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Abstract: Lab-scale anoxic/oxic membrane bioreactor (A/O-MBR) and oxic membrane bioreactor
(O-MBR) systems using a submerged polysulfone hollow-fiber membrane module with a pore size
of 0.01 µm and a total surface area of 1.50 m2 were used to treat domestic wastewater. The sludge
retention time (SRT) of each system was examined by setting the SRT to 10, 20, and infinity (no sludge
withdrawal). The results showed that the total nitrogen removal efficiency of the A/O-MBR was
more significant than that of the O-MBR at a SRT of infinity, with figures of 72.3% and 33.1% being
found, respectively. The COD removal efficiencies of the A/O-MBR system with a SRT of 10 days,
20 days, and infinity were 82.4%, 84.3%, and 91.5%, respectively. The COD removal efficiencies of the
O-MBR system with a SRT of 10 days, 20 days, and infinity were 79.3%, 81.5%, and 89.8%, respectively.
An increase in the SRT resulted in an increase in the COD removal efficiency. The FEEM peak of the
influent tended to decrease after an increase in the SRT for both systems (A/O-MBR and O-MBR). For
the A/O-MBR system, the trihalomethane formation potential (THMFP) was significantly reduced
by 88.91% (at a SRT of infinity). The THMFP declined significantly by 85.39% for the O-MBR system
at a SRT of infinity. The A/O-MBR system showed a slightly higher efficiency than the O-MBR
system in terms of the COD removal and the THMFP reduction. These results indicated that the MBR
process, and the A/O-MBR system, in particular, could be used as an effective wastewater treatment
process for many developing countries that are troubled by the emerging contamination of water
and wastewater.

Keywords: domestic wastewater; anoxic/oxic membrane bioreactor; oxic membrane bioreactor;
trihalomethane formation potential; solid retention time

1. Introduction

Water degradation has consistently been a prominent issue and is evident in a number
of watershed areas in Thailand. This is due to the continued expansion and development
of industries and urban communities, which contribute to qualitative problems involving a
variety of organic and inorganic contaminants. These substances are released into water
sources through domestic consumption and practices such as bathing, cleaning, cooking,
manufacturing, and industrial production. The wastewater in Thailand from hotels, ser-
vices, and dorms accounts for 67.57%, 27.03%, and 5.40% of the total, respectively [1].
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Diverse forms of organic and inorganic substances can be found in these wastewaters.
Proteins, carbohydrates, lipids, and nucleic combinations are organic contaminants that
can be identified with the chemical oxygen demand (COD) and biological oxygen de-
mand (BOD), whereas inorganic contaminants include ammonia, phosphate, nitrate, and
sulfate. A conventional wastewater treatment plant cannot effectively remove natural
organic matter (NOM) and/or dissolved organic matter (DOM) with molecules smaller
than 0.45 µm [2]. DOM compounds such as humic acid and fulvic acid contaminate the
water. NOM is produced when plant and animal matter decompose and form a complex
combination of organic molecules. Chlorine, chloramines, ozone, and chlorine dioxide
are the most frequent disinfectants used for disinfection [3]. These chemicals react to
NOM and/or DOM to produce mutagenic and carcinogenic disinfection by-products
(DBPs) [4–6]. Currently, there is a lack of water management and measures to prevent the
entry of wastewater emissions into water resources. Therefore, it is essential to find solu-
tions to these problems. Such an approach must be effective and sustainable. Membrane
bioreactors (MBRs) have recently become popular for treating municipal and industrial
wastewater [7]. The MBR process has many remarkable benefits over the conventional
activated sludge system, including a higher biomass concentration, less sludge production,
and high-quality effluent. As a result, membrane bioreactors have been developed to
eliminate the limitations of conventional treatment systems [8]. Membrane bioreactors can
handle more organic loads than conventional treatment methods. Membrane bioreactors
can treat wastewater containing specific components that are hazardous to microbial func-
tion. They are resistant to environmental changes during treatment since their microbial
masses are long-lasting. Additionally, membrane bioreactors improve the treated effluent’s
quality [9,10]. MBRs have been effectively combined with anoxic/oxic (AO) processes to
enhance the removal of both organics and nutrients. Recently, Adoonsook D. et al. [11]
studied a simplified technique for the simultaneous removal of nitrogen and phosphorus
using the A/O-MBR system by merging biofilms into anaerobic compartments containing
active biomass. Moreover, studies on nutrient removal using MBRs utilizing various car-
bon sources have focused on evaluating the microbial population and its compositional
responsibilities [12]. Liu et al. [13] demonstrated that a two-stage AO-MBR system was
beneficial for pollutant removal in landfill leachate, and the average removal efficiencies of
the chemical oxygen demand (COD) and the total nitrogen (TN) were 80.6% and 74.9%,
respectively. In addition, the membrane bioreactor can minimize chlorine usage during
post-treatment effluent disinfection. For the disinfection procedure, chlorine gas, chlorine
dioxide, and chloramine are commonly added to the effluent. However, these disinfectants
can react with natural organic matter in the effluent and form disinfection by-products
(DBPs) [14]. DBPs affect the human body, as studies have shown that these substances are
carcinogenic and cause mutations in laboratory animals [5,6,14,15]. Most THM precursors
are created when dissolved organic matter is present, which is responsible for the THM
formation potential (THMFP). The trihalomethane formation potential (THMFP) of raw
or treated water sources indicates the highest trihalomethane (THM) levels that are likely
to occur when chlorine reacts with the THM precursors in water [16,17]. This study fo-
cuses on trihalomethane (THM) precursors and the trihalomethane formation potential
(THMFP). To date, there has not been an overview of A/O-MBR and O-MBR technology
employed to remove THM precursors and THMFP; hence, this technology is extensively
discussed in this paper. This research aims to study the efficiencies of oxic and anoxic/oxic
membrane bioreactors (O-MBR and A/O-MBR) on the organic matter removal from and
trihalomethane formation potential reduction in domestic wastewater. The effect of sludge
age on these factors is investigated by varying the sludge retention time (SRT) between
10 days, 20 days, and infinity (no sludge withdrawal).
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2. Materials and Methods
2.1. Domestic Wastewater

The domestic wastewater used in this study came from a wastewater treatment plant
located in an educational institute in Chiang Mai, Thailand, which has a capacity of
8500 m3/day. The sample was collected before entering the activated sludge aeration
tank. The sampling frequency was twice a week, with a grab sample being taken. It was
collected in a clean plastic container. The seed used to start the system was collected from
the aeration tank of the wastewater treatment plant in the educational institute.

2.2. Anoxic/Oxic and Oxic Membrane Bioreactors (A/O-MBR and O-MBR)

This study was carried out using two lab-scale anoxic/oxic and oxic membrane bioreac-
tors (A/O-MBR and O-MBR). The reactors were operated in parallel and fed with domestic
wastewater. The A/O-MBR and O-MBR systems used in this experiment are illustrated
in Figures 1 and 2, respectively. In the aerobic MBR tank of each system, a polysulfone
(PS) hollow-fiber membrane module with a pore size of 0.01 µm and a total membrane
area of 1.50 m2 was installed. Air diffusers were constructed underneath the membrane
modules to continuously supply oxygen for biomass growth. A water level controller
was installed for each system to maintain a constant water level corresponding to a total
hydraulic retention time (HRT) of 10 h. A peristaltic pump was used to introduce domestic
wastewater from the feed tank to both systems. A return pump was used for recirculating
the sludge. The sludge retention time (SRT) of each system was studied by varying the
sludge retention time between 10 days, 20 days, and infinity (no sludge withdrawal). A per-
meate pump was used to pull water through the polysulfone (PS) hollow-fiber membrane.
A differential pressure gauge was used to measure the transmembrane pressure (TMP) of
the membrane module. The transmembrane pressure (TMP) was controlled at 30 kPa in all
experiments. In addition, when the permeate production was fluctuated, the membrane
was backwashed. The initial mixed liquor suspended solids (MLSSs) concentration was
approximately 3000 mg/L.
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Figure 1. The anoxic/oxic membrane bioreactor (A/O-MBR) system (System 1). The system consisted
of (1) an agitator; (2) a feed tank; (3) a feed pump; (4) an anoxic tank; (5) a magnetic stirrer; (6) a
membrane; (7) a return pump; (8) an air diffuser; (9) an aerobic tank; (10) a water level controller;
(11) a pressure gauge; and (12) a permeate pump.
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Figure 2. The oxic membrane bioreactor (O-MBR) system (System 2). The system consisted of (1) an
agitator; (2) a feed tank; (3) a feed pump; (4) a membrane; (5) an aerobic tank; (6) an air diffuser; (7) a
water level controller; (8) a pressure gauge; and (9) a permeate pump.

2.3. Analytical Methods

The mixed liquor suspended solids (MLSSs) and mixed liquor volatile suspended
solids (MLVSSs) were analyzed according to the standard methods 2540D and 2540E,
respectively [18]. For the MLSS analysis, the samples were dried for a minimum of 2 h
in a 103–105 ◦C oven. For the MLVSS analysis, the samples were ignited at 550 ◦C. The
remaining solids were then fixed (inorganic), and the ignition loss was the volatile (organic)
solids level. The chemical oxygen demand (COD) and total nitrogen (TN) were calculated
using the summation of the total Kjeldahl nitrogen (TKN), nitrite (NO−

2 ), and nitrate (NO−
3 )

concentrations (this formula was used for the measurement of nitrogen in wastewater),
which were measured according to the standard methods for the examination of water and
wastewater [18]. Dissolved oxygen (DO) and pH were determined using a WTW Multi
pH/Oxi 340i (WTW GmbH, Weilheim, Germany) dissolved oxygen meter. The fluores-
cence excitation–emission matrix (FEEM) was analyzed to obtain the THMFP precursor
characteristics of the raw wastewater and permeate. The excitation wavelength ranged
from 220 nm to 600 nm and increased at intervals of 5 nm. The FEEM was measured using a
spectrofluorometer (JASCO, FP-6200, Bangkok, Thailand). The water samples were filtered
through a 0.7 µm GF/F filter and 0.45 µm nylon membrane filter, respectively, prior to
measurements. Prior to use, the GF/F filters were combusted at 550 ◦C to avoid organic
matter contamination. The nylon membrane filters were rinsed with 100 mL of pure water
followed by a 50 mL water sample prior to use.

2.4. Statistical Analysis

All results were analyzed using a one-way ANOVA at a 95% confidence level. At
p > 0.050, the result was insignificant; when p < 0.050, the result was significant.

2.5. Trihalomethane Formation Potential (THMFP) and Analysis

In the case of the THMFP measurement, the raw wastewater and treated wastew-
ater samples were examined following the standard methods 5710 B, 4500-Cl B, and
6232 B [18]. The formation potential of the THMs was analyzed for chloroform (CHCl3),
bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl), and bromoform
(CHBr3). The THMFP measurement consisted of three steps: (1) a free chlorine residual
measurement, (2) liquid–liquid extraction, and (3) sample analysis. Firstly, the THMFP
test was conducted for 7 days. At the end of the 7-day reaction period, samples had a
remaining free chlorine residual of 3–5 mg/L. The residual chlorine was measured using a
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portable spectrophotometer (HACH, DR/890 colorimeter) before proceeding to the next
step. Pentene was used as the solvent. The extracted solution was kept in a refrigerator
under 4 ◦C. Finally, the extracted solution was taken and analyzed using gas chromatogra-
phy (GC-ECD) (Hewlett Packard, HP 6890 GC, Agilent Technologies, Inc., Santa Clara, CA,
USA) with an RTX-624 column.

3. Results and Discussion
3.1. Domestic Wastewater Characteristics

The domestic wastewater characteristics are reported in Table 1. The concentration
of suspended solids (SS) was 268.0 ± 172.2 mg/L, and the SS during the experiment is
shown in Figure S1 (in the Supplementary Materials). Additionally, the biological oxygen
demand (BOD) was 116.7 ± 12.4 mg/L. It was found that these values were above the
effluent standards of 30 mg/L and 20 mg/L, respectively [1]. Due to the amount of septic
tank wastewater and effluent from apartments, offices, and university buildings, including
wastewater from hospitals, which contains organic materials, the SS and BOD values
increased due to higher standards and higher values. According to a pollution control
department report, the wastewater from these dormitories had SS and BOD values of
695 mg/L and 798 mg/L, respectively. The SS and BOD values in the hospital wastewater
were 87 mg/L and 238 mg/L, respectively.

Table 1. Domestic wastewater characteristics.

Parameters Range Value (n = 5)

pH 7.14–7.98 7.51 ± 0.1
SS (mg/L) 50–920 268.0 ± 172.2

Temperature (◦C) 20.4–33.8 28.2 ± 3.1
Alkalinity (mg/L as CaCO3) 86–176 128.5 ± 20.2

COD (mg/L) 80–308 191.1 ± 69.1
BOD (mg/L) 98.3–133.8 116.7 ± 12.4
TKN (mg/L)

Ammonia (mg/L)
24.6–39.4
18.4–32.8

33.5 ± 3.4
24.0 ± 3.2

Nitrite (mg/L) 0.0–1.8 0.4 ± 0.4
Nitrate (mg/L) 0.0–1.4 0.3 ± 0.3

Phosphorus (mg/L) 1.21–1.78 1.5 ± 0.2

3.2. Efficiencies of the A/O-MBR and O-MBR Systems
3.2.1. Chemical Oxygen Demand

Figures 3 and 4 illustrate how the COD concentrations in the A/O-MBR and O-
MBR systems changed during the experiment at different SRTs. Table 2 shows the COD
concentrations at different SRTs in the A/O-MBR and O-MBR systems. In the A/O-
MBR system, the COD concentration in the raw water influent fluctuated. However, the
COD concentrations in the permeate from the A/O-MBR system were stable. The COD
concentration in the raw water influent for SRTs of 10 days, 20 days, and infinity were
193.5 ± 85.3 mg/L, 174.1 ± 80.6 mg/L, and 218.6 ± 61.1 mg/L, respectively. The COD
concentrations in the permeate for SRTs of 10 days, 20 days, and infinity at steady state
were 28.9 ± 8.9 mg/L, 28.9 ± 5.1 mg/L, and 17.4 ± 4.1 mg/L, respectively. Since the two
systems were operated in parallel, the COD concentrations in the raw water influent in
the O-MBR system were similar. The COD concentrations in the permeate for SRTs of
10 days, 20 days, and infinity at steady state were 29.3 ± 10.7 mg/L, 30.5 ± 3.7 mg/L, and
21.2 ± 4.2 mg/L, respectively. In addition, the effects of the pH [1,19,20], alkalinity [21,22],
dissolved oxygen [23,24], and the ratio of MLVSSs to MLSSs [25], supporting the COD
results, are shown in the Supplementary Materials.
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Table 2. Effects of the A/O-MBR and O-MBR systems on COD removal.

SRT
(days)

COD (mg/L)

Raw Wastewater Permeate from
A/O-MBR (System 1)

Permeate from
O-MBR (System 2)

10 193.5 ± 85.3 28.9 ± 8.9 29.3 ± 10.7

20 174.1 ± 80.6 28.9 ± 5.1 30.5 ± 3.7

Infinity 218.6 ± 61.1 17.4 ± 4.1 21.2 ± 4.2

p-value 0.301 0.000 0.000
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The effects of the A/O-MBR and O-MBR systems in terms of COD removal are
shown in Figure 5. The COD removal efficiencies of the A/O-MBR (System 1) and O-
MBR (System 2) systems at a SRT of 10 days were 82.4% and 79.3%, respectively. The
COD removal efficiencies of Systems 1 and 2 at a SRT of 20 days were 84.3% and 81.5%,
respectively. The COD removal efficiencies of Systems 1 and 2 at a SRT of infinity were
91.5% and 89.8%, respectively. It was observed that an increase in the SRT led to an increase
in the COD removal efficiency. The reduction in the COD was due to the conversion of
organic matter into carbon dioxide, water, and microbial cells during the decomposition
of organic matter [26]. The membrane bioreactor systems disposed of excess sludge more
efficiently than conventional treatment systems. As a result, the amount of organic matter
used in cell production was lower. Therefore, the conversion of organic matter into carbon
dioxide was responsible for most of the COD loss.
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3.2.2. Effect of Nitrification/Denitrification

Figures 6 and 7 illustrate the changes in the total nitrogen concentrations during ex-
periments at different SRTs in the A/O-MBR and O-MBR systems, respectively. Meanwhile,
Table 3 demonstrates the total nitrogen concentrations at different SRTs in the A/O-MBR
and O-MBR systems. In the A/O-MBR system, the total nitrogen concentration in the raw
water influent fluctuated. However, the total nitrogen concentrations in the permeate from
the A/O-MBR system were stable. The total nitrogen concentration in the raw water influ-
ent for SRTs of 10 days, 20 days, and infinity were 35.5 ± 2.9 mg/L, 31.6 ± 4.6 mg/L, and
32.4 ± 3.1 mg/L, respectively. The total nitrogen concentrations in the permeate for SRTs of
10 days, 20 days, and infinity at the steady state were 22.0 ± 2.0 mg/L, 12.7 ± 0.9 mg/L,
and 8.9 ± 0.6 mg/L, respectively. Since the two systems were operated in parallel, the total
nitrogen concentrations in the raw water influent in the O-MBR system were similar. The
total nitrogen concentrations in the permeate for SRTs of 10 days, 20 days, and infinity at
the steady state were 29.0 ± 2.6 mg/L, 23.9 ± 2.5 mg/L, and 21.4 ± 1.6 mg/L, respectively.
An increase in the SRT resulted in an increase in the TN removal efficiency.

Table 3. Efficiencies of the A/O-MBR and O-MBR systems on total nitrogen removal.

SRT
(days)

Total Nitrogen (mg/L)

Raw Wastewater Permeate from
A/O-MBR (System 1)

Permeate from
O-MBR (System 2)

10 35.5 ± 2.9 22.0 ± 2.0 29.0 ± 2.6

20 31.6 ± 4.6 12.7 ± 0.9 23.9 ± 2.5

Infinity 32.4 ± 3.1 8.9 ± 0.6 21.4 ± 1.6

p-value 0.030 0.000 0.000
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Interestingly, in terms of the nitrification process, NH3 (in terms of the TKN) in both the
A/O-MBR and O-MBR was decreased in all SRTs (Table S5 in the Supplementary Materials).
The immediate product (NO−

2 ) (Table S6 in the Supplementary Materials) showed a similar
trend to the TKN. In the final product of the nitrification process, NO−

3 (Table S7 in the
Supplementary Materials), however, showed a different trend between the A/O-MBR
and O-MBR. Because of the presence of oxygen, the NO−

3 concentration in the O-MBR
(aerobic condition) was higher than in the A/O-MBR (anoxic condition). To confirm the
denitrification process, which is the process that converts nitrate to nitrogen gas in the
absence of oxygen, the nitrate concentration in the permeate from the A/O-MBR showed a
lower concentration than that obtained from the O-MBR. This could be confirmed by the
occurrence of the denitrification process.

The efficiencies of the A/O-MBR and O-MBR systems in terms of the total nitrogen
removal are shown in Figure 5. At a SRT of 10 days, the total nitrogen removal efficiencies
of the A/O-MBR (System 1) and O-MBR (System 2) systems reached 38.1% and 19.0%,
respectively. At a SRT of 20 days, the total nitrogen removal efficiencies of Systems 1 and 2
were 59.7% and 23.4%, respectively. At a SRT of infinity, the total nitrogen removal efficiencies
of Systems 1 and 2 were 72.2% and 33.1%, respectively. It was noted that a rise in the SRT
resulted in an increase in the total nitrogen removal efficiency.
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3.2.3. FEEM

The FEEM is a technique for identifying natural organic substances in water. Chen et al. [27]
described the extent of excitation (Ex) and emission (Em) wavelengths according to five
sections, namely, tyrosine, aromatic proteins, fluvic acid, microbial by-product-like, and
humic acid substances. Their Ex/Em FEEM peaks occurred at 220–250 nm/280–330 nm,
220–250 nm/330–380 nm, 220–280 nm/>380 nm, >250 nm/280–330 nm, and >250 nm/>380 nm,
respectively. The FEEM in the domestic wastewater and permeated for A/O-MBR and O-MBR
systems are reported in Figures 8–10. The Ex/Em FEEM peaks occurred at 340–355 nm/
410–435 nm and 275–290 nm/345–425 nm, respectively. These peaks were designated as A
and B, respectively. According to past reports, peaks A and B corresponded to humic acid and
fulvic acid [28], respectively. All the wastewater influents exhibited peaks A and B at SRTs of
10 days, 20 days, and infinity. In both the A/O-MBR and O-MBR systems, the intensities of
the FEEM peaks A and B in the permeate were lower than those in the wastewater influent at
all SRTs. The FEEM intensity in both systems also declined as the SRT increased. The FEEM
intensity of the A/O-MBR system showed a higher efficiency than that of the O-MBR system.
Our findings were consistent with the COD removal efficiency of both systems under all
SRTs. Figure 5 shows a rise in the COD removal efficiency of both systems with an increase
in the SRT as the organic matter was transformed into carbon dioxide, water, and microbial
cells. From the FEEM and COD concentrations, it was concluded that the A/O-MBR system
had good efficiency. Thus, the MBR system might minimize the amount of organic matter in
wastewater and decrease the generation of THMFP.

3.2.4. TTHMFPs

The measured THM concentration was obtained after the potential formation test in all
the experiments. Figure 11 shows that water intake was observed at a SRT of 10 days. Three
THMs (CHCl3, CHBrCl2, and CHBr2Cl) had a formation potential of 114 and 6213 µg/L in
the raw wastewater. CHBr3 was not detected in the raw wastewater, and it permeated both
systems. Chloroform was determined to be the most common THM species. The formation
potential of the four THMs slightly decreased in the anoxic/oxic tank water (System 1) (range of
52 to 2615 µg/L) when compared to the oxic tank water (System 2) (range of 103 to 5518 µg/L).
Aside from that, the range of the four THMFPs at a SRT of 20 days was 52–7063 µg/L in
the raw wastewater. Chloroform formation was still the highest in this system, even though
CHBr3 was not detected. Furthermore, when compared to anoxic/oxic tanks, similarities
between the THMFP and oxic tank water (System 2) were discovered. In the anoxic/oxic
tank (System 1) at a SRT of infinity, chloroform presented a similar trend with both systems
(SRTs of 10 and 20 days). The range of the THMFP was 193–7005 µg/L in the raw wastewater.
When considering the water outlet in the oxic tank water (System 2) at a SRT of infinity, the
formation potential showed a lower concentration (range of 38–1027 µg/L) compared with
the anoxic/oxic tank at a SRT of infinity. According to these results, the formation potential of
total trihalomethanes (TTHMFPs) in the permeate was much lower with the A/O-MBR system
than with the O-MBR system at a SRT of infinity. As shown in Figure 5, the A/O-MBR system
had an increased COD removal efficiency value, which suggested a decreased precursor to the
creation of TTHMFPs. Additionally, the COD removal efficiency value illustrated an enhanced
precursor to the development of TTHMFPs. The following conclusions may be drawn from the
findings: the intensities of FEEM peaks A and B in the permeate were lower when contrasted
with those of the wastewater influent for both systems at all SRTs. Figures 8–10 present the
FEEM analysis findings on the intensities. Four TTHMFP species, CHCl3, CHBrCl2, CHBr2Cl,
and CHBr3, were detected in the domestic wastewater results shown in Figure 11. In this study,
the predominant species was CHCl3. Sriboonnak S. et al. [29] found that the dominant TTHM
species in the raw water samples obtained from a surface water reservoir and water distribution
networks was CHCl3. Furthermore, when considering leachate-contaminated groundwater, the
formation of CHCl3 was the most prevalent among the TTHMFPs [30].
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4. Conclusions

The findings of the experiments demonstrated that the A/O-MBR and O-MBR systems
were both very successful at treating domestic wastewater. The sludge retention time (SRT)
of each system was investigated by adjusting the SRT to 10, 20, and indefinite intervals
(no sludge withdrawal). An increase in the SRT led to a corresponding increase in the
efficiency with which the COD was removed from both systems. Both the A/O-MBR and
the O-MBR systems were quite successful in disposing of suspended particles as well as the
total nitrogen. In the A/O-MBR system, the trihalomethane formation potential (THMFP)
was cut down by a significant amount (88.91%) at a SRT of infinity. In addition, the THMFP
levels dramatically declined for the O-MBR system (85.39%) at a SRT of infinity. Regarding
the elimination of the COD and the lowering of the THMFP, the A/O-MBR system revealed
a somewhat greater level of efficiency than the O-MBR system.

5. Patents

This research has no patents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes12080761/s1, Figure S1. pH during experiment at
different SRTs in the A/O-MBR system (System 1); Figure S2. pH during experiment at different
SRTs in the O-MBR system (System 2); Figure S3. alkalinity during experiment at different SRTs in
the A/O-MBR system (System1) and O-MBR system (System2); Figure S4. DO during experiment
at different SRTs in the A/O-MBR system (System1) and O-MBR system (System2); Figure S5. SS
during experiment at different SRTs; Table S1. effects of A/O-MBR and O-MBR systems on pH value;
Table S2. alkalinities of raw wastewater and wastewater in the A/O-MBR and O-MBR systems;
Table S3. dissolved oxygen in raw wastewater and wastewater in the A/O-MBR and O-MBR systems;
Table S4. MLVSS/MLSS of raw wastewater and wastewater in the A/O-MBR and O-MBR systems;
Table S5. efficiencies of A/O-MBR and O-MBR systems on total Kjeldahl nitrogen (TKN) removal,

https://www.mdpi.com/article/10.3390/membranes12080761/s1
https://www.mdpi.com/article/10.3390/membranes12080761/s1


Membranes 2022, 12, 761 13 of 14

Table S6. efficiencies of A/O-MBR and O-MBR systems on nitrite (NO−
2 ) removal, and Table S7.

efficiencies of A/O-MBR and O-MBR systems on nitrate (NO−
3 ) removal.

Author Contributions: Conceptualization, A.W.; methodology, S.S.; software, S.S.; validation, A.W.,
P.R., and S.N.; formal analysis, S.S. and A.Y.; investigation, A.W., S.S., and A.Y.; data curation, A.W.
and S.S.; writing—original draft preparation, S.S.; writing—review and editing, A.W., A.Y., P.I., C.P.,
P.R., S.N., K.D., P.S., and S.S.; supervision, A.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research work was partially supported by Chiang Mai University. The authors thank
the Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University.
Special thanks are extended to the Department of Environmental Engineering, Faculty of Engineering,
Chiang Mai University for invaluable support in terms of facilities and scientific equipment.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Domestic Wastewater. Available online: https://www.pcd.go.th/ (accessed on 2 May 2022).
2. Leenheer, J.A.; Croué, J.P. Peer Reviewed: Characterizing Aquatic Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37,

18A–26A. [CrossRef] [PubMed]
3. World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011.
4. Loper, J.C.; Lang, D.R.; Schoeny, R.S.; Richmond, B.B.; Gallagher, P.M.; Smith, C.C. Residue organic mixtures from drinking water

show in vitro mutagenic and transforming activity. J. Toxicol. Environ. Health 1978, 4, 919–938. [CrossRef] [PubMed]
5. Zhang, L.; Xu, L.; Zeng, Q.; Zhang, S.H.; Xie, H.; Liu, A.L.; Lu, W.Q. Comparison of DNA damage in human-derived he-patoma

line (HepG2) exposed to the fifteen drinking water disinfection byproducts using the single cell gel electrophoresis assay. Mutat.
Res. 2011, 741, 89–94. [CrossRef]

6. Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; DeMarini, D. Occurrence, genotoxicity, and carcinogenicity of regulated
and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res. Mutat. Res. 2007, 636,
178–242. [CrossRef]

7. Gao, D.W.; Zhang, T.; Tang, C.Y.Y.; Wu, W.M.; Wong, C.Y.; Lee, Y.H.; Yeh, D.H.; Criddle, C.S. Membrane fouling in an anaerobic
membrane bioreactor: Differences in relative abundance of bacterial species in the membrane foulant layer and in suspension. J.
Membr. Sci. 2010, 364, 331–338. [CrossRef]

8. Skouteris, G.; Hermosilla, D.; López, P.; Negro, C.; Blanco, Á. Anaerobic membrane bioreactors for wastewater treatment: A
review. Chem. Eng. J. 2012, 198–199, 138–148. [CrossRef]

9. Stuckey, D.C. Recent developments in anaerobic membrane reactors. Bioresour. Technol. 2012, 122, 137–148. [CrossRef] [PubMed]
10. Dereli, R.K.; Ersahin, M.E.; Ozgun, H.; Ozturk, I.; Jeison, D.; van der Zee, F.; van Lier, J.B. Potentials of anaerobic membrane

bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresour. Technol. 2012, 122, 160–170. [CrossRef]
11. Adoonsook, D.; Chia-Yuan, C.; Wongrueng, A.; Pumas, C. A simple way to improve a conventional A/O-MBR for high

simultaneous carbon and nutrient removal from synthetic municipal wastewater. PLoS ONE 2019, 14, e0214976. [CrossRef]
12. Adoonsook, D.; Chia-Yuan, C.; Wongrueng, A.; Pumas, C. Microbial community composition in different carbon source types of

biofilm A/O-MBR systems with complete sludge retention. Environ. Technol. 2021, 42, 2950–2967.
13. Liu, J.; Zhang, H.; Zhang, P.; Wu, Y.; Gou, X.; Song, Y.; Tian, Z.; Zeng, G. Two-stage anoxic/oxic combined membrane bioreactor

system for landfill leachate treatment: Pollutant removal performances and microbial community. Bioresour. Technol. 2017, 243,
738–746. [CrossRef] [PubMed]

14. Yang, X.; Guo, W.; Lee, W. Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or
chloramination of natural organic matter. Chemosphere 2013, 91, 1477–1485. [CrossRef] [PubMed]

15. Plewa, M.J.; Wagner, E.D. Risks of Disinfection Byproducts in Drinking Water: Comparative Mammalian Cell Cytotoxicity and
Genotoxicity. In Encyclopedia of Environmental Health, 2nd ed.; Nriagu, J., Ed.; Elsevier: Oxford, UK, 2019; pp. 559–566.

16. Zainudin, F.; Abu Hasan, H.; Abdullah, S. An overview of the technology used to remove trihalomethane (THM), trihalomethane
precursors, and trihalomethane formation potential (THMFP) from water and wastewater. J. Ind. Eng. Chem. 2017, 57, 1–14.
[CrossRef]

17. Rakruam, P.; Wattanachira, S. Reduction of DOM fractions and their trihalomethane formation potential in surface river water by
in-line coagulation with ceramic membrane filtration. J. Environ. Sci. 2014, 26, 529–536. [CrossRef]

18. APHA; AWWA; WPCF. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Water Works Association:
Washington, DC, USA, 2005.

https://www.pcd.go.th/
http://doi.org/10.1021/es032333c
http://www.ncbi.nlm.nih.gov/pubmed/12542280
http://doi.org/10.1080/15287397809529712
http://www.ncbi.nlm.nih.gov/pubmed/569710
http://doi.org/10.1016/j.mrgentox.2011.11.004
http://doi.org/10.1016/j.mrrev.2007.09.001
http://doi.org/10.1016/j.memsci.2010.08.031
http://doi.org/10.1016/j.cej.2012.05.070
http://doi.org/10.1016/j.biortech.2012.05.138
http://www.ncbi.nlm.nih.gov/pubmed/22749372
http://doi.org/10.1016/j.biortech.2012.05.139
http://doi.org/10.1371/journal.pone.0214976
http://doi.org/10.1016/j.biortech.2017.07.002
http://www.ncbi.nlm.nih.gov/pubmed/28711802
http://doi.org/10.1016/j.chemosphere.2012.12.014
http://www.ncbi.nlm.nih.gov/pubmed/23312737
http://doi.org/10.1016/j.jiec.2017.08.022
http://doi.org/10.1016/S1001-0742(13)60471-4


Membranes 2022, 12, 761 14 of 14

19. Amatya, I.; Kansakar, B.; Tare, V.; Fiksdal, L. Role of pH on biological Nitrification Process. J. Inst. Eng. 2011, 8, 119–125.
[CrossRef]

20. Ovez, B. Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source.
Process Biochem. 2006, 41, 1289–1295. [CrossRef]

21. Ding, Y.; Guo, Z.; Ma, B.; Wang, F.; You, H.; Mei, J.; Hou, X.; Liang, Z.; Li, Z.; Jin, C. The Influence of Different Operation
Conditions on the Treatment of Mariculture Wastewater by the Combined System of Anoxic Filter and Membrane Bioreactor.
Membranes 2021, 11, 729. [CrossRef]

22. Fu, Z.; Yang, F.; An, Y.; Xue, Y. Simultaneous nitrification and denitrification coupled with phosphorus removal in an modified
anoxic/oxic-membrane bioreactor (A/O-MBR). Biochem. Eng. J. 2009, 43, 191–196. [CrossRef]

23. Painter, H.A.; Loveless, J.E. Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the
activated-sludge process. Water Res. 1983, 17, 237–248. [CrossRef]

24. Metcalf and Eddy. Wastewater Engineering Treatment: Treatment, Disposal and Reuse, 3rd ed.; McGraw-Hill: Singapore, 1991.
ISBN 0-07-041690-7.

25. Do, K.U.; Chu, X.Q. Chapter 5-Performances of membrane bioreactor technology for treating domestic wastewater operated at
different sludge retention time. In Development in Wastewater Treatment Research and Processes; Shah, M., Rodriguez-Couto, S.,
Biswas, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 107–122.

26. Phanwilai, S.; Noophan, P.; Li, C.W.; Choo, K.H. Effect of COD:N ratio on biological nitrogen removal using full-scale step-feed in
municipal wastewater treatment plants. Sustain. Environ. Res. 2020, 30, 1–9.

27. Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation−emission matrix regional integration to quantify
spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [CrossRef] [PubMed]

28. Sun, W.L.; Liu, T.T.; Cui, F.; Ni, J.R. Fluorescence evolution of leachates during treatment processes from two contrasting landfills.
Environ. Technol. 2008, 29, 1119–1125. [CrossRef] [PubMed]

29. Sriboonnak, S.; Induvesa, P.; Wattanachira, S.; Rakruam, P.; Siyasukh, A.; Pumas, C.; Wongrueng, A.; Khan, E. Trihalomethanes in
Water Supply System and Water Distribution Networks. Int. J. Environ. Res. Public Health 2021, 18, 9066. [CrossRef] [PubMed]

30. Yimyam, K.; Wongrueng, A.; Rakruam, P.; Nitayavardhana, S.; Phetrak, A.; Theepharaksapan, S.; Wattanachira, S. Reduction of
DBP precursors and their THMFPs in leachate contaminated groundwater by PAC adsorption. Eng. J. 2017, 21, 11–23. [CrossRef]

http://doi.org/10.3126/jie.v8i1-2.5102
http://doi.org/10.1016/j.procbio.2005.12.030
http://doi.org/10.3390/membranes11100729
http://doi.org/10.1016/j.bej.2008.09.021
http://doi.org/10.1016/0043-1354(83)90176-8
http://doi.org/10.1021/es034354c
http://www.ncbi.nlm.nih.gov/pubmed/14717183
http://doi.org/10.1080/09593330802217732
http://www.ncbi.nlm.nih.gov/pubmed/18942579
http://doi.org/10.3390/ijerph18179066
http://www.ncbi.nlm.nih.gov/pubmed/34501655
http://doi.org/10.4186/ej.2017.21.4.11

	Introduction 
	Materials and Methods 
	Domestic Wastewater 
	Anoxic/Oxic and Oxic Membrane Bioreactors (A/O-MBR and O-MBR) 
	Analytical Methods 
	Statistical Analysis 
	Trihalomethane Formation Potential (THMFP) and Analysis 

	Results and Discussion 
	Domestic Wastewater Characteristics 
	Efficiencies of the A/O-MBR and O-MBR Systems 
	Chemical Oxygen Demand 
	Effect of Nitrification/Denitrification 
	FEEM 
	TTHMFPs 


	Conclusions 
	Patents 
	References

