increasing the concentration of the brine will make the concentration
difference between the raw material and the draw solution larger, and the driving force
between the two will also become larger; at the same time, as the brine concentration
increases, the resistance of the electrodialysis system also becomes smaller, i.e., the mass
transfer resistance becomes smaller.

The ratio of the driving force to the system resistance determines the mass transfer rate
of the electrodialysis system, and thus the driving force is increasing while the resistance is
decreasing, and under the joint action of the two, the whole system shows an increase in
the mass transfer rate and an increase in the mass transfer flux.

Figure 5. Effect of seawater concentration on mass transfer fluxes.
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5.6. Effect of Flow on Mass Transfer Fluxes

The mass transfer flux of the system decreases when the flow rates of the feed and draw
liquids increase simultaneously, as shown in Figure 6, such a conclusion is consistent with
the results of Sadrzadeh M [15,16].The total mass transfer resistance of the electrodialysis
system is concentrated within the diffusive boundary layer. As the flow rate of the brine
increases, the perturbation of the flow slug also increases within the freshwater chamber,
i.e., the degree of fluid turbulence increases, which causes the thickness of the diffusion
boundary layer to decrease, then the diffusion of ions from the solution to the boundary
layer of the brine increases, then the solution resistance on the brine side decreases.

However, at the same time, as the flow rate of the draw fluid increases, the solution
resistance within the concentration chamber on both sides will increase with the flow rate
The overall total resistance of the system increases with flow rate. On the other hand, the
transfer process of ions in the membrane is essentially an alternating process of selective
adsorption and desorption [17], and an increase in flow rate decreases the time the solution
stays on the surface of the ion exchange membrane.

Figure 6. Effect of the flow rate on mass transfer fluxes.

5.7. Effect of Electrolyte Concentration on Mass Transfer Fluxes

As can be seen from Figure 7, as the concentration of the electrolyte increases, the
single membrane mass transfer flux increases throughout the electrodialysis system. This
is due to the fact that the current in the electrodialysis unit is made up of two parts; the
conductivity in this part of the external power supply at both extremes is achieved by the
directional movement of electrons, while the conductivity between the solutions located
within the module is achieved by the migration of ions. This means that throughout the
circuit of the electrodialysis module there must be a transition from electronic to ionic
conductivity, or ionic to electronic conductivity.

This part of the bridge-like conductive articulation is dependent on a redox reaction
occurring within the electrode chambers at both ends [18]. The ions in the electrolyte
act as the medium for this transition. When the concentration in the electrolyte is low,
polarisation may occur, leading to scaling of the electrode plates within the chamber, which
can increase energy consumption during desalination and reduce the life of the plates.
When the concentration of the electrolyte increases, the number of ions increases, which
increases the strength of electron conductivity into solution ion conductivity.
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At the same time, as the concentration of the electrolyte increases, the resistance of the
electrode zone decreases with the same operating voltage, which is shown to increase the
mass transfer flux of the membrane.

Figure 7. Effect of electrolyte concentration on mass transfer fluxes.

6. Conclusions

In this paper, an electrodialysis desalination experimental module was constructed,
the major and minor factors affecting the desalination performance of electrodialysis
were discussed, and the following conclusions were obtained. Through experimental
verification, we found that the most critical factor affecting desalination performance in
the electrodialysis module was the magnitude of the voltage gradient, with the next most
influential factors being the feedstock concentration, flow rate and electrolyte concentration,
in that order.

Increasing the voltage gradient, feedstock concentration and electrolyte concentration
of the electrodialysis desalination system and reducing the flow rate of the system will result
in a higher desalination performance of electrodialysis, thus, making the electrodialysis
desalination process more energy efficient. For this electrodialysis desalination module, the
optimal working conditions are an operating voltage of 24 V, raw material concentration of
35 g/L, electrolyte concentration of 1.42 g/L and flow rate of the system of 15 L/h.
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