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Abstract: One of the alternative sources to tackle the problem of water shortage is the use of reclaimed
water from wastewater treatment plants for irrigation purposes. However, when the wastewater has
a high conductivity value, it becomes unusable for crop irrigation and needs a more specific treatment.
In this work, recycled nanofiltration (rNF) membranes and anion-exchange membranes (rAEMs)
obtained from end-of-life RO membranes were validated to evaluate their application capability in
saline wastewater treatment. The use of recycled membranes may represent an advantage due to their
lower cost and reduced environmental impact associated with their production, which integrates
membrane-based technology into a circular economy model. Both recycled membranes were tested
in crossflow filtration and electrodialysis (ED) systems. The results of the rNF membrane showed a
high selective rejection of divalent ions (SO4

2− (>96%) and Ca2+ and Mg2+ (>93%)). In the case of the
ED process, the comparison between rAEMs and commercial membranes showed an appropriate
demineralization rate without compromising the power consumption. Finally, the quality of both
system effluents was suitable for irrigation, which was compared to the WHO guideline and validated
by the 7-week lettuce crop study.

Keywords: circular economy; membrane recycling; nanofiltration membranes; nanofiltration;
anion-exchange membranes; electrodialysis; wastewater treatment

1. Introduction

Water scarcity is a big problem because the demand for the available water exceeds
the conventional water resources due to population growth, climate changes, and ongoing
industrialization. Under this context, the use of reclaimed water from wastewater treatment
plants (WWTPs) as a source of irrigation water is an important strategy to ensure water
security in many regions experiencing water scarcity issues [1]. The advantage of water
reuse is directly connected to the avoidance of using drinking water for irrigation, reducing
the over-extraction of surface and groundwater, and decreasing its dependence on climate
change by using sustainable water resources [2]. However, it is estimated that around 5%
of the total worldwide influent of WWTPs comprises saline and hypersaline wastewater
quality [3]. In agriculture and water studies, electrical conductivity (EC) is used as an
indicator of soil and water salinity. The EC values above 3000 µScm−1 are considered high
values in water for irrigation purposes, representing a high risk for the yield of crops and
for the structure and permeability of the soil [4]. Very high values of EC (hardness of water)
in WWTPS effluents are commonly provided by various sources such as seawater intrusion,
aquaculture, agriculture, and saline wastewater dischargement of various industries (i.e.,
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petroleum and gas extraction, leather manufacturing) [5]. If water with high conductivity
is applied to soil, it could have negative consequences such as reduced plant productivity,
crop failure, and in extreme cases, death of vegetation [6,7]. Therefore, reclaimed water for
agriculture, particularly for irrigation, should obey water quality guidelines and requires
the development of a proper water management strategy. Consequently, to improve the
quality of the WWTP secondary-treated wastewater effluents, advanced technologies must
be applied.

Among the different technologies, membrane-based technologies are especially at-
tractive for saline wastewater regeneration due to their intrinsic desalination capability,
flexibility, and high permeate quality. Nor Naimah et al. [5] summarized the different ap-
plications of membrane-based processes in saline wastewater treatment. Within membrane
processes operated under pressure-driven mode, there is microfiltration (MF), ultrafiltration
(UF), nanofiltration (NF), and reverse osmosis (RO). MF and UF membranes are normally
used to remove high-molecular-weight compounds (e.g., particulate matter and bacteria)
from the water as the sole treatment process or pre-treatment for other processes due to
the larger pore size [8,9], which implies that they fail to remove dissolved ions. On the
contrary, NF and RO membranes with a tighter pore size are compelling for the separation
of inorganic salts and small organic molecules. RO has been known for its capability
to reject almost all impurities in the water, which leads to the use of RO to desalinate
seawater and brackish water to produce drinking water. Compared to RO, the property
of the charged surface of NF allows reducing hazardous electroconductivity values in
wastewater treatment by exerting electrostatic repulsion toward multivalent ions [10].
Those characteristics of NF membranes have led to the implementation of NF as a tertiary
treatment for olive oil mill wastewater, for removing dyes in the textile industry, and as
a treatment to recover useful resources from the wastewater (e.g., fractional process of
humic substances, sulphates from tannery wastewater) [5]. Nor Naimah et al. [5] also high-
lighted electrodialysis (ED) as another promising membrane-based separation that can be
used in saline wastewater treatment. The ED technology is essentially different compared
with pressure-driven processes since it is an electrically driven membrane process, where
cation- and anion-exchange membranes are alternately placed in a stack, achieving the
separation of cations and anions, respectively [11]. However, its application in wastewater
treatment such as oil and gas effluent, leachate, textile, and tannery wastewater has also
been reported.

Despite the promising performance of membrane technologies, they still deal with
drawbacks such as fouling issues and limited lifespan, which increase not only the opera-
tional cost of the technologies but also the generation of waste sources. In this regard, the
use of recycled membranes may represent an advantage due to their lower cost and the
reduced environmental impact associated with their production. In this sense, membrane
technology could be integrated into a circular economy model, in concordance with the
European Green Deal [12] and the priority order of waste management (prevention, reuse,
recycling, recovery, and disposal) regulated in the European Directive 2008/98/EC.

An innovative approach in membrane recycling was proposed since the introduction
of the concept of transformation of end-of-life membranes into ultrafiltration membrane
in 2002 [13]. Different studies have given a second life to discarded RO membranes by
the transformation of spiral wound module configuration into recycled NF- and UF-like
membranes [14–16]. Those recycled UF membranes were tested to treat wastewater [14] and
gray water reclamation [17], while recycled NF membranes were tested for brackish water
treatment [18]. In addition, other studies proposed the deconstruction of the spiral wound
configuration to enable the individual management and valorization of the membranes
and other plastic components of the RO module (e.g., polypropylene feed spacers) [19].
Under this last approach, anion-exchange membranes (AEMs) have been prepared by
upcycling discarded RO membranes and have been validated as proof of concept in the
ED process [20,21]. In that sense, the technical viability of the recycled AEM was shown
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to be viable in brackish water desalination experiments with a synthetic solution of NaCl,
obtaining 84.5% of salt removal [20].

Even though there is a recognized potentiality of the recycled membranes, it is still
required to investigate whether the recycled membranes have overall performance char-
acteristics and application capabilities comparable with the performance of commercial
membranes. In addition, wastewater regeneration is perfectly integrated within the circular
economy definition, and hence, it is in very good alignment with the membrane recycling
approach. Therefore, the present work aimed to make one further step in evaluating
the implementation of recycled membranes previously developed by our research group
(i.e., recycled NF membrane and recycled AEM) in NF and ED processes for saline urban
wastewater (UWW) remediation to obtain water for crop irrigation. The quality of both
system effluents was evaluated by comparing the quality of the water reused for irriga-
tion, which is based on the guideline of the World Health Organization (WHO) [2]. To
further validate the quality of the effluents, the obtained regenerated waters using recycled
membranes were studied for the first time for lettuce cultivation.

2. Materials and Methods
2.1. Wastewater Sample

The feed used in this work was synthetic saline wastewater. The recipe was prepared
based on the data analysis from an urban WWTP on the Levante coast in Spain, which
confronted a salinity intrusion issue. The real UWW samples were collected every month
over three years from the secondary clarifier tank of the plant, where wastewater is bio-
logically treated by the conventional activated sludge. The UWW in this study contained
Cl− (1220 mg L−1), NO3

− (57.22 mg L−1), SO4
2− (263 mg L−1), Na+ (694 mg L−1), K+

(40 mg L−1), Ca2+ (204 mg L−1), and Mg2+ (99.9 mg L−1) with a pH of 7.16–7.85 and
electrical conductivity (EC) of 4830–5237 µS cm−1.

2.2. Chemical Reagents

Sodium hypochlorite (NaClO, 14%), sodium hydrogen phosphate (NaH2PO4), sodium
chloride (NaCl), calcium chloride dihydrate (CaCl2·2H2O), magnesium sulfate heptahy-
drate (MgSO4·7H2O), sodium hydrogen carbonate (NaHCO3), potassium nitrate (KNO3),
sodium nitrate (NaNO3), calcium carbonate (CaCO3), magnesium chloride hexahydrate
(MgCl2·6H2O), potassium sulfate (K2SO4), sodium sulfate (Na2SO4), calcium sulfate di-
hydrate (CaSO4·2H2O), boric acid (H3BO3, 0.5%), hydrogen peroxide (H2O2, 30%), and
chloride acid (HCl, 0.1 M) were purchased from Scharlab S.L., Barcelona, Spain. The ul-
trapure water (Milli-Q) used in the experiments was obtained from Millipore, Molsheim,
France, equipment (conductivity less than 0.055 µS cm−1).

Polyvinyl chloride (PVC, Mw 112,000 g mol−1) was supplied by ATOCHEM, Madrid,
Spain. Tetrahydrofuran (THF) was purchased from Scharlab S.L. Amberlite® IRA-402
(Cl− form, total exchange capacity ≥ 1.0 mol L−1) was supplied by Merck Life Science,
Darmstadt, Germany, S.L.U.

2.3. Preparation of Membranes

Following the protocols previously reported in [19,21], recycled nanofiltration mem-
branes (rNF) and recycled anion-exchange membranes (rAEMs) were prepared [15,20].
For this purpose, the membrane coupons (~315 cm2) were extracted from discarded 8′ ′

diameter RO membrane spiral wound module (TM720-400, Toray Industries, Inc., Osaka,
Japan) by membrane autopsy explained elsewhere [15]. Then, the passive transformation
protocol was followed [15] at different exposure doses (detailed below) to obtain rNF and
recycled ultrafiltration (rUF) membranes (see Figure 1).
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Figure 1. Schematic representation of membrane preparations (rNF and rAEM membranes). PA,
polyamide; PSF, polysulfone; PET, polyester.

The oxidizing agent for membrane transformation was NaClO (14%), and the free
chlorine concentration was analyzed using a Pharo 100 Spectroquant spectrophotometer
before membrane exposure. The feed and permeate spacers from the end-of-life RO module
were also reused for the NF and ED processes, as is specified in Sections 2.4.1 and 2.4.2.

2.3.1. Recycled Nanofiltration Membranes

The rNF membrane transformation was conducted using an exposure dose of 8000 ppm
h of NaClO solution at room temperature (~21 ◦C). This exposure dose ensured the total
elimination of the fouling and the partial elimination of the polyamide thin film layer
of the discarded RO (Figure 1), as it has been widely investigated previously by our re-
search group [15]. To ensure partial removal of the polyamide layer (PA) and check the
achievement of rNF membrane properties, attenuate total reflectance Fourier transform in-
frared (ATR-FTIR) spectroscopy was used (Perkin-Elmer RX1 spectrometer) (Perkin-Elmer,
Waltham, MA, USA) (Figure S1), and some characterizations tests were carried out (see the
Supplementary file, Section S1).

2.3.2. Recycled Anion-Exchange Membranes

The preparation of the rAEM was conducted following the procedure previously
reported by Lejarazu-Larrañaga et al. [20]. Briefly, the first step was to obtain the rUF mem-
branes for their use as mechanical support. The transformation into rUF membranes was
conducted with an exposure dose of 500,000 ppm h NaClO solution at room temperature
(~21 ◦C). It was verified that the thin film PA layer was completely removed by employing
the ATR-FTIR technique (Figure S1). The polymeric mixture employed was prepared
using the following chemicals: (i) PVC as a polymer blinder, (ii) THF as the solvent, and
(iii) Amberlite® IRA-402 as anion-exchange resin. Then, the membranes were prepared
using a casting knife and extending an 800 µm thick polymeric mixture on the surface of the
rUF membrane. Subsequently, the solvent was evaporated for 60 min at room temperature,
and the membranes were finally immersed in a water bath at 20 ◦C. The performance of the
rAEM was compared with a commercial AEM, in this case, Ralex® AMH-PES from Mega
a.s., Straz Pod Ralskem, Czech Republic. This membrane (Ralex® AMH-PES) was selected
as a reference as long as it had a heterogeneous structure, like the prepared rAEM, which
included conducting and non-conducting regions [22]. Indeed, the type of the structure
(heterogenous membrane) of the prepared membrane was observed by SEM and compared
with a heterogenous Ralex® AHM-PES membrane, which was reported previously and can
be found in [20].
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2.4. Membrane Performance in UWW Treatment
2.4.1. Nanofiltration Experiments

Crossflow flat-sheet membrane system (from IBERLACT S.L., Madrid, Spain) used to
perform the NF tests for the filtration of the synthetic UWW is represented in Figure 2a.
The system has a high-pressure pump, a 25 L feed reservoir, and a tubular heat exchanger
with a temperature controller. The NF membrane with an effective membrane filtration
surface of 84 cm2 was placed into a flat-sheet stainless steel RO test cell, arranging the
permeate and feed spacers from the discarded RO module in the same position as in the
original module. The UWW feed and permeate conductivity were measured every 10 min
as described in Section 2.6.
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Figure 2. Diagram of (a) NF system (T, temperature; EC, electric conductivity; P, pressure) and (b) ED
system (C, cation-exchange membranes; A, anion-exchange membranes).

For the NF assays (based on recycled membranes), the coupon was compacted with a
total UWW feed volume of 5 L, a flow rate of 3.9 L min−1, a temperature of 25 ◦C, and 10 bar
transmembrane pressure (TMP). The permeate samples were returned to the feed tank to
hold the feed solute concentration. Then, when the steady state was reached (after the
first 60 min), feed and permeate samples were taken every 10 min for analysis. Individual
ion concentration was measured as it is described in Section 2.6. The permeance of the
membrane (P, L m−2 h−1 bar−1) was calculated from the solution flux and the applied
pressure [23].

P =
(m/ρ)

S·t·p (1)

where m is the sample weight (g), ρ is the density value of the solution at room temperature
(g L−1), S is the effective surface of the membrane (m2), p is the pressure applied during
the crossflow filtration (bar), and t is the experimental time (h).
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Salt rejection was calculated by measuring the conductivity of the feed (C f ) and the
permeate (Cp) as is indicated in the following equation [15]:

%R =

(
1−

Cp

C f

)
·100 (2)

Both (permeance and salt rejection) were calculated with an average of at least six mea-
surements (relative error < 5%), and by repeating the experiments 3 times with 3 different
membrane coupons.

2.4.2. Electrodialysis Experiments

The ED schematic diagram and the stack configuration are represented in Figure 2b.
Therein, 5 cation-exchange commercial membranes and 4 anion-exchange membranes
(thus, 4 cell pairs) were alternatively arranged between two electrodes. Two different stack
configurations were tested, the first one using a commercial cation-exchange membrane
(Ralex® CMH-PES, from Mega a.s., Czech Republic) and rAEM, and a second one assembled
using only commercial membranes (CMH-PES and AMH-PES). The electrodes were a
dimensionally stable electrode (DSE, titanium coated with iridium oxide) for the anode
(Inagasa S.A., Barcelona, Spain) and a stainless-steel electrode for the cathode (Tamesanz®,
Madrid, Spain). The effective area of each membrane was 16 cm2. To ensure a tortuous
configuration for the solutions path and separate the membranes, allowing complete mixing
and air removal in the ED stack [24], the reused polypropylene spacers (0.8 mm thick, 3 mm
mesh size) from the end-of-life RO membrane were arranged between the membranes in
all the experiments.

In this study, the experiments were carried out at constant voltage in a batch mode
at room temperature (~21 ◦C). The synthetic UWW solution was used as feed for the
diluted compartment. Na2SO4 solution (with a conductivity similar to the diluted solution)
was fed in the concentrated chamber. The relation of volume concentrate:dilute (Vc:Vd)
was 500:500 mL. A 4 g L−1 Na2SO4 solution was used for both electrode compartments,
connected to the same reservoir to avoid pH changes and the potential drop in the ED
system. A peristaltic pump HEIDOLPH PD 5206 with a multichannel head circulated
the solutions throughout the membranes and anolyte/catholyte chambers, maintaining a
uniform flow rate of 20 mL min−1. The power supply was an EA-PS 5080-10 A (0–80 V)
from EA Elektro-Automatik, Viersen, Germany. The voltage value applied and current
variation values were recorded from an Amprobe AM-540-EUR and an Amprobe AM-500-
EUR multimeter, respectively. In order to determine the applied operational voltage and
the limiting current density (LCD), the same feed solutions were passed through the system.
The initial voltage was 0 V and it was increased stepwise up to 30 V, and the resulting
current was recorded for each voltage.

In all ED assays, the membranes inside the ED stack were previously equilibrated
with the synthetic UWW solution for 24 h. Before the experiments, the working solutions
were replaced with new ones and circulated throughout the system for 30 min without
an applied electrical current for the homogenization of the solutions. Then, samples
were taken from dilute and concentrate reservoirs, analyzed, and recorded as the initial
value. Throughout the experiments, samples of concentrate and dilute solutions were
taken periodically without exceeding 10% of the total dilute volume variation in each test.
Elemental parameters (pH and EC) and concentration of individual ions (Cl−, NO3

−, SO4
2−,

Na+, K+, Ca2+, and Mg2+) were measured for each sample, following the methodology
specified in Section 2.6.

The specific energy consumption (Econsumption, kW h m−3) of the process was calculated
as [25]:

Econsumption =
U
Vd

∫ t

0
Idt (3)



Membranes 2022, 12, 746 7 of 15

where U is the potential applied to the ED cells (V), I is current (A), Vd is the initial volume
of the dilute solution (m3), and t is the ED operation time (h). In this case, the integration
(which is defined as Riemann integral) was solved as the calculation of the area under the

curve (plotted I vs. t) as follows: I(t) ≈ ∑t
0

[
I(t f )+I(ti)

2

(
t f − ti

)]
, where I(t) is a function

defined over the positive interval between 0 and the experimental time and
(

t f − ti

)
is

the difference in the time of the evaluated range. It should be mentioned that the energy
consumption only included the operational energy consumed by the demineralization
process evaluated.

The demineralization rate (%DR) indicates the total amount of salt removed, and it
was calculated according to the following equation [26]:

%DR =

[
1− κt

κo

]
·100 (4)

where κo and κt are the initial conductivity and conductivity over time of the dilute cham-
ber, respectively.

To observe and compare the surface morphologies of the rAEM and their stability
in the implementation in ED to treat UWW, scanning electron microscopy (SEM) was
employed (details in Supplementary Material).

2.5. Irrigation of Lettuce

Lettuce (Lactuca sativa L. var. longifolia) plants, belonging to a Romaine type (Chate-
laine), were grown for 7 weeks in a controlled climate growth cabinet (1 m3 size). Lettuce
seedlings were selected and transplanted when they presented 4 to 5 definitive leaves, be-
tween 9 to 15 cm maximum heights. The soil used was standard soil 5M (from Lufa Speyer),
and the main characteristics are summarized in Table 1. Standard soils are frequently
used for pot experiments in the laboratory and the field. The low level of available N was
suitable for the sake of comparison of the treatments. Each pot contained 1750 ± 0.19 g of
soil and 374 ± 0.22 g of gravel placed at the bottom as a filter bed. The pots were arranged
in a completely randomized design; see Figure S3 in the supplementary file.

Table 1. Chemical and physical characteristics of standard soil 5 M 1.

Parameters Standard Soil 5M

Soil type Sandy loam
Sampling date 20 July 2021
pH value (0.01 M CaCl2) 7.4 ± 0.1
Organic carbon (% C) 0.88 ± 0.18
Nitrogen (% N) 0.11 ± 0.03
Max. water-holding capacity (g/100 g) 41.8 ± 5.3
Weight per volume (g/1000 mL) 1219 ± 88
Cation-exchange capacity (meq/100 g) 8.5 ± 0.25

Particle size distribution (mm) according to USDA (%)

<0.002 0.002–0.05 0.05–2.0
11.9 ± 1 31.6 ± 3.2 56.5 ± 3.3

1 Data taken from the supplier (Lufa Speyer) [27].

Three different treatments were established with four replicates (plants) each: (i) ir-
rigation with fresh water (tap water, TW), (ii) irrigation with reclaimed water by rNF
membrane (IRR), and (iii) irrigation with reclaimed water by ED using rAEM (fertiga-
tion, FRT). Throughout the experiment, the temperature (23 ± 1 ◦C), a photoperiod of
16/8 h (light/darkness), and photosynthetically active radiation (280 µmol m−2 s−1) were
recorded. Each lettuce was irrigated using the drip system installed 0.05 m from the
lettuce plant.
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After a cultivation period of 49 days, shoots were cut from each plant at the soil
level (this can be observed in Figure S4). The growth and yield of the lettuce plants were
evaluated through the measurement of head diameter, fresh and dry biomass, and uptake
of macroelements.

Statistical Analysis

Data were analyzed statistically using a statistical significance level of 0.05 by ANOVA
for the main treatments. The comparison between the treatments was evaluated through
analysis of means (Tukey–Kramer test; p < 0.05) to identify the differences [28].

2.6. Analytical Methods

The main parameters for wastewater analysis were measured in the initial synthetic
UWW and samples collected from the effluents of NF and ED assays, according to Standard
Methods [29], which included EC, pH, anions (Cl−, NO3

−, and SO4
2−), cations (Na+,

K+, Ca2+, and Mg2+), and sodium adsorption ratio (SAR). The conductivity values of
solutions were measured by a conductivity meter CM 35 (Crison Instrument, Barcelona,
Spain) and the individual ion concentrations by a 930 advanced compact IC Metrohm Ionic
Chromatograph.

Prior to the determination of macroelement uptake by the lettuce, the harvested plants
were frozen and then freeze-dried using a LyoMicron −80 ◦C freeze-dryer in order to
remove the water present in the lettuce. Hereafter, 100 mg of plant dry mass was taken in
a quartz digestion vessel to which 1 mL of boric acid (0.5%), 2 mL of H2O2 (30%), 0.2 mL
of HCl (0.1 M), and 6.8 mL of MilliQ water were added. Subsequently, the samples were
digested in the microwave oven (ETHOS One de Milestone) at 190 ◦C.

The SAR equation is used to predict irrigation water sodium hazards. SAR is the ratio
of sodium to calcium and magnesium concentration (meq L−1) and is calculated as [30]:

SAR =
[Na+]√

0.5
([

Ca2+
]
+
[

Mg2+
]) (5)

However, the SAR parameter is not of significant value itself to predict the impact
of irrigation water on soil. Either EC or SAR affects water infiltration in soil; hence, both
must be considered in evaluating water quality for irrigation (Table S2). In general, sodium
hazard increases as SAR increases and EC decreases [30].

3. Results
3.1. UWW Treatment by rNF Membranes

To study the rNF membrane performance in tertiary treatment of UWW (composition
detailed in Table 2), the quality of the treated effluent in terms of salinity was evaluated.
Figure 3 shows the rNF membrane permeance over the experiment and the total salt
rejection (in terms of solution conductivity).

Table 2. Characteristics of the synthetic solution and the effluents of NF and ED technologies.

Water Source Conductivity (dS m−1)
Ionic Compound (ppm)

Cl− NO3− Na+ K+ Ca2+ Mg2+

Synthetic UWW 4.90 (±0.1) 1224.8 68.21 694 47.20 209 102
Permeate of rNF 0.98 (±0.02) 249 24.20 153 14.50 14.10 6.86

Product of ED
(rAEM–CMH-PES) 1.93 (±0.1) 390 22.90 320 23.60 52.90 29.20
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Regarding permeance, we could see two different trends in the curve (Figure 3). The
linear trend with a surge over the first 60 min (from 10.8 to 7.8 L m−2 h−1 bar−1) was due to
the compaction of the membrane after its transformation. Then, the region where the steady
state was achieved (after 60 min) reached the permeance value of 4.89 L m−2 h−1 bar−1

(with an error <1%) after 120 min. In addition, as it is represented in Figure 3, the total salt
rejection was maintained at around 80% (decrease in electrical conductivity) during the
experiment. This result is comparable with a commercial NF membrane performance [4,30].

At 140 min of crossflow filtration, samples were taken and analyzed. The rNF mem-
brane showed a high selective rejection of SO4

2− ions (>96%) and very high calcium and
magnesium separation coefficients (>93%), in concordance with preliminary characteriza-
tion tests presented by García-Pacheco et al. [15]. Regarding the rejection of monovalent
ions, it showed more significant monovalent separation coefficients: 80.02% for Cl−, 66.44%
for NO3

−, and 74.54% for Na+.

3.2. UWW Treatment by ED Applying rAEM
3.2.1. Determination of the Operating Voltage and LCD

LCD is a critical operating parameter that controls, among other parameters, the
optimal demineralization efficiency [31]. The current–voltage curve was experimentally
measured in the stack configuration assembled with CMH-PES and the prepared rAEM
to determine the LCD, using the UWW as feed solution (Figure 4a). Typically, the current
increases linearly at low voltage (Ohmic’ s region), then the increase rate reduces to reach a
plateau (LCD region), and finally, the current density increases again (over-LCD region).
However, measurements in a multi-cell stack often do not show a clear indication of the
slope-changing point. Therefore, the Cowan–Brown method was also applied to verify
the LCD value by plotting the overall resistance versus the reciprocal current density
(Figure 4b) [32].

Based on the intersection points in Figure 4a, the LCD was identified as equal to
1.90 mA cm−1 at the voltage of 8.77 V (2.19 V/cell pair). The same LCD value was defined
by the resistance −1/I graph, in which the LCD was considered as the lowest point on
the curve as shown in Figure 4b (show up with the arrow). The boundary layer resistance
drastically increases in the LCD region because of the complete depletion of the salt at the
membrane surface facing the dilute solution [33]. Above LCD, a non-desired phenomenon
of water-splitting occurs, which affects drastically the efficiency of the process and can
provoke irreversible damage to ion-exchange membranes due to pH changes [34].

Therefore, in this study, the experiments were carried out below the LCD to maximize
current efficiency, minimize the boundary layer effect caused by the concentration gradient,
and compare testing results. The literature considers the range between 60 and 80% of
the limiting voltage the safer operating voltage [34,35]. Thus, the experiments were run at
around 80% of the limiting voltage (1.7 V/cell pair).



Membranes 2022, 12, 746 10 of 15

Membranes 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 4. (a) Current-voltage and (b) Cowan-Brown method for the determination of LCD with re-
cycled anion-exchange membranes (rAEMs) (flow rate of 20 mL min−1 and 4 cell pairs). 

Based on the intersection points in Figure 4a, the LCD was identified as equal to 1.90 
mA cm−1 at the voltage of 8.77 V (2.19 V/cell pair). The same LCD value was defined by 
the resistance −1/I graph, in which the LCD was considered as the lowest point on the 
curve as shown in Figure 4b (show up with the arrow). The boundary layer resistance 
drastically increases in the LCD region because of the complete depletion of the salt at the 
membrane surface facing the dilute solution [33]. Above LCD, a non-desired phenomenon 
of water-splitting occurs, which affects drastically the efficiency of the process and can 
provoke irreversible damage to ion-exchange membranes due to pH changes [34]. 

Therefore, in this study, the experiments were carried out below the LCD to maxim-
ize current efficiency, minimize the boundary layer effect caused by the concentration 
gradient, and compare testing results. The literature considers the range between 60 and 
80% of the limiting voltage the safer operating voltage [34,35]. Thus, the experiments were 
run at around 80% of the limiting voltage (1.7 V/cell pair). 

3.2.2. rAEM Evaluation 
To study the performance of rAEM in UWW remediation, the stack was assembled 

by 5 CMH-PES and 4 rAEM (thus, 4 cell pairs) at a working voltage of 1.7 V/cell pair. The 
DR percentages were calculated based on the measured dilute conductivity. The relation-
ship between DR and energy consumption is shown in Figure 5. Additionally, the perfor-
mance of the rAEM in the ED system to demineralize the synthetic UWW was compared 
with the AMH-PES testing under the same conditions (i.e., the stack assembled with 4 cell 
pairs, a working voltage of 1.7 V/cell pair, and Vc: Vd of 500: 500 mL). 

Figure 4. (a) Current-voltage and (b) Cowan-Brown method for the determination of LCD with
recycled anion-exchange membranes (rAEMs) (flow rate of 20 mL min−1 and 4 cell pairs).

3.2.2. rAEM Evaluation

To study the performance of rAEM in UWW remediation, the stack was assembled by
5 CMH-PES and 4 rAEM (thus, 4 cell pairs) at a working voltage of 1.7 V/cell pair. The DR
percentages were calculated based on the measured dilute conductivity. The relationship
between DR and energy consumption is shown in Figure 5. Additionally, the performance
of the rAEM in the ED system to demineralize the synthetic UWW was compared with the
AMH-PES testing under the same conditions (i.e., the stack assembled with 4 cell pairs, a
working voltage of 1.7 V/cell pair, and Vc:Vd of 500:500 mL).

Membranes 2022, 12, x FOR PEER REVIEW 11 of 16 
 

 

Figure 5. Comparison of demineralization rate (DR, %) of AMH-PES and rAEM based 
on specific energy consumption (SEC, kW h m−3) by electrodialysis treatment. 

As can be seen in Figure 5, a linear tendency of consecutive DR rise by increasing the 
energy consumption of the system was observed. In the case of the rAEM, an increase in 
the energy consumption needed for the demineralization process above 60% of the DR 
was noticed. The evolution of the demineralization process is correlated with the system 
resistance (SR). The SR arises from the intrinsic resistance of the membranes inside the ED 
stack and the resistance of the treated solutions [36]. Thus, the latter hindering ion migra-
tion can be attributed to the ion depletion attained for the dilute solution. In this case, the 
good balance of the macronutrients (corresponding with the water quality for irrigation 
regulated by WHO) was achieved at 60% of the DR for both systems (stack assembled by 
rAEM and the stack assembled by AMH-PES), which is further discussed in the corre-
sponding section (Section 3.3). Therefore, 60% of DR was set as the completion of the ED 
experiments. 

Additionally, the energy consumption of the stack assembled with rAEMs was less 
than 1.5 kW h m−3 to reach 60% of DR. Under the same conditions, the stack assembled 
using only commercial membranes consumed 1.06 kW h m−3 to reach the same desalina-
tion rate. The slightly higher energy consumption of the rAEMs can be attributed to their 
higher electrical resistance in comparison with the commercial Ralex membranes. It can 
be considered that the rAEMs operated with a good level of permselectivity, considering 
the small difference in the energy consumption between both systems. Furthermore, the 
slightly higher energy consumption of recycled membranes could be balanced by a lower 
economic cost associated with the production of such membranes [37]. Surface SEM mi-
crographs were employed to observe the rAEM stability after the experiment. No signifi-
cant differences could be noticed from the images in Figure S2. Further, pinhole and crack 
formation were not detected by the SEM analysis. 

Overall, membrane recycling is a more sustainable approach than landfill disposal of 
end-of-life membranes, and it has been demonstrated that the production of recycled 
membranes results in a lower water and carbon footprint than the production of new 
membranes [38,39]. 

3.3. Water Quality for Crop Irrigation 
Conductivity is a very important water quality factor for crop production as a high 

conductivity causes the inability of plants to compete with ions in the soil solution and 
water [40]. In addition to conductivity, sodium imbalance in irrigation water can have a 
substantial impact on crop production. When irrigation water has high sodium content 
relative to the calcium and magnesium contents (i.e., a high SAR value), water infiltration 

y = 52.211x + 5.3293
R² = 0.9848

y = 35.809x + 4.5661
R² = 0.9791

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

D
R 

(%
)

SEC (kW h m−3)

AMH-PES
rAEM
DR: 60 %
Linear (AMH-PES)
Linear (rAEM)

Figure 5. Comparison of demineralization rate (DR, %) of AMH-PES and rAEM based on specific
energy consumption (SEC, kW h m−3) by electrodialysis treatment.

As can be seen in Figure 5, a linear tendency of consecutive DR rise by increasing the
energy consumption of the system was observed. In the case of the rAEM, an increase in
the energy consumption needed for the demineralization process above 60% of the DR
was noticed. The evolution of the demineralization process is correlated with the system
resistance (SR). The SR arises from the intrinsic resistance of the membranes inside the
ED stack and the resistance of the treated solutions [36]. Thus, the latter hindering ion
migration can be attributed to the ion depletion attained for the dilute solution. In this
case, the good balance of the macronutrients (corresponding with the water quality for
irrigation regulated by WHO) was achieved at 60% of the DR for both systems (stack
assembled by rAEM and the stack assembled by AMH-PES), which is further discussed in
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the corresponding section (Section 3.3). Therefore, 60% of DR was set as the completion of
the ED experiments.

Additionally, the energy consumption of the stack assembled with rAEMs was less
than 1.5 kW h m−3 to reach 60% of DR. Under the same conditions, the stack assembled
using only commercial membranes consumed 1.06 kW h m−3 to reach the same desalination
rate. The slightly higher energy consumption of the rAEMs can be attributed to their
higher electrical resistance in comparison with the commercial Ralex membranes. It can
be considered that the rAEMs operated with a good level of permselectivity, considering
the small difference in the energy consumption between both systems. Furthermore,
the slightly higher energy consumption of recycled membranes could be balanced by a
lower economic cost associated with the production of such membranes [37]. Surface
SEM micrographs were employed to observe the rAEM stability after the experiment. No
significant differences could be noticed from the images in Figure S2. Further, pinhole and
crack formation were not detected by the SEM analysis.

Overall, membrane recycling is a more sustainable approach than landfill disposal
of end-of-life membranes, and it has been demonstrated that the production of recycled
membranes results in a lower water and carbon footprint than the production of new
membranes [38,39].

3.3. Water Quality for Crop Irrigation

Conductivity is a very important water quality factor for crop production as a high
conductivity causes the inability of plants to compete with ions in the soil solution and
water [40]. In addition to conductivity, sodium imbalance in irrigation water can have a
substantial impact on crop production. When irrigation water has high sodium content
relative to the calcium and magnesium contents (i.e., a high SAR value), water infiltration
decreases [41]. Thus, the main parameter compared in this study was the SAR value along
with the EC of the treated effluents.

The initial conductivity of UWW was higher than the limits for use in agriculture
without severe restrictions (>3 dS m−1, [4]). After the rNF treatment, as expected, the
conductivity dropped from 4.90 to 0.98 dS m−1 (Table 2) since the NF membranes usually
provide good retention of inorganic salts, especially if multivalent ions are involved [10].
According to WHO guidelines (Table S2), which are connected to the crop sensibility and
the content of salts, the rNF effluent falls in the category of “Slight to moderate” concerning
the water infiltration, as the calculated SAR value was 6.85 and EC < 1 dS m−1.

On the other hand, the ED process using 16 cm2 of rAEM area (64 cm2 of rAEM in
total) to treat 0.5 L of the UWW was carried out in a mean time of 8 h. The effluent quality
obtained at that time, corresponding with a 60% value of DR, could be considered in the
category of “Slight to moderate” concerning the water infiltration because the SAR value
was 6.01 (in the 6–12 range) and EC was <2 dS m−1 (500–1900 µS cm−1). Eventually, the ED
treatment showed a reasonable extraction for all ions in the solution without compromising
the balance ratios and ensuring adequate-quality water for reuse (Table 2).

As a result, both tested recycled membranes showed adequate potential in wastewater
treatment for crop irrigation purposes in terms of conductivity and SAR value.

3.4. Lettuce Yield and Macronutrient Uptake in Dry Weight

Lettuce is a vegetable crop that has high nutritional and health value and is best
consumed fresh. Fresh lettuce leaves contain about 91–96% water [42]. Figure 6 shows the
average values of the analyzed lettuce fresh wight samples (a) and water content for each
treatment, (b) using the different water qualities obtained.
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Figure 6. Comparison of the different treatments (TW: tap water; IRR: treated wastewater by NF;
FRT: treated wastewater by ED) (a) according to the average biomass fresh weight (FW) and (b) water
content (WC, %) in lettuce leaves. Error bars are reported as standard errors (SEs).

No statistically significant differences were found in the biomass-fresh weight ac-
cording to the treatments TW, IRR, and FRT, which ranged from 34 to 37 g. However,
the water content (WC) percent was altered between TW and FRT treatments, showing a
statistically significant difference (p < 0.05). Although the WC was not drastically affected
by the different nutrient solution concentrations (IRR and FRT), the WC value for lettuces
irrigated by IRR water was below the normal range for this crop (i.e., 91–96%). This effect
might be attributed to the influence of the nutrient balance of the different effluents, applied
as treatments, on water uptake by plants [42].

Individual macronutrients such as total nitrogen, potassium, calcium, and magnesium
of leaves of the lettuce were chemically analyzed (Table 3). In addition to the different nutri-
ent availability of each treatment studied, no significant differences in nutrient absorption
were observed between them.

Table 3. Macronutrient concentrations of leave-in dry weight.

NTK IN K Ca Mg

(%) (%) (%) (%) (%)

TW 1.03 0.11 4.10 1.71 0.25
IRR 1.20 0.12 4.42 1.48 0.28
FRT 1.24 0.11 4.91 1.68 0.29

CV (%) 0.22 0.22 1.16 0.48 0.10
CV%: coefficient of variation; NTK: total nitrogen Kjeldhal; IN: inorganic nitrogen (NO3

− + NO2
−); TW: tap

water; IRR: treated wastewater by NF; FRT: treated wastewater by ED.

Vegetables, especially leafy ones, represent the major sources of dietary nitrate intake,
owing to their nitrate accumulation capacity. Nitrate and nitrite (which can be formed
as an intermediate product of nitrate reduction) are toxic to human health. Therefore,
it is essential to keep a low nitrate concentration in the edible parts of crop plants [43].
For the reused wastewater treatments, proper values of nitrogen uptake by lettuce leaves
(shown in Table 3) were achieved in compliance with the literature data (range from 1.13
to 5.02% N in dry weight), which was summarized by M. Petek et al. [42]. Potassium
content in lettuce dry weight in the three treatments ranged from 4.09 to 4.91%. The highest
potassium content was determined in FRT treatment, which is almost twice higher than
that the reported by M. Petek et al. [42] but in agreement with M. R. Broadley et al. [44]
who reported 4.5% K DW in lettuce. Calcium content in lettuce dry weight in treatments
ranged from 1.48 to 1.71% Ca. The highest calcium content was found in TW treatment,
which is in concordance with the results reported by M. Petek et al. [42] (i.e., the highest
calcium content (1.42% Ca) in the treatment with no fertilization applied). Behavior could
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be explained by the different concentrations of ammonium-N. High doses of ammonium-N
cause impairment of other nutrient absorption (e.g., Ca) due to competition between NH4
and Ca2+ cations [45]. The average magnesium content in lettuce dry matter was 0.27% Mg,
which is lower than the 0.52% Mg DW value obtained in Ref. [42] but falls within the range
of 0.15 to 0.35% Mg DW reported in the literature [42].

4. Conclusions

Different membrane processes can be integrated into wastewater treatment systems,
considering the challenging properties of saline wastewater. To make membrane processes
an economically attractive and viable alternative, especially in the context of sustainability,
two different recycled membranes in treating saline wastewater from an urban WWTP
were validated in this work.

• The rNF membrane showed a high selective rejection of divalent ions (i.e., SO42−

(>96%); Ca2+ and Mg2+ (>93%)).
• Comparison between rAEM and commercial anion-exchange membranes (Ralex®)

showed a suitable demineralization rate for irrigation of crops without compromising
the power consumption.

• Both tested recycled membranes showed adequate potential in wastewater treatment
for crop irrigation purposes in terms of conductivity and SAR value. No significant
differences in individual macronutrients such as total N, P, Ca, and Mg of leaves of the
lettuce of each treatment studied were observed.

Overall, this research showed, for the first time, the successful performance of recycled
membranes for treating saline urban wastewater and its application for crop irrigation.
In addition, this study showed that membrane recycling is a technically viable process
that increases the sustainability of water separation processes and enables the valoriza-
tion of wastewater for irrigation purposes, which conveys the strategy of the European
Commission regarding the transition to a circular economy.
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