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Abstract: The present work deals with the fabrication of novel poly(vinylidene fluoride) (PVDF)/Multi-
wall Carbon Nanotubes (MWCNT)/Polypyrrole (PPy) ultrafiltration membrane by phase inversion
technique for the removal of crude oil from refinery wastewater. In situ polymerization of pyrrole
with different concentrations of MWCNT ranging from 0.025 wt.% to 0.3 wt.% in PVDF prepared
solutions. Measurement of permeability, porosity, contact angle, tensile strength, zeta potential,
rejection studies and morphological characterization by scanning electron microscopy (SEM) were
conducted. The results showed that membrane with (0.05% MWCNT) concentration had the highest
permeability flux (850 LMH/bar), about 17 folds improvement of permeability compared to pristine
PVDF membrane. Moreover, membrane rejection of crude oil reached about 99.9%. The excellent
performance of this nanocomposite membrane suggests that novel PVDF modification with polypyr-
role had a considerable effect on permeability with high potential for use in the treatment of oily
wastewater in the refinery industry.

Keywords: ultrafiltration; membrane; PVDF; polypyrrole; crude oil; wastewater

1. Introduction

A credible energy supply influences the new lifestyle. Fossil fuel has been considered
the most compatible energy source among the various energy sources for centuries; it is even
considered the fundamental energy source [1]. The petroleum processing industry produces
a considerable amount of water at different stages, e.g., thermal cracking, distillation, and
catalytic cracking, producing a large amount of wastewater.Petroleum industry wastewater
contains a variety of organic and inorganic pollutants, such as sulfides, phenol, heavy
metals, hydrocarbons, etc. [2,3]. The amount of wastewater produced from the petroleum
refining process is estimated to be about 1.6 times that of processed crude oil [4]. Crude
oil wastewater contains various percentages of hydrocarbons, phenols, and dissolved
minerals [5] depending on the origin and storage conditions, affecting crude oil sludge
composition. Generally, it comprises about 10–30 wt.% hydrocarbons, 5–20 wt.% solids
and 50–85 wt.% water [6,7]. In crude oil wastewater, the hydrocarbons (benzene, toluene,
ethylbenzene, and xylenes), Phenols, and dissolved minerals are carcinogenic and toxic to
human and aquatic life [8,9].

In Jordan Petroleum Refinery, different oily fluids are collected in substantial waste
pools with estimated flow rates of more than 15 m3/day. Considering that Jordan is an
arid/semi-arid country, treating these large wastewater quantities using emerging clean
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technologies like membranes is mandatory to recycle and reuse produced water and avoid
its harmful effects on the environment and human health.

Several membrane technologies, mainly pressure-driven membrane separation pro-
cesses, have been applied for petroleum wastewater treatment, including microfiltration
(MF) [10], ultrafiltration (UF) [11,12], and nanofiltration (NF) [13].

A perfectly designed membrane with excellent permeability and porosity will inher-
ently improve flux and better economics [14,15]. Membranes pore size and materials will
depend on the application for which it would be used [14].

In contrast to other membrane processes, ultrafiltration (UF) has a wide range of uses,
including protein filtration, bacterial elimination, food product fractionation, oil-water
separation, and others [16]. Specialized polymers like poly(vinylidene fluoride) (PVDF),
poly(ether sulfone) (PES), polyacrylonitrile (PAN), and polysulfone (PS) are the cornerstone
materials in the UF membrane fabrication owing to their good performances and unique
properties such as chemical stability, high efficiency, distinguished mechanical properties
and heat resistance [17,18]. However, the drawbacks of UF membranes fabricated from
these materials include poor surface wettability, which results in severe membrane fouling
resulting from solute–hydrophobic membrane interactions [19].

Crozes et al. [20], who studied the effect of membrane hydrophilicity and organic
compound polarity on membrane fouling, concluded that hydrophobic polymers appeared
to be the fundamental foulant material. Therefore, membrane surface modification using
hydrophilic additives employing physical adsorption, polymer blend [21], and plasma
modification [22] were carried out. The hydrophilic surface modifications aim to fabricate
high flux membranes with antifouling properties. Unfortunately, surface modifications
might adversely affect the membrane structure, causing weak mechanical properties and
inclined rejection [23]. Asatekin and Mayes [11] reported using ultrafiltration (UF) mem-
branes for refinery wastewater treatment, and results showed ultimately low chemical
oxygen demand (COD) removal rates, between 41 and 44%, attributed to high dissolved
organics contents. However, ongoing research improves UF membrane performance by
incorporating nanomaterials in the membrane fabrication process [23].

Incorporating nanomaterials, which can exhibit favorable properties that differ from
bare polymers, is a promising new trend in membrane fabrication technology [24]. Nanocom-
posite membranes are evolved by using engineered nanoparticles into porous mem-
branes [25] or blending them with polymeric membranes [26]. Membranes were improved
using silica, graphite, zeolite, metal oxide nanoparticles, or carbon nanotubes to enhance
the membrane flux and antifouling properties [27–29]. Among various nanoparticles, car-
bon nanotubes (CNTs) have attracted considerable attention since their discovery by Iijima
in 1991. CNTs are tiny graphite cylinders closed at the end by half C60 with single or
multiple walls (SWCNT or MWCNT) [30]. CNTs have a diameter of less than 100 nm. They
have distinguished characteristics, such as distinctive mechanical properties (flexibility
and stiffness) and high electrical and thermal conductivities [31], with remarkable water
treatment efficiency in removal of various chemical and biological contaminants [31,32].
The CNTs dispersion capacity in a variety of polymer matrices such as PVDF, PS, PES, PAN,
Polyamide, and Cellulose Acetate (CA) has attracted a lot of attention [33]. When used as
an adsorbent media, CNT can remove a wide spectrum of contaminants, including heavy
metals, metalloids, and organics [34–37]. The excellent adsorbent properties are assigned
to the increased specific surface area [37], the mesoporous (super-nanoporous) structure
and the fewer CNTs surface negative charge in addition to the effective carbon nanotube
and aromatic compounds π-π stacking interaction [38]. These outstanding properties made
them a convenient choice for polymer composites modification.

Conducting polymers have different applications, from passive coatings to effective
materials with functional electronic, energy storage, and mechanical properties [39]. They
can be compiled using oxidation or reduction reaction (doping process) [40]. Among
different conducting polymers, polypyrrole (PPy) has attracted researchers’ attention as an
adsorbent for its outstanding properties such as high conductivity, non-toxicity, easy prepa-
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ration methods, electrical and thermal stability, strong mechanical properties, availability
at an industrial scale, and remarkable capacity for heavy metals adsorption from water
effluents [41–44]. Thus, these remarkable properties granted polypyrrole many prospective
applications in electronic and electrochromic devices, supercapacitors, corrosion protection,
and fabrication of membranes with good separation and antifouling properties [45–47].

This work fabricated a novel (MWCNT/PPy/PVDF) ultrafiltration membrane to
treat crude oil wastewater. A simple in-situ polymerization method was used to fabricate
polypyrrole-coated MWCNT using Ammonium peroxydisulfate (APS) as an oxidant. The
modified membranes showed enhanced water permeability and antifouling properties.

2. Experimental Work (Materials and Methods)
2.1. Materials

PVDF (Kynar 460) from Arkema has a broad molecular weight distribution with
density of 1760 kg/m3 (ISO 1183, and melt volume flow rate of 5.6 cm3/10 min (ISO1133).
Multi-walled Carbon nanotube (MWCNT, 98% carbon basis) from Aldrich (St. Louis, MO,
USA), were used as received, Pyrrole (≥98%, FCC, FG) and Ammonium peroxydisulfate
(APS) from Sigma Aldrich (St. Louis, MO, USA). N,N-Dimethylformamide (DMF) from
Merck (Kenilworth, NJ, USA), Crude oil from Jordan Petroleum Refinery (Zarqa, Jordan).

2.2. Membrane Preparation

a. Synthesis of MWCNT/polypyrrole (PPy)

Membrane preparation started with the synthesis of MWCNT/PPy by in-situ oxidative
polymerization of pyrrole on MWCNT; please note Figure 1. MWCNTs were dispersed by
ultrasonication in DMF solvent using a probe sonicator (200 W) for 30 min, then pyrrole and
APS were added to the mixture, and the solution was stirred for 48 h at room temperature.
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b. Preparation of MWCNT/PPy/PVDF ultrafiltration membrane

Finally, 11.67 wt.% PVDF was added to the MWCNT/PPy composite solution and
stirred for 24 h at 70 ◦C. The resultant casting solution was degassed by ultrasonication for
one hour, then cast on a glass plate using a knife blade applicator with 250 µm thickness.
Then, the casted film was immersed in a water bath to form a porous membrane at room
temperature. Table 1 shows the different compositions of modified fabricated membrane
casting solutions.
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Table 1. Compositions of different fabricated membranes.

Membrane Type MWCNT (%) PVDF (%) Pyrrole (%)

PVDF 0 11.67 0

PP 0 11.67 3.67

PPC-0.025 0.025 11.67 3.67

PPC-0.05 0.05 11.67 3.67

PPC-0.1 0.1 11.67 3.67

PPC-0.3 0.3 11.67 3.67

PC 0.3 11.67 0

2.3. Emulsion Preparation

Crude oil (0.5 mL) and 0.5 mL of Polyoxyethylene-80 surfactant were diluted in 1 L
distilled water to ensure homogeneity, and the mixture was stirred vigorously for 48 h.
The resultant solution was tested using a UV-Vis spectrophotometer (Varian Cary 100,
Varian medical systems, Crawley, UK), and the maximum wavelength was obtained at
358 nm. Moreover, the droplet size distribution was measured using ZetasizerXNem
Tempus Malvern (Malvern, Uk), and the size distribution showed a maximum (96.1%)
intensity at 400.1 nm; the measured oil properties are shown in Table 2.

Table 2. Crude oil properties.

Crude Oil Properties Droplet Size (nm) Viscosity (cP) pH Zeta Potential
(mV)

400.1 0.8872 8.2 −15

2.4. Membrane Characterization
2.4.1. Chemical Composition and Characterization of the Modified Membrane

Energy dispersive spectroscopy (EDS) was performed using A Phenom XL G2 scan-
ning electron microscope (SEM, Thermo Fisher Scientific, Waltham, MA, USA) coupled
with AXS EDS system. Furthermore, Fourier-transformation infrared spectroscopy (FTIR
spectra, Model PerkinElmer, Waltham, MA, USA) was used to investigate the incorporation
of PPy on MWCNT in modified membranes.

2.4.2. Membrane Hydrophilicity (Contact Angle) and Zeta Potential

Membrane hydrophilicity was measured using (2.5–5) µL sessile droplets of deionized
water by Theta Lite, Biolin Scientific (Stockholm, Sweden). (5–10) contact angle measure-
ments were done at different points of the membrane sample and then averaged.

The surface charge of the membrane was measured using the potential streaming
technique DLS (Zetatrac, Westborough, MA, USA). Experiments were conducted using
deionized water at room temperature.

2.4.3. Membrane Morphology and Structure

Images were taken for the fabricated membranes surfaces and cross-sections of the
modified membranes using a Field Emission Scanning Electron Microscope (SEM, Quanta
FEG 450, FEI company, Hillsboro, OR, USA). The samples were gold sputter-coated before
the examination.

2.4.4. Porosity and Average Pore Size Calculation

Membrane porosity was determined by using the gravimetric method. Membrane
samples were initially immersed in water and then dried in an oven at 70 ◦C; Mass loss of
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the wet membrane after drying was measured. Membrane porosity (ε) was calculated by
the equation below (1) [48]:

ε =
(WW − Wd)/ρwater

(WW − Wd)/ρwater + Wd/ρp
(1)

where WW: is the wet membrane weight in (g), Wd : is the dry membrane weight (g), ρwater:
is the pure water density which is equal (0.998 g·cm−3) and ρp: is the polymer density (as
the inorganic content in the membrane matrix was small and ρp was approximate to ρPVDF

Which is equal to 1.765 g·cm−3).
The mean pore size of the modified membranes was measured using the N2 adsorption-

desorption isotherm (Brunauer-Emmett-Teller (BET)) method analyzer (Autosorb IQ, Quan-
tachrome Instruments version 5.21, Boynton Beach, FL, USA) [49].

2.4.5. Permeation Performance

Pure water flux and crude oil rejection were measured using high-pressure stirred cell
(HP 4750, Sterlitech, Auburn, AL, USA) equipment. All experiments were carried out at
room temperature and under the feed pressure of 0.2 MPa. The concentrations of crude oil
in the permeation and feed solution were determined by UV- spectrophotometer (Varian
Cary 100) at 358 nm. The flux and rejection were calculated using Formulaes (2) and (3),
respectively:

Jp =
V

A × ∆t
(2)

R =

(
1 −

Cp

CF

)
× 100% (3)

where JP was the membrane flux for pure water (L·m−2·h−1), V was the volume of permeate
pure water (L), A was the membrane effective surface area (=14.6 cm2), and ∆t was the
time of permeation (hr). R was the rejection of crude oil (%), and CP and CF were the
concentrations of crude oil in the permeation and feed solution (mg/L), respectively.

2.4.6. Antifouling Performance

Membrane fouling is the material aggregation on the membrane surface or within its
structure. Membrane fouling is one most important factors that determine membrane effi-
ciency. Crude oil was used to assess the antifouling properties of the modified membranes.
The antifouling properties of the fabricated membranes were studied as follows: initially,
the permeation with pure water was done; followed by rejection with crude oil; and then
the membrane was cleaned by shaking with (0.1 M) NaOH for one hour, then shaking with
pure water for half-hour, after that permeation of pure water was done again. The flux
recovery (FRw) and total fouling ratio (Rt) were calculated using the following equations:

FRw(%) =

(
Jpw2

Jpw1

)
× 100 (4)

Rt(%) =

(
1 −

Hp

Fw1

)
× 100 (5)

where Jpw1 = water permeability, Jpw2 = water permeability of the cleaned membrane,
Hp = permeability of crude oil solution.

2.4.7. Tensile Strength

Membrane tensile strength and elongation-at-break were measured using Electrome-
chanical Universal Tensile (BMT-E Series, BESMAK, Kazan, Turkey). The tensile rate was
5 mm/min. For each sample, three runs were done and then averaged.
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3. Results and Discussion
3.1. EDS and FTIR Spectroscopy

The elemental analysis (EDS) diagram for the modified membrane is presented in
Figure 2, and the results are summarized in Table 3. They show that carbon (56%), Flu-
orine (31%), and oxygen (8.8%) are the main composite chemical elements originating
from the PVDF and MWCNT, with a low nitrogen percentage (4.2%) originating from
PPy component.
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Table 3. EDS elemental analysis for modified membranes.

Element Weight Conc. (%)

C 56.00
N 4.20
O 8.80
F 31.00

The incorporation of MWCNT/PPy in the modified fabricated membranes was in-
vestigated using Fourier-transformation infrared spectroscopy (FTIR) of MWCNT and
PPy/MWCNT complex samples, as explained in Figure 3
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Figure 3 showed the FTIR spectra for pristine MWCNT and MWCNT/PPy complex
mixture. The MWCNT displays broadband at 2990 cm−1, allocated to the OH stretch-
ing, and a band at 1078 cm−1, assigned to C=O stretching. [47]. While MWCNT/PPy
spectrum exhibits a peak at 3338 cm−1, which is specified to the N-H hydrogen-bonded
stretching vibration [50]. The sharp 1662 cm−1 peak is assigned to C-N asymmetrical
ring stretching [51,52]. The peaks at 1506 cm−1 and 1439.7 cm−1 could be assigned to the
symmetric and antisymmetric ring stretching modes of the PPy ring [47,53]. Otherwise,
1385 and 1257 cm−1 peaks could be assigned to C-N in-plane deformation. 1090 and
866 cm−1 Peaks can be allocated to pyrrole ring C-H in-plane and out-of-plane deformation,
respectively [54].

The FTIR spectra suggested that the C-N band in the nanocomposites becomes more
robust while the N-H, C-H, and C-C bonds become weaker [55,56]. This would support the
formation of PPy and MWCNTs C-N bands and indicates that MWCNT/PPy incorporation
in the nanocomposite was successful.

3.2. Membrane Hydrophilicity and Zeta Potential

The surface wettability of the membrane is controlled by composition chemistry and
the construction geometry of the membrane surface. The hydrophilic surface of the fab-
ricated membranes can be explained by the hydrophilic nitrogen components (C-N) in
the composition of the fabricated membranes (as can be seen from the FTIR spectra re-
sults), forming the final surface wettability of the membrane [47,53,57]. Moreover, the
observed roughness structure of the produced membranes improves the surface’s wet-
tability and reduces the contact angle (CA) [58]. As shown in Figure 4, The CAs of all
PVDF/PPy/MWCNT (PPC) modified membranes are less than that of the non-modified
membrane. The pristine PVDF CA was 85◦, while MWCNT/PPy complex addition gave
80◦ for PPC-0.025 (0.025 wt.% MWCNT) membrane. It is noticed that as the MWCNT
concentration increased in the PVDF matrix, the CA further decreased to the lowest value;
thus, the highest hydrophilicity obtained was for PPC-0.3 (0.3 wt.% MWCNT) equal to 65◦,
suggesting that hydrophilicity enhancement is a result of modification with hydrophilic
MWCNT/PPy complex in the fabricated membranes.
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Figure 4. Hydrophilicity measurement for pristine and modified membranes.

This hydrophilicity improvement enhances water permeability, as discussed in the
following sections.

Zeta potential is valuable for realizing the membrane surface and the oil contact inter-
actions. Zeta potential substantially affects both membrane rejection ability and fouling
behavior. In this experiment, the zeta potential was studied at pH 8.2. The zeta potential
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measurements Figure 5 showed that a pristine surface has a negative charge equal to
−21.9 mV. When MWCNT alone was added to the PVDF membrane, the zeta potential in-
creased to −16.1 mV. For PVDF/MWCNT/PPy modified membranes, a positively charged
membrane surface equal to +15.8 mV was obtained. The PPy and MWCNT interaction
are by a dopant effect, a distinctive chemical oxidation process converting polymers to
conductive form [59].
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Figure 5. Zeta potential for modified membranes.

In the chemical oxidation of the MWCNT/PPy nanocomposite during membrane
fabrication, PPy-π electrons in the conjugated bond are removed, so benzenoid structure
local relaxation into a quinoid form occurs and consequently creating a radical pair leading
to the appearance of a positive charge [60–62]. Thus, the positively charged MWCNT/PPy
transforms the negatively charged pristine PVDF membrane surface into a positively
charged one. As presented in Figure 5, the zeta potential of the modified membrane’s
surface became positive. Moreover, the crude oil charge was measured to be −15 mV; thus,
the difference in charge between oil and modified membranes enhanced the rejection of oil,
as shown in the rejection section.

3.3. Membrane Morphology and Structure

The SEM explored the morphological characteristic of the MWCNT/PPy nanocom-
posites. It was evident that PPy was grown and coating the MWCNTs, but at different
thicknesses (Figure 6a,b). As the amounts of MWCNTs are less, thicker layers of PPy can
be observed, while higher amounts of MWCNTs showed thinner layers of PPy. Thus,
when the MWCNT percentage increased for PPC-0.3, the PPy layer thicknesses decreased,
while for less MWCNT at PPC-0.05, the layer of PPy on MWCNT was increased; thus,
more distribution of PPy amount existed on the surface of MWCNTs, similar results were
reported by Baghdadi et al. [63].

Cross-sectional and membrane surface images of pristine, PP, PPC-0.05 and PPC-
0.3 fabricated membranes are seen in Figure 7A–D. Results presented that the modified
membranes displayed surface pore sizes as well as finger-like projections larger than
pristine PVDF membranes, which is responsible for improved water permeability of the
modified fabricated membranes; moreover, adding PPy increases surface roughness as
presented in the membrane’s top surfaces because of the particles formed and aggregate on
the membrane surface Figure 7A–D.
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Figure 6. SEM images of MWCNTs/PPy nanocomposite: (a) PPC-0.3, (b) PPC-0.05.

MWCNT/PPy/PVDF modified membrane’s cross-sectional structure showed large
cavities and voids with asymmetrical finger-like projections. Furthermore, these mem-
branes also formed smaller top layer pores, resulting in higher water flux and oil rejec-
tion [64].

The mechanism behind the formation of a highly porous layer with bigger pores in
these membranes is likely related to the incorporation of the hydrophilic MWCNT/PPy
complex, which in turn augmented the rate of diffusion between the solvent (DMF) and
non-solvent (water) [64]. The width of the finger-like projections is related to an increase in
the concentration of MWCNT/PPy, as can be seen in Figure 7C for PPC-0.05. On the other
hand, with increasing concentration, the solution viscosity further increased, leading to
smaller pore size and fewer finger-like projections [59] as a result of delayed diffusion rate.
These results are consolidated by various research reported in the literature [48,59,65].
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3.4. Porosity and Average Pore Size

The consequence of MWCNT/PPy matrix addition on the pore size and porosity for
the modified membranes is shown in Table 4; increased pore sizes and porosity are noted
in the modified membranes compared to pristine PVDF. Please note Table 4; MWCNT
addition leads to improved porosity of the modified membranes by about 11% for PPC-0.025
(0.025 wt.% MWCNT) membrane compared to non-modified PVDF. Increasing MWCNT
to 0.1% in PPC-0.1 gave the maximum porosity of 90%. The porosity increasing is due to
nanocomposite inclusion in the modified membrane.

Table 4. Membranes’ top layer pore size and porosity.

Membrane Type Porosity (%)

PVDF 65.6 ± 2.8

PP 71.8 ± 3.0

PPC-0.025 81.6 ± 2.9

PPC-0.05 85.2 ± 2.0

PPC-0.1 89.9 ± 2.5

PPC-0.3 91.8± 2.0

MWCNT/PPy is a hydrophilic material that enhances the formation of a porous
membrane structure by hastening the rate of diffusion between the solvent (DMF) and
non-solvent (water), leading to an increase in porosity [59]. Furthermore, MWCNTs are ma-
terials with high surface area, thus forming macro-voids porous structures in the modified
matrix [62]. Consequently, using MWCNT/PPy nanocomposite as a modifier for PVDF
membrane could fabricate higher porosity membranes. On the contrary, the PPC-0.3 mem-
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brane showed a minute porosity decrease, which can be explained by the high MWCNT
concentration (0.3 wt.%), leading to less MWCNT uniformity and hence increased mixture
viscosity [48], which causes phase separation inhibition during membrane fabrication by
delaying the demixing process, producing a low porous membrane [59,66].

The pore volume and pore size distribution for modified membranes analyzed by
Barrett-Joyner-Halenda (BJH) method are presented in Table 5. The average pore size of
modified membranes is (7.6 to 10.4) nm and is larger than pristine PVDF. The modified
membranes pore sizes increased with MWCNT/PPy concentration increase. These results
can be due to the addition of hydrophilic MWCNT/PPy, which enhances the diffusion
rate between the solvent (DMF) and non-solvent (water), leading to the formation of a
porous layer with larger pores. With increasing the MWCNT/PPy, the average pore size
increased to reach a maximum for PPC-0.1 at 10.4 nm, compared with pristine PVDF at
3.05 nm. However, by increasing the concentration of MWCNT/PPy, the average pore
size decreased slightly to 9.2 nm; this decrease in pore size could increase casting solution
viscosity, consequently delaying the diffusion rate, leading to resultant smaller pore sizes.

Table 5. BET Pore size and Pore volume Studies.

Membrane Type Pore Size (nm) Pore Volume (cm3·g−1)

PVDF 3.05 0.00969
PPC-0.025 7.6 0.09389
PPC-0.05 8.25 0.01235
PPC-0.1 10.4 0.05991
PPC-0.3 9.2 0.01313

3.5. Mechanical Properties of Modified Membranes

Tensile strength and elongation at the point of breakage of the modified PVDF/MWCNT/PPy
membrane’s were tested. Results illustrated in Figure 8 indicated that modified membranes
have excellent mechanical properties as the tensile strength of the modified membranes
was higher than the pristine PVDF membrane. The tensile strength increment was related
to the MWCNT concentration increment in the membrane composition, these results can
be attributed to MWCNT rigidity and excellent mechanical properties, as well as suit-
ability between MWCNT/PPy and the polymer matrix. Similar results were obtained in
previous studies [48,63,67]. In contrast, in PPC-0.3 membrane showing the the highest
MWCNT concentrations, the tensile strength decreased to 0.9 MPa, this could be related to
the MWCNT aggregation due to high concentration, which accelerates membrane break;
the same results were also shown by wang et al. [67]. Results of elongation at break for
pristine and modified membranes showed mild reduction as the concentration of MWCNTs
increased from 55% for pristine PVDF to 52% for PPC-0.3), possibly related to increased
membranes rigidity and structural fragility due to MWCNT content as well as large cavities
and pores formation [58]. Consequently, according to these results it can be concluded that
MWCNT/PPy modification of the fabricated membranes comparatively enhances their
mechanical strength.
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3.6. Membranes Water Permeability and Rejection Efficiency

The water flux of various membranes is illustrated in Figures 9 and 10. The addition of
MWCNT/PPy nanocomposite to the polymer matrix has significantly improved the perfor-
mance of fabricated membranes. Please note Figure 9, which represents a comparison be-
tween 0.3 wt.% MWCNT/PVDF (PC), PVDF/PPy (PP) and 0.3 wt.% MWCNT/PPy/PVDF
(PPC-0.3) and raw PVDF membranes. The lowest flux results with 30 LMH/bar are noted
in non-modified raw PVDF due to its lower hydrophilicity and porosity as well as the
smallest average pore size relative to the modified membrane. PP membrane has a water
permeability up to 365 LMH/bar; 12 folds increase relative to raw non-modified PVDF
membrane; this high flux can be explained by the effect of PPy oligomers and nanospheres
migration in the fabrication process leading to increases in the pore sizes. Furthermore, the
fabrication procedure method plays a role as the simple blending for PC membrane prepa-
ration (without PPy) as in 0.3% MWCNT leads to a low flux (80 LMH/bar) compared to the
good result obtained using in situ polymerization method like in 0.3% MWCNT in PPC-0.3
(544.3 LMH/bar). This is likely because of poor dispersion and aggregation of MWCNT
with PVDF in PC, which gives blocked pores and low porosity in the non-modified mem-
brane. In opposition, PPC-0.3 proves to overcome aggregation with MWCNT/PPy homoge-
nous dispersion (in-situ polymerization of pyrrole on the MWCNT surfaces), giving rise to
the highest water flux results obtained from the four fabricated membranes presented below.
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Figure 10 showed the permeability for different fabricated modified membranes
(changing the presence of MWCNT). As seen in Figure 10, the addition of 0.025 wt.%
MWCNT for the PPC-0.025 membrane resulted in a water flux increase up to 641 LMH/bar,
while for PPC-0.05, MWCNT inclusion to 0.05 wt.%, leading to a maximum flux of
842 LMH/bar. Furthermore, PPC-0.1 showed a slight decrease to 726 LMH/bar for the last
two modified membranes, while for PPC-0.3, permeability decreased to 544 LMH/bar.

These flux results are compatible with the results of porosity shown before. The
larger the porosity, the less the flow resistance, enhancing the flux. Moreover, the in-
creased hydrophilicity due to the inclusion of MWCNT/PPy nanocomposite improved the
water permeability.

Moreover, MWCNT/PPy nanocomposite addition formed a porous well-developed
finger-like top layer connected to the membrane’s lower layer. Furthermore, the addition of
hydrophilic MWCNT/PPy increases the diffusion rate between the solvent (DMF) and non-
solvent (water), enhancing the formation of a porous layer and increasing the hydrophilicity
shown before. Thus, water molecules favorably adsorbed inside the membrane pore
with minimum interactions facilitating more effortless flow through the membrane and
increasing water flux as presented in the modified membranes [48,64,68]. Moreover, the
results shown in Table 4 illustrated that the porosity and average pore size increased
with MWCNT concentration increment, and hence water flux increased as stated in the
Hagen Poiseulle equation [67]. On the other hand, with more MWCNT concentration
addition like in 0.3 wt.% MWCNT for PPC-0.3 membranes, a denser top layer with smaller
pores, was noted due to the casting solution’s high viscosity, reducing the solvent and
non-solvent exchange [59]. The optimum concentration of added MWCNT that gave the
highest membrane permeability results is 0.05 wt.% for PPC-0.05. Please see (Figure 10).

Crude oil rejection results in Table 6 showed a higher rejection efficiency of more
than 99% for all modified membranes; Thus, PVDF/MWCNT/PPy modified membranes
effectively separated water from crude oil. Photographs of the feed and permeate (Figure 11)
showed clear filtrate compared to feed wastewater, with efficacy reaching 99.5% for all
modified membranes.
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Table 6. Crude oil rejection by permeation cell.

Membrane Crude Oil Rejection (%)

PVDF 90
PPC-0.025 99.5
PPC-0.05 99.8
PPC-0.1 99.9
PPC-0.3 99.9
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Figure 11. Feed and filtrate produced from a rejection of crude oil/water mixture.

The separation process of crude oil wastewater using a membrane is a sieving pro-
cess that relies on size exclusion, membrane surface hydrophilicity, and surface charges
(electrostatic interaction) [69]. For the sieving effect, larger-sized oil droplets are blocked
by smaller membrane pores; as noticed previously, the average membrane pores size is
between (7.6 to 10.4) nm, while the measured oil droplets size was about 400 nm.

The hydrophilic membrane characteristic is more effective for treating oily wastewater
as the membrane allows water molecules to pass through and blocks oil droplets [70].
Moreover, the surface charge of the membrane is a vital factor in oil adsorption on the
surface of the membrane due to the electrostatic interaction between the charged membrane
surface and oil wastewater. As crude oil wastewater is negatively charged molecules (the
measured zeta potential is -15 mV), an electrostatic interaction occurs between oil and the
positively charged membrane surface, as shown previously in Figure 5 (+15.8 mV), causing
oil molecules adsorption leading to high oil removal rate by the modified membranes [71].

A comparison between the results of this study and different studies in the literature
that used PVDF membranes for oil wastewater removal is summarized in the following
Table 7.

Table 7. Comparison of different types of modified PVDF membrane used for oil removal with the
current study.

Modified Membrane Oil Rejection
(%)

Flux Performance
(L/m2 h) Ref.

PVDF/PC 97.8% 22.11 [72]
PVDF/SiO2 98.99% 93.86 [73]

PVDF/Al2O3/PVP/sodium
hexaphosphate 93.55% 138.53 [74]

PVDF/SiO2/PVP 94.5% 198 [75]
PVDF/MWCNT 99.89% 683.173 [13]

PVDF/PPy/MWCNT 99.9% 850 Current study

3.7. Fouling and Cleaning

During the crude oil wastewater filtration, oil droplets accumulated on the surfaces
of the fabricated membranes, leading to a severe fouling and a severe drop in membrane
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flux [45]; as shown in Figure 12, crude oil significantly has low flux compared to pure water
flux. Filtration test cycles were run for all modified membranes for about 210 min. Please
see Figure 12.
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Figure 12. Fouling behavior and flux recovery for pristine and modified PVDF membrane: first
one-hour for permeation with pure water, then rejection with crude oil, and finally, cleaning the
membrane with 0.1M NaOH and one-hour permeation of pure water.

Results showed that using caustic soda as a chemical-cleaning method removed the oil
layer and restored the flux to its original values for the produced modified membranes in
contrast to pure PVDF, as shown in Figure 12. These results are attributed to the enhanced
properties of MWCNT/PPy, which increased the membrane surface hydrophilicity and
increased internal pores [46,76]. Moreover, the efficient cleaning method of the membrane
surfaces uses caustic soda (NaOH). Caustic removes oil by hydrolysis and solubilization
effect [47].

Filtration and rejection test cycles were conducted for PPC-0.05 membrane for about
300 min, as shown in Figure 13; oil rejection efficiency was measured every 60 min, and
the membrane was washed with caustic soda every 60 min, and then the membrane was
reused. Results showed a slight flux decline of the modified membrane with high oil
rejection efficiency, almost reaching up to 99%, suggesting high stability of the modified
membranes [48].

The suitable cleaning method and the flux recovery test for oil were conducted.
Figure 14 showed flux recovery and the total fouling ratio results for the produced fabri-
cated membranes.

As revealed in Figure 14, flux recovery (FRw) for the fabricated membranes after
cleaning with caustic soda is between 88–93%, which is an excellent result as the crude oil
caused considerable fouling. For total fouling ratio (Rt) was found to be between (80–89)%,
as presented in Figure 14. This high recovery indicated the simple cleanability of the
modified fabricated membranes compared to pure PVDF.

Although oil wastewater often causes sharp flux decline and significant fouling. It can
be easily recovered using caustic soda.
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Figure 13. Oil Flux and rejection recycles for PPC-0.05 membrane versus time in Four filtration cycles
after caustic soda cleaning.
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4. Conclusions

A novel ultrafiltration (MWCNT/PPy/PVDF) membrane with enhanced water per-
meability, oil rejection, and antifouling properties was prepared by pyrrole in-situ poly-
merization. The addition of MWCNT/PPy to the PVDF polymer enhanced the membrane
properties. Thus the new modified membranes showed higher hydrophilicity, porosity,
and permeability. Hydrophilicity results showed a decrease in contact angle from 88 for
pristine PVDF to 69 for PPC-0.1. PPC-0.05 shows super permeability with flux up to
850 LMH/bar; (about 20 times increase more than pristine PVDF). Furthermore, the Inclu-
sion of MWCNT/PPy gave a high crude oil rejection, reaching 99.9% due to the electrostatic
interaction and the sieving properties of MWCNT/PPy/PVDF modified membranes. The
flux recovery increased from 50% for PVDF to 89.5% for PPC-0.1. MWCNT/PPy com-
plex significantly enhanced the fabricated membranes’ separation and water permeability.
In-situ polymerization technique leads to excellent dispersion of pyrrole and MWCNT
in MWCNT/PPy complex. It is an excellent modifier for ultrafiltration membranes for
future applications.
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