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Abstract: The epithelial barrier is crucial for proper gastrointestinal function, preventing the un-
wanted passage of solutes and therefore representing a prerequisite for vectorial transport. Claudin-4
and claudin-18.2, two critical tight junction proteins of the gastric epithelium, seal neighboring cells
in a physically and mechanically challenging environment. As the Xenopus laevis oocyte allows the
functional and molecular analyses of claudin interaction, we have addressed the hypothesis that this
interaction is not only dependent on mechanical force but also on pH. We expressed human claudin-4
and claudin-18 in Xenopus oocytes, and analyzed them in a two-cell model approach. Cells were
clustered in pairs to form contact areas expressing CLDN18 + CLDN18, CLDN4/18 + CLDN4/18,
and compared to controls, respectively. Contact areas in cells incubated in medium at pH 5.5 and
7.4 were quantified by employing transmitted light microscopy. After 24 h at pH 5.5, clustering
of CLDN18 + CLDN18 and CLDN4/18 + CLDN4/18-expressing oocytes revealed a contact area
reduced by 45% and 32%, compared with controls, respectively. A further approach, high-pressure
impulse assay, revealed a stronger tight junction interaction at pH 5.5 in oocyte pairs expressing
CLDN18 + CLDN18 or CLDN4/18 + CLDN4/18 indicating a protective role of claudin-18 for tight
junction integrity during pH challenge. Thus, our current analysis of gastric tight junction proteins
further establishes oocytes as an expression and two-cell screening model for tight junction integrity
analysis of organ- and tissue-specific claudins by the characterization of homo- and heterophilic
trans-interaction dependent on barrier effectors.

Keywords: claudins; epithelial barrier; Xenopus oocytes; tight junction; heterologous expression

1. Introduction

Organ- and tissue-specific analysis of barrier properties have come to be a corner-
stone of physiological and pathophysiological research [1,2]. In addition to tissue models,
several models have recently been developed to gain further insights into cell–cell and
molecule–molecule interactions, in vitro [3,4]. Tight junction (TJ) proteins were first identi-
fied as the molecular correlate of barrier function in 1993 [5], followed by the identification
of the most abundant and what are considered to be the functionally most relevant family
of tetraspan barrier proteins, namely claudins [6]. Today, the claudin family is known
to consist of 27 members and additional splice variants, all of which show a differential
expression pattern determining specific barrier properties as a prerequisite of the functional
integrity in all epithelia [7].

A basic understanding regarding the functional contribution of claudins to the TJ
was initially obtained from cell–cell interaction studies in cells not expressing TJ proteins,
namely fibroblasts [8]. This strategy has been extended recently by establishment of the
heterologous expression of claudins in Xenopus laevis oocytes [9]. Allowing for a variety
of membrane transport analyses, the Xenopus oocyte has been classically employed as a
heterologous expression system for analyses of membrane transporters [10]. Common
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analyses have included measurement of the uptake of radiolabeled substrates, and elec-
trophysiological experiments such as voltage clamp and patch clamp approaches [11,12].
In recent years, these studies have been extended regarding analyses of gap junction and
TJ proteins in paired oocyte approaches [9,13,14], which have enhanced the possibilities
of single cell interaction and tissue analyses. However, the paired cell approaches do not
encompass the effects of tissue factors, and thus questions remain regarding the role of
endogenous effectors, including further membrane and membrane-associated proteins.
One main question has been resolved just recently by the demonstration of the expression
and localization of endogenous scaffolding protein ZO-1, which is known to be necessary
for the cytoskeleton anchoring of integral TJ protein strands [4]. Our group has now used
the momentum thus obtained for further analyses of organ-specific protein interaction,
namely gastric TJ integrity.

The stomach epithelium is challenged by numerous physicochemical effectors, in-
cluding food and beverages, medication and individual diets. A prerequisite for proper
digestive functions, but also a potential risk factor, is the low pH value of the chyme [15].
Whereas local mucus and bicarbonate secretion are able to prevent extensive pH challenges,
a contact of epithelial cells with an acidic pH cannot be fully prevented during the gastric
phase and gastric cycles. Furthermore, gastric pathologies can cause proton–epithelium
contact and make the epithelium vulnerable to damage from luminal acid by disruption of
the mucosal barrier, e.g., the common Helicobacter pylori infection, a main risk factor for TJ
dysfunction and gastric cancer [16].

The TJ barrier of the gastric epithelium primarily comprises claudin-18.2 (claudin-18),
which has been shown to provide a barrier against H+. Claudin-4 and claudin-18 are
critical integral membrane proteins of the TJ complex in gastric epithelium. Both claudins
contribute to the barrier against the paracellular passage of cations [17,18]. A change of
protein expression is associated with gastric cancer because of the dysregulation of gastric-
specific barrier properties [19]. In our study, we have focused on heterologous expression of
the TJ protein in Xenopus oocytes, testing the hypothesis that gastric claudin-18 is also able
to support TJ integrity during pH challenges, namely an acidic pH. Claudin-18 (CLDN18)-
expressing, and claudin-4/claudin-18 (CLDN4/18)-co-expressing Xenopus laevis oocytes
were used as a gastric TJ protein interaction model in acidic and neutral pH values. We
have therefore analyzed the pH-dependency of claudin-18 homophilic trans-interaction
and claudin-4/18 heterophilic trans-interaction in vitro.

The outcome of our study provides new experimental data, showing that claudin-18
does not enhance the contact area in a paired oocyte assay, but provides a greater strength
of interaction in acidic pH, which may add to the special physiological role of claudin-18
within stomach TJ strands protecting the cells and tissues from gastric acid.

2. Materials and Methods
2.1. Animals

The care and treatments of animals conformed to German legislation guidelines and
was approved by the animal welfare officer for the Freie Universität Berlin and under the
governance of the Berlin Veterinary Health Inspectorate (Landesamt für Gesundheit und
Soziales Berlin, Germany, permit G0022/21 and O 0022/21).

2.2. Cloning and cRNA Preparation

For the synthesis of the human cRNAs, CLDN4 and CLDN18.2 (Lot. No. 1989156,
Lot. No. 25442, Life Technologies, Carlsbad, CA, USA) nucleotide coding consensus
sequences were cloned from a pMK-RQ vector into a high copy ampicillin-resistant pGEM
vector via competent DH10b Escherichia coli. The cRNAs were produced via an in vitro T7
RNA-polymerase-based transcription system T7 RiboMAX RNA Production System and
Ribo m7G Cap Analog, Promega, Walldorf, Germany) according to the manufacturer’s
instructions. UV spectroscopy (P330, Implen, München, Deutschland) was used to assess
cRNA concentration and purity.
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2.3. Surgical Oocyte Harvesting and cRNA Injection

Oocytes were harvested by surgical laparotomy from female Xenopus laevis anes-
thetized in a bath solution of buffered 0.2% tricaine (ethyl 3-aminobenzoate methanesul-
fonate, Sigma–Aldrich, Taufkirchen, Germany) for 5–10 min at room temperature. Surgical
anesthetic depth was evaluated by righting and corneal reflexes. After removing the ovar-
ian lobes by incising the skin and abdominal muscle, oocytes were isolated by digesting
connective tissue strands in 1.5 mg/mL collagenase (NB4 Standard Grade, Nordmark
Pharma, Germany) and removing follicular cells by incubation in Ca2+-free oocyte ringer
solution (ORi) on a mechanical shaker as described by Vitzthum et al. [9].

High-quality oocytes of stages V and VI (diameter > 1000 µm) were injected (Nanoliter
2010, World Precision Instruments, Sarasota, FL, USA) with 1 ng cRNA encoding human
claudin-4 (CLDN4), claudin-18 (CLDN18), or with the combination of claudin-4 and -18
(CLDN4/18). Oocytes injected with RNase-free water served as controls (ctrl).

For microinjection, glass capillaries (World Precision Instruments, Berlin, Germany)
were manufactured by a horizontal puller (P-97 Micropipette Puller, program 11, Sutter
Instrument Company, Novato, CA, USA). For injection, oocytes were placed under a
binocular in a carriage with milled grooves in a row. The injection volume was 50.6 nl per
oocyte with a cRNA concentration of 20 ng/µL which corresponds to a respective cRNA
amount of 1 ng per oocyte and the incubation time was 3 days at 16 ◦C.

2.4. Immunoblotting of Oocyte Membrane Fractions

For immunoblotting, membrane fractions of ten injected and pooled oocytes were
prepared as described recently [4]. Oocytes were suspended in 500 µL homogenization
buffer (MgCl2 (5 mM), NaH2PO4 (5 mM), EDTA (ethylenediaminetetraacetic acid) (1 mM),
sucrose (80 mM), and Tris (Tris(hydroxymethyl) aminomethane) (20 mM); pH 7.4) and cen-
trifuged twice at 200 rpm for 10 min at 4 ◦C. Cell debris was discarded and the supernatant
was centrifuged at 13,000 rpm for 30 min at 4 ◦C to pellet cell membrane fractions. After
resuspending the pellet in 80 µL homogenization buffer, colorimetric protein quantification
using Pierce 600 nm Protein Assay Kit (Thermo Fisher Scientific, Hennigsdorf, Germany)
was carried out.

Proteins of the membrane fraction samples were quantified in a 96-well plate and eval-
uated by a 562 nm plate reader (PerkinElmer EnSpire Multimode Plate Reader, Waltham,
MA, USA) with bovine serum albumin Standards (Thermo Fisher Scientific, Hennigsdorf,
Germany) from 125 to 200 µg/mL.

A stain-free immunoblotting kit (Stain Free TGX, Fast Cast Acrylamide, Bio-Rad,
München, Deutschland) was used to control the protein transfer to the PVDF membrane. By
adding 4 × Laemmli buffer (Bio-Rad Laboratories, Munich, Germany) and urea (9 mol/L,
Carl Roth GmbH, Karlsruhe, Germany) as well as denaturing at 55 ◦C for 8 min membrane
samples were prepared for immunoblotting. They were loaded onto the 10% SDS polyacry-
lamide gel as specified by the manufacturer. Then, 5% non-fat dry milk in Tris-buffered
saline was used for PVDF membrane blocking for 120 min.

Claudin-4 and claudin-18 were detected by using specific primary antibodies (Invit-
rogen #32-9400, #700178, Life Technologies, Carlsbad, CA, USA) overnight at 7 ◦C and
Peroxidase-conjugated goat anti-rabbit and anti-mouse antibodies (#7074, #7076 Cell Signal-
ing Technology, Danvers, MA, USA) on the following day for 45 min at room temperature.

Protein signals were visualized by a ChemiDoc MP system (Bio-Rad Laboratories
after adding detection solution (Clarity Western ECL Blotting Substrate, #1705061, Bio-Rad
Laboratories GmbH, Munich, Germany).

2.5. Immunohistochemistry

For immunohistological stainings, injected oocytes were fixed overnight at 4 ◦C in 4%
PFA (16% paraformaldehyde, E15700, Science Service, Munich, Germany).

Via a 70% ethanol to xylol gradient, oocytes were dehydrated followed by embedding
cells in paraffin.
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Samples were cross-sectioned (5 µm) and transferred onto slides. Before immunohisto-
chemistry, paraffin was removed by using a xylol-ethanol gradient. Epitopes were exposed
by boiling in citrate buffer (pH = 6.0). The sections were then permeabilized for 5 min at
room temperature in Triton X-100 in PBS +/+ followed by an oocyte framing step using a
PAP pen (Kisker Biotech GmbH & Co. KG, Steinfurt, Germany). After blocking (5% goat
serum and 1% bovine serum in PBS), samples were incubated with primary antibodies
raised against claudin-4 and claudin-18.2 (Invitrogen #32-9400, #700178, Life Technologies,
Carlsbad, CA, USA) for 1 h at 37 ◦C. After four washing steps with blocking solution,
secondary goat anti-rabbit Alexa Fluor-488 and goat anti-mouse Alexa Fluor-594 were
added for 1 h at 37 ◦C. Before mounting in ProTaqs Mount (Flour Biocyc, Luckenwalde,
Germany), four washing steps with blocking solution and one with distilled water were
carried out. Protein signals were visualized using a Zeiss 710 confocal microscope (Zeiss,
Oberkochen, Germany).

2.6. Paired Oocyte Assay with pH-Treatment and Contact Area Monitoring

To ensure that the oocyte plasma membranes attach to the neighboring cell, the
vitelline membranes were mechanically removed with two fine forceps after placing them
in mannitol to generate hypertonic shrinking of the cells.

Then, the paired oocyte assay was carried out with oocyte pairs of combinations of
CLDN4 + CLDN4, CLDN4 + ctrl, CLDN18 + CLDN18, CLDN18 + ctrl, CLDN4/18 + CLDN4/18,
CLDN4/18 + ctrl, and ctrl + ctrl. Oocytes were placed together in 24-well microliter plates
by pushing them three times together using a metal probe. Analogous to that an incubation
in pH 5.5 and 7.4 ORi was carried out (Figure 1). After 24 h and 48 h and storing the oocytes
at 16 ◦C, the contact diameter via bright-field microscopy (DMI6000 B Microscope, LAS
AF software Leica Microsystems, Wetzlar, Germany) was quantified. The sizes of circular
contact areas (µm2) were calculated using the formula A = π·r2. After 48 h, the condition
and the cohesion of the oocyte pairs were evaluated and examined by gently pushing them
apart from each other under the binocular.
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2.7. Hydrostatic Pressure Impulse Assay and Quantification of Contact Area Strength

Oocytes were prepared for pairing and treated with pH 5.5 ORi as described before. To
test the strength of the contact area, a hydrostatic pressure impulse Assay (HPI) established
by Brunner et al. [14] was carried out with the oocyte combinations: CLDN18 + CLDN18
and ctrl + ctrl, such as CLDN4/18 + CLDN4/18, CLDN4/18 + ctrl, ctrl + ctrl.
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Oocyte pairs were placed central to each well of a 24-well plate filled with 2 mL
ORi. After 24 h a defined hydrostatic pressure impulse was applied via a single channel
electronic pipette (EE-300R, Eppendorf Research Pro, software version 2.06.00, Hamburg,
Germany) using a pipetting volume of 250 µL ORi (pH 5.5) at a dispensing speed of 0.9 s.
The angle was 45◦ and the distance of application was 1.3 cm. The conditions were kept
constant and oocyte pairs were subjected to the impulse in one passage.

Bright-field microscopy was used for quantifying the change of contact area be-
fore and 30 min after the hydrostatic pressure. Alterations of contact area in percentage
(∆ contact area) were statistically evaluated.

2.8. Statistical Analysis

Data from the paired oocyte assay are expressed in means in % of the controls and
standard error of the mean (SEM). Controls were set to 100%. Data from the hydrostatic
impulse assay are presented as box plots, which were notched for better visualization of
the median (50-percent). The first (25-percent) and the second quartile (75-percent) as well
as the whiskers (10th and 90th percentile) are presented, and n is the number of oocyte
pairs. JMP Pro 16.0.0 (SAS Institute Inc., Cary, NC, USA) was used for statistical analyses.
Normal distribution was checked using the Shapiro–Wilk test. The Kruskal–Wallis test was
performed for not normally distributed data, followed by a Dunn–Bonferroni correction.
Values of p < 0.05 were considered to be statistically significant (presented as * p < 0.05,
** p < 0.001 and *** p < 0.001).

3. Results
3.1. Expression of Human Gastric Claudins in the Oocyte Membrane

To ensure CLDN4, CLDN18, and CLDN4/18 expression in the oocyte membrane,
immunoblotting was carried out after an incubation time of 3 days. All membrane fraction
samples revealed claudin-specific signals at 22 kDa (CLDN4) and 27 kDa (CLDN18) whether
solely- or co-expressed, whereas RNAse-free water-injected control oocytes showed no
specific signals for CLDN4, CLDN18, or CLDN4/18 expression (Figure 2A). Further, the
integration of the expressed membrane proteins was visualized by confocal laser scanning
immunofluorescence microscopy. Oocyte samples were stained with antibodies in accor-
dance with the injected claudin cRNAs, and specific signals were detected, respectively.
CLDN4 and CLDN18-expressing oocytes revealed specific signals in the oocyte plasma
membrane (Figure 2B). Moreover, the combined expression of CLDN4 and CLDN18 re-
vealed a colocalization of signals (Figure 2C). No signal could be detected in RNAse-free
water-injected oocytes.

Membranes 2022, 12, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 2. Detection of heterologous expression of claudins in the oocyte membrane by immunob-
lotting (A) and confocal laser scanning immunofluorescence microscopy (B,C). Representative im-
ages (scale bars: 10 μm). 

3.2. Paired Oocyte Assay Revealed pH and Claudin-Dependent Effects 
To assess their trans-interaction areas in acidic to neutral pH within pairs expressing 

claudins (CLDN4, CLDN18, CLDN4/18), the contact areas of the paired cells were moni-
tored for 24 h and 48 h. The paired oocyte assay revealed differences in contact areas de-
pending on clustered claudin combinations and pH values. Notably, the contact area of 
CLDN18 and CLDN4/18-injected oocyte pairs treated with acidic pH (pH 5.5) showed a 
marked reduction in initial contact areas set as 100% by 45% and 32% after 24 h (CLDN18 
+ CLDN18: 55.5 ± 6.04%, p = 0.0009, n = 15; CLDN4/18 + CLDN4/18: 67.9 ± 7.42%, p = 0.0057, 
n = 16) and by 35% and 39% after 48 h (CLDN18 + CLDN18: 65.2 ± 6.64%, p = 0.0005, n = 
15; CLDN4/18 + CLDN4/18: 60.9 ± 6.78%, p = <0.0001, n = 16; Figure 3B,C). In addition, the 
clustered combination CLDN4/18 + ctrl also showed a slightly reduced contact area in pH 
5.5 after 24 h compared with the ctrl + ctrl pairs (72.7 ± 10.02%, p = 0.0494, n = 9). This effect 
increased after 48 h (61.57 ± 8.54%, p = 0.0002, n = 9), whereas in neutral pH (7.4), all other 
combinations showed no effect on the contact area, except for CLDN18 + CLDN18 at 24 h 
(CLDN18 + CLDN18: 24 h: 92.1 ± 11.74%, p = 0.0367, 48 h: 94.7 ± 10.92,% p = 0.374, n = 13; 
CLDN4/18 + CLDN 4/18: 24 h: 95 ± 10.81%, p = 0.4691, 48 h: 104.6 ± 17.19%, p = 0.32, n = 
22). None of the contact areas of CLDN4-expressing clustered oocytes showed significant 
differences in acidic or neutral pH (pH 5.5: 24 h: p = 0.9584, 48 h: p = 0.4079, n = 8–11; pH 
7.4: 24 h: p = 0.7602; 48 h: p = 0.7686, n = 9–14; Figure 3A). 

Figure 2. Detection of heterologous expression of claudins in the oocyte membrane by immunoblot-
ting (A) and confocal laser scanning immunofluorescence microscopy (B,C). Representative images
(scale bars: 10 µm).



Membranes 2022, 12, 731 6 of 11

3.2. Paired Oocyte Assay Revealed pH and Claudin-Dependent Effects

To assess their trans-interaction areas in acidic to neutral pH within pairs express-
ing claudins (CLDN4, CLDN18, CLDN4/18), the contact areas of the paired cells were
monitored for 24 h and 48 h. The paired oocyte assay revealed differences in contact
areas depending on clustered claudin combinations and pH values. Notably, the contact
area of CLDN18 and CLDN4/18-injected oocyte pairs treated with acidic pH (pH 5.5)
showed a marked reduction in initial contact areas set as 100% by 45% and 32% after
24 h (CLDN18 + CLDN18: 55.5 ± 6.04%, p = 0.0009, n = 15; CLDN4/18 + CLDN4/18:
67.9 ± 7.42%, p = 0.0057, n = 16) and by 35% and 39% after 48 h (CLDN18 + CLDN18:
65.2 ± 6.64%, p = 0.0005, n = 15; CLDN4/18 + CLDN4/18: 60.9 ± 6.78%, p ≤ 0.0001,
n = 16; Figure 3B,C). In addition, the clustered combination CLDN4/18 + ctrl also showed
a slightly reduced contact area in pH 5.5 after 24 h compared with the ctrl + ctrl pairs
(72.7 ± 10.02%, p = 0.0494, n = 9). This effect increased after 48 h (61.57 ± 8.54%, p = 0.0002,
n = 9), whereas in neutral pH (7.4), all other combinations showed no effect on the contact
area, except for CLDN18 + CLDN18 at 24 h (CLDN18 + CLDN18: 24 h: 92.1 ± 11.74%,
p = 0.0367, 48 h: 94.7 ± 10.92, p = 0.374, n = 13; CLDN4/18 + CLDN 4/18: 24 h: 95 ± 10.81%,
p = 0.4691, 48 h: 104.6 ± 17.19%, p = 0.32, n = 22). None of the contact areas of CLDN4-
expressing clustered oocytes showed significant differences in acidic or neutral pH (pH 5.5:
24 h: p = 0.9584, 48 h: p = 0.4079, n = 8–11; pH 7.4: 24 h: p = 0.7602; 48 h: p = 0.7686, n = 9–14;
Figure 3A).
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Figure 3. Contact areas of paired oocytes after 24 and 48 h. (A) CLDN4, (B) CLDN18-, and
(C) CLDN4/18-expressing oocytes. Whereas no changes of contact areas were observed in oocyte
pairs expressing CLDN4 alone, CLDN18 and CLDN4/18 pairs revealed a markedly reduced contact
area in pH 5.5. Data are presented in mean ± SEM (n = 8–22, * p < 0.05 ** p < 0.01, *** p < 0.001).



Membranes 2022, 12, 731 7 of 11

3.3. Hydrostatic Pressure Impulse Assay and Quantification of Contact Area Strength

To analyze the strength of oocyte pair attachment, the combinations with decreased
contact areas, CLDN18 + CLDN18, CLDN4/18 + CLDN4/18, and CLDN4/18 + ctrl in acidic
pH (pH 5.5), where challenged by a hydrostatic pressure impulse assay (HPI). After HPI,
clustered CLDN4/18 and CLDN18-expressing oocytes lost approximately 20% of the con-
tact area (CLDN18 + CLDN18: 81.03 ± 6.03%, p ≤ 0.0001, n = 38; CLDN4/18 + CLDN4/18:
82.19 ± 6.85%, p = 0.0001, n = 25). The median was close to 100% (99% and 94%), indicating
that the hydrostatic pressure reduced the contact area only slightly (Figure 4A,B). In con-
trast, contact areas of the ctr + ctrl combination decreased by 60% (ctrl + ctrl: 39.61 ± 8.22%,
n = 60). The median was 0%, because most of the pairs separated due to the pressure. More-
over, the HPI assay values of CLDN4/18 + ctrl and ctrl + ctrl pairs were not significantly
different (42,98% ± 8.22, p = 1.000, n = 25; Figure 4A). The median of the CLDN4/18 + ctrl
group was 54%, implying that contact areas were largely decreased or loosened.
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quantification by transmission electron microscopy (B). Whereas the combination of oocytes ex-
pressing CLDN18 + CLDN18, and CLDN4/18 + CLDN4/18 maintained a larger contact area vs.
ctrl after HPI. The difference between CLDN4/18 + ctrl and ctrl pairs was not significantly altered
(n = 25–60, Kruskal–Wallis test followed by a Dunn–Bonferroni correction. Representative images;
scale bars = 100 µm).

4. Discussion

Gastrointestinal barrier integrity represents a basic physiological requirement for indi-
vidual body function. Paired oocyte assays have been carried out from the time at which
connexin was identified and functionally analyzed [20]. The prerequisite for the currently
applied paired oocyte assay was the expression of CLDN4, CLDN4/18, and CLDN18 after
three days of injection of the cRNA. The results demonstrated a successful heterologous
expression at the correct size. In addition, claudins were localized in the oocyte mem-
brane using immunohistochemistry. The immunoblots and confocal immunofluorescent
stainings confirm the Xenopus oocyte as an appropriate heterologous expression system
also for the gastric TJ proteins claudin-4 and claudin-18, after other human TJ proteins
claudin-1, -2, -3, and -5 have already been successfully heterologously expressed and char-
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acterized in oocytes by our group [4,9] and other expression models, namely epithelial
cells [21,22], respectively.

Claudin-18 has two isoforms: the lung-specific claudin18.1, and claudin18.2, which is
primarily expressed in stomach epithelia [23]. However, much is unknown regarding the
assembly of claudin-18 into gastric TJs, its individual functions, and its contribution to the
barrier, and only a few studies analyzed the role of claudin18.2 in knockout models. The
deletion of claudin-18 resulted in an increased paracellular H+ leakage into the submucosa
caused by the loss of parallel packed TJ strands [17,18,24]. Furthermore, claudin-18 is
expressed in small amounts in duodenum and abundantly expressed in Barret’s esophagus,
where it contributes to a better epithelial acid resistance [25,26]. Thus, claudin-18 forms
closely anastomosing TJ strands and contributes to the paracellular barrier against luminal
protons from luminal acid.

The loss of claudin-18 not only results in TJ dysfunction and lack of proton barrier
properties but also leads to numerous pathologies including gastritis, chronic inflammation,
and gastric cancer, therefore claudin-18 has been identified as a targeted therapy candi-
date [18,27–30]. The goal of our study was the analysis of the functional contribution of
the gastric TJ protein claudin-18.2 in the presence and absence of co-expressed claudin-4
based on a two-cell model assay, which enables the creation of a deliberated contact area
for cell–cell interaction or rather head-to-head claudin interaction.

Part of the two-cell model was the pH- and claudin-dependent analysis of contact
areas via the paired oocyte assay, and the investigation of the interaction in trans, namely,
the intercellular interaction of claudins via extracellular loops, in the hydrostatic pressure
experiment, as trans-interactions are the basis for claudin cluster assembly and TJ strand
formation [31–33].

The paired oocyte assay revealed significantly smaller contact areas for CLDN18-
expressing and CLDN4/18-co-expressing oocyte pairs in acidic pH, whereas in neutral pH,
apart from CLDN18 + CLDN18 pairs, which showed a slightly reduced contact area, no
effects were observed. The challenge of the contact area of these combinations by hydro-
static pressure in pH 5.5 revealed stronger adhesion in accordance with trans-interactive
properties. In summary, the claudin-18 contact area was not increased in the paired oocyte
assay after 24 h and 48 h but showed a stronger interaction in the hydrostatic pressure
experiment at acidic pH when solely expressed or co-expressed with claudin-4. This may be
due to its function of protecting cells and tissues from gastric acid. These results underline
the function of claudin-18 in protecting vulnerable epithelium by blocking the paracellular
permeability of cations, especially H+ [16,17,24], via the formation of stronger cell–cell
contacts in the acidic environment.

Thus, the pH value as an important luminal gastrointestinal parameter as well as
the claudin composition affects cell–cell interaction, especially to the trans-interaction of
CLDN18 and CLDN4/18 in size and strength, which highlights the notion that claudin-18
seems to have a significant physiological role in the specific gastric environment.

It should be noted that the CLDN4/18 + ctrl clustering had a similar effect on the
contact area size after 48 h, but the strength after 24 h between CLDN4/18 + ctrl and
ctrl + ctrl pairs was not significantly altered. Because of the co-expression of claudin-
4 and claudin-18 in one cell, heterologous cis-interactions between the claudins were
possible. This assumption is also supported by the immunohistochemical stainings, which
revealed colocalization of claudin-4 and claudin-18 signals. In the literature, cis-interactions
were also described also as oligomerization, yet information regarding heterodimeric
oligomers consisting of claudin-4 and claudin-18 is scarce [34]. For the time being, a direct
quantitative comparison of claudins is challenging, but further techniques such as freeze
fracture electron microscopy might shed more light on these comparisons in the future.

Moreover, the kinetics of TJ assembling and scaffolding are provided by the cyto-
plasmatic protein ZO-1 by connecting cytoskeletal actin filaments and TJ proteins such as
claudins [35,36]. The literature demonstrates that ZO-1 exists in Xenopus embryos from the
first cleavage stage on and according to this, our group detected the endogenous expression
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of α+ and α− isoforms of ZO-1 in stage V and VI oocytes [4,37]. Thus, a stable incorpora-
tion and homophilic or heterophilic interaction of heterologous CLDN4 and CLDN18 are
enabled by the endogenous expression of ZO-1 in the Xenopus oocyte.

Extension of the heterologous Xenopus laevis oocyte expression system to analyses
of gastric TJ proteins might now enable further physiological studies, e.g., to analyze the
effects of secondary plant compounds such as alkaloids, flavonoids and phenolic acids.
Protective, e.g., antiulcerogenic activity of secondary plant compounds could be caused
by enhancement of the gastric antioxidant defense system, but also due to direct barrier
strengthening effects [38–40], whereas adverse effects may also be possibly detectable [41].
The heterologous expression of human gastric-specific claudins in the Xenopus laevis oocyte
might allow a simple and cost-efficient examination of some of these mechanisms. Our
current study provides new possibilities for TJ integrity and gastric claudin trans-interaction
analysis dependent on extracellular factors.
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