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Abstract: Among pollutants of emerging concern, endocrine disruptors (ED) have been shown to
cause side effects in humans and animals. Bisphenol-A (BPA) is an ED by-product of the plastic
industry and one of the chemicals with the highest volume produced yearly. Here, we studied the
role of cholesterol in the BPA exposure effects over membrane models. We used Langmuir films of
both neat lipid DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and cholesterol (Chol) and a
binary mixture containing DPPC/Chol, exposing it to BPA. We evaluate changes in the π-A isotherms
and the PM–IRRAS (polarization modulation–infrared reflection adsorption spectroscopy) spectra.
BPA exposure induced changes in the DPPC and Chol neat monolayers, causing mean molecular
area expansion and altering profiles. However, at high surface pressure, the BPA was expelled from
the air–water interface. For the DPPC/Chol mixture, BPA caused expansion throughout the whole
compression, indicating that BPA is present at the monolayer interface. The PM–IRRAS analysis
showed that BPA interacted with the phosphate group of DPPC through hydrogen bonding, which
caused the area’s expansion. Such evidence might be biologically relevant to better understand the
mechanism of action of BPA in cell membranes once phosphatidylcholines and Chol are found in
mammalian membranes.

Keywords: bisphenol-A; Langmuir films; membrane models; endocrine disruptors

1. Introduction

In the last few years, concern with the water quality has been growing due to its
contamination with substances, which in many cases have unknown side effects. These
substances are called emerging pollutants, which, in many cases, are not entirely removed
from the drinking water even after the treatment, causing all sorts of issues to human health
and the environment [1]. Among those substances, there are drugs, plasticizers, flame
retardants, hygiene products, and many other organic compounds generated by human
activities [2,3]. Some of those compounds have the capacity to cause harmful effects on
the endocrine system of humans and animals, even at low concentrations. Such a group
of substances is known as endocrine disruptors (ED), and such compounds can mimic or
emulate the natural action of hormones in the organism [4]. The groups highly vulnerable
to exposure to EDs are children and pregnant women, due to their developmental stages of
life that require a balanced production of hormones. Once the endocrine system is affected,
many health issues are reported, such as obesity, diabetes, thyroid dysfunction, cancers,
and other diseases [5].

A well-known endocrine disruptor is bisphenol-A (BPA). BPA is used to fabricate
plastics and epoxy resins and is highly produced, reaching three million tons per year
worldwide [1]. Studies demonstrate that BPA leaches into food and beverages, therefore
being ingested frequently [6]. Many studies report the harmful effects caused by BPA
contamination, such as prostate and breast cancer, early puberty, and infertility [7–9]. As
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much as studies report the side effects of BPA on human and animal health, there are
still gaps in the molecular mechanism of action in the cell. The literature studies report
the capacity that BPA must interact with the receptors of estrogens and androgens of the
thyroid, for example [8]. Nevertheless, such systems are very complex, making it difficult
to conclude how exactly BPA affects those structures [10,11].

The specificity of membrane models is why mimetic systems are ideal for identifying
specific interactions at the molecular level between the lipid and external analytes. Using
membrane models is the first step toward understanding how BPA interacts with the
cells, since the membrane is the first contact point with external compounds [12]. The
plasma membrane is composed of glycerophospholipids and sterols [13]. Cholesterol is a
component of great importance in lipid membrane models, being responsible, for instance,
for regulating water flow, thickness, and compressibility [14]. The dysregulation of normal
cholesterol levels interrupts membrane functions [15]. Furthermore, the fluidity of the lipid
layer is controlled by the presence of cholesterol, affecting the propagation or attenuation
of signals that may occur across the membrane [16].

Here, we investigate the role of cholesterol in the interaction of mimetic membranes
composed of DPPC, a phospholipid of the phosphatidylcholines class, and BPA. The choice
of mimetic membrane based on DPPC and cholesterol was based on comparing how BPA
affects a liquid-ordered phase model (DPPC/Chol mixture) compared to a gel-phase model
(neat DPPC), since BPA had been demonstrated to affect fluid models more significantly.

2. Materials and Methods
2.1. Reagents

For this experiment, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with 99%
purity and cholesterol were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA).
Bisphenol-A (BPA, purity ≥ 90%) was purchased from Sigma Chemical Co. (St. Louis,
MO, USA), while chloroform was obtained from Merck (Darmstadt, Germany). The lipid
solutions (DPPC and Chol) were prepared in chloroform, both at the same concentration of
1 mM. The lipid mixture was produced by adding three parts of DPPC and one part from
cholesterol, achieving a 3:1 ratio. BPA aqueous solutions were obtained with ultrapure
Milli-Q water (resistivity 18.2 MΩ·cm, surface tension 72 mN/m at 25 ◦C), and pH = 5.6.
The ultrapure water was used in all membrane models as a standard to observe only the
interactions between DPPC and BPA. The chemical structures of DPPC, Chol, and BPA are
shown in Figure 1.
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2.2. Langmuir Films

Langmuir films of DPPC, cholesterol, or DPPC/Chol mixtures (3:1) (1 mM in chloro-
form) were spread onto ultrapure water (Milli-Q) and in the presence of 1 × 10−5 mol/L
BPA subphase with a KSV Nima (Espoo, Finland) trough model 2000, whose volume
was 220 mL. The films were characterized using surface pressure vs. mean molecular
arear (π-A) isotherms, taken 15 min after spreading to allow chloroform evaporation. The
π-A isotherms were measured using a Wilhelmy sensor (Espoo, Finland) to measure the
surface tension while compressing the monolayer with two symmetric barriers at a rate
of 10 mm/min. All experiments were performed in triplicate at 23 ± 1 ◦C (Figure S1—
Supplementary Materials).

2.3. PM–IRRAS

Polarization–modulated infrared reflection absorption spectroscopy (PM–IRRAS) anal-
ysis was carried out using a KSV PMI 550 spectrometer (KSV Instruments Ltd., Helsinki,
Finland). This spectrometer contains a HgCdTe detector (MCT, model PCI-3TE-10.6), which
works with an active area of 1 mm2. The incident infrared beam was modulated with a ZnSe
photoelastic modulator at a resonance frequency of 50 kHz. A background measurement
was taken to reduce the effect of the water in the spectra. The experiment was similar
to the π-A isotherms, but with the PM–IRRAS spectra only taken at the surface pressure
of 30 mN/m. The BPA concentration used was 10−5 mol/L. The incident beam angle
modulated between parallel (p-polarized) and perpendicular (s-polarized) polarizations
for all the measurements was 80◦ relative to the normal. The experiments were performed
in the spectral range from 800 to 4000 cm−1 and with a spectral resolution of 8 cm−1.

3. Results and Discussion
3.1. Langmuir Monolayers

The π-A isotherms of DPPC in ultrapure water (Figure 2a) presented the expected
profile for the lipid, as reported in the literature [17], with the clear phase transitions from
liquid-expanded to liquid-condensed phase. In the presence of 1 × 10−5 mol/L of BPA,
the DPPC monolayer presented a displacement to bigger areas during almost all of the
compression, indicating that BPA remained at the air–water interface among the lipid
molecules. Furthermore, the analyte altered the profile of the isotherm if compared to the
neat DPPC in water. Such behavior was expected from BPA due to its surface activity, which
can be attributed to its bolaamphiphilic properties, which consist of the extremities of the
molecules having hydrophilic behavior and the center having hydrophobic behavior [18],
allowing the molecule to behave like a surfactant while being soluble in water. BPA
insertion at the subphase promoted a variation in the extrapolated area of 13.8% (from
59.56 ± 0.63 to 67.8 ± 0.11 Å2). However, once the high surface pressures were achieved
and the monolayer packing increased, the BPA molecules were partially expelled from the
air–water interface, promoting a rearrangement in the lipid molecules (Figure 2a).
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This result agrees with the literature. For instance, Maximino et al. [19] studied
a similar system, exposing DPPC monolayers to BPA. The authors observed that BPA
induced an expansion in the monolayer while changing the isotherm profile. Such behavior
of the lipid monolayer after the insertion of an analyte in the subphase was also observed
by Ruiz et al. [20], where the influence of the hormone 17 α-ethinylestradiol (another
endocrine system disruptor) in binary membrane models using DPPC and cholesterol
was studied. In the analysis containing 100% DPPC and exposed to the hormone, the
result was similar to that presented in this work, with the same pattern of displacement,
consisting of the expansion at lower pressures and consequent expulsion from the interface
at higher pressures.

π-A isotherms of cholesterol in ultrapure water (Figure 2b) showed a more compact
monolayer, evidenced by the abrupt increase in surface pressure when the mean molecular
area decreased, which is a behavior present in rigid monolayers, as seen in the literature [20].
The cholesterol molecules start packing at about 40 Å2, being rigid and not obtaining the
liquid-expanded phase present in the isotherms of pure DPPC. In the presence of BPA,
there is a small displacement to larger areas, starting the packing in the range of 45 Å2.
This effect can be attributed to the small cholesterol molecule having high rigidity and very
compact packaging, not allowing the BPA molecules to remain at the air–water interface.
This is evidenced by the variation in the area (∆A) at 30 mN/m, which was only 1 Å2,
demonstrating that BPA promotes little effect on the cholesterol monolayer. A similar
result was obtained by Wyzga et al. [21], where the influence of BPA and its derivatives
on monolayers of some lipids and cholesterol was studied. The effect of the presence of
BPA was similar to that obtained in this work, with BPA showing a slight expansion of
the monolayer and unchanging the isotherm profile in the presence of BPA, as shown
in Figure 2b. The study of neat Chol is in the manuscript mainly to compare to the
other samples and investigate specific interactions/effects between the membrane models
and BPA.

Isotherms in ultrapure water of the DPPC/Chol mixture were studied in a 3:1 ratio, as
shown in Figure 3.
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DPPC was in greater quantity because it belongs to the phosphatidylcholine class, the
major component in the plasma membrane of mammals [13]. The cholesterol in the mixture
induces a condensation in the DPPC monolayers [20], enhancing its packing and practically
making the characteristic plateau of DPPC isotherms disappear. The mean molecular area
for the mixture to start packing is in the range of 70 Å2. With the exposure of BPA in the
DPPC/cholesterol monolayer subphase, the isotherm shifted to higher mean molecular
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area values during the entire compression. The presence of BPA promoted an increase
of 11.6% in the area (from 51.6 Å2 to 57.7 Å2 at 30 mN/m), indicating that BPA was not
expelled from the monolayer interface even at the highest surface pressures, thus remaining
between the lipid molecules. Despite the expansion of the monolayer, the isotherm profile
was retained, suggesting that BPA did not affect the fluidity of the monolayer. Similar
behavior was observed in work by Ruiz et al. [20], where the influence of the hormone 17 α-
ethinylestradiol on mixed monolayers of DPPC and cholesterol in different proportions
was studied. A similar result was observed for the proportion with the percentage closest
to this work (30% cholesterol), where the isotherm shifted to larger areas in the presence of
the analyte during the entire compression. Moreover, among all the studied proportions,
the 30% sample presented the slightest variation in fluidity, similar to this manuscript.

Some interesting data related to the influence of BPA on the lipid mixture lie in the
fact that the DPPC/cholesterol monolayer presented the greatest area variation (∆A) at a
pressure of 30 mN/m (biologically relevant value due to lateral pressure of cells) [22] if
compared to the neat monolayers (DPPC or Chol). The mixture presented a ∆A value of
6.1 Å2; meanwhile, for DPPC and cholesterol, the ∆A values were, respectively, 4.7 and
1 Å2. This result indicates that cholesterol plays an important role in the BPA interaction
with the mimetic membrane. Furthermore, it is noteworthy that such a proportion of the
mixture is close to the real composition of plasma membranes [13,23].

3.2. PM–IRRAS

Figure 4 shows PM–IRRAS spectra for the DPPC/Chol (3:1) mixture in the absence
and presence of BPA (1 × 10−5 mol/L).
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absence and presence of BPA (1 × 10−5 mol/L) obtained at room temperature (23 ◦C) and surface
pressure of 30 mN/m.

The PM–IRRAS spectrum for the ultrapure water subphase (Figure 4—black line)
showed the characteristic bands of DPPC traditionally reported in the literature [24,25].
Note the presence of the carbonyl group stretching (υ) (C=O, 1742 cm−1), in addition
to the symmetrical (υs) and antisymmetrical (υas) bands of the phosphate group (P=O,
υs = 1092 cm−1 and υas = 1216 cm−1), as well as the νCO-PO2 (1058 cm−1) bands and
also the attributions of the symmetrical υs(CN+(CH3)3), 930 cm−1) and antisymmetric
(υas( CN+(CH3)3), 962 cm−1). In the presence of BPA, the bands of the υas(CN+(CH3)3,
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υsPO2, and υC=O groups did not undergo considerable displacement, indicating that the
groups are the least affected in the presence of the pollutant. However, displacements
were observed for the υC-O-PO2 and υasPO2 groups, from 1058 to 1049 cm−1 and from
1216 to 1209 cm−1, respectively, indicating a possible interaction between the analyte and
the monolayer. Such changes can be attributed to an interaction between BPA and the
phospholipid head. The interaction is occurring through the phosphate group due to the
observed changes; therefore, it is assumed that a hydrogen bond between the oxygen of
the phosphate group of DPPC and the hydrogen of the phenol group of BPA is taking
place. This type of interaction is widely discussed in the literature in studies of monolayers
affected by pollutants. In the work of Maximino et al. [26], the influence of BPA on fluid
monolayers of the DOPC lipid was studied. The authors obtained similar conclusions
for the interaction between the BPA and lipid, mostly related to the phosphate group via
hydrogen interactions. Furthermore, Hac-Wydro et al. [27] studied the effects of BPA and
its derivatives on several monolayers, including POPC. The authors reached a similar
conclusion, with BPA interacting with the lipid head via hydrogen interactions. A shift
to the symmetrical choline band (from 930 to 920 cm−1) was also noted in their work. It
is noteworthy that the changes observed in the choline groups may also be associated
with a change in the conformation of the lipid head [28–30] due to changes induced by the
interaction in the phosphate group [19,28].

PM–IRRAS spectra obtained for the DPPC/cholesterol mixture are shown in Figure 5a.
In general, there was no significant variation in the vibration frequency for the bands
related to υCH2 (symmetrical and antisymmetrical), suggesting no chemical interaction
between BPA and the phospholipid tail. (Figure 5a). However, the order/disorder level
in the lipid tail region can be assessed by analyzing the variation in the relative intensity
between the CH2 bands (symmetrical and antisymmetrical). According to Levin et al. [31],
the greater the relative intensity variation (∆IR), the greater the degree of alteration in the
order. If the ∆IR values are positive, this indicates an increase in disorder; if the ∆IR values
are negative, this indicates an increase in order in the phospholipid tails at the air–water
interface [32].
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Figure 5. (a) PM–IRRAS spectrum from 2800 to 3000 cm−1 of the DPPC/cholesterol mixture (3:1)
in the absence and presence of BPA (1 × 10−5 mol/L), obtained at room temperature (23 ◦C) and
surface pressure of 30 mN/m. (b) Bar graph of the relative intensities ratio (∆IR) of the symmetric
and antisymmetric CH2 stretching calculated from PM–IRRAS spectra of DPPC/cholesterol mixture
(3:1) in the absence and presence of BPA (1 × 10−5 mol/L).

In the presence of BPA, there was a variation for negative values of ∆IR, which indicates
that the presence of BPA is inducing a greater order in the tail region. Such a change
may help explain the non-variation in the DPPC/cholesterol isotherms’ profile, since the
ordering of the tails increased, it being understandable that the profile of the isotherms does
not change. Therefore, this fact confirms that the expansion of the monolayers is linked to
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the interaction with the lipid head, the displacement matched by the presence of the analyte
at the monolayer interface. The organization-increasing behavior induced by an external
analyte was also observed by Ruiz et al. [20] in their study of DPPC/cholesterol monolayers
exposed to the 17 α-ethinylestradiol, which showed the same negative variation in ∆IR
values. The authors concluded that the electrostatic interaction between EE2 and DPPC
modified the rearrangement of the lipid chain in the interface.

Figure 6 summarizes all the effects observed in the π-A isotherms and the PM–IRRAS
analysis into a proposed monolayer structuring for the lipids in the absence and presence
of BPA.
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Figure 6a displays the DPPC/Chol (3:1) mixture with the DPPC and cholesterol at
the air-water interface, forming a packed and organized monolayer. As reported in some
manuscripts, the cholesterol molecules remained near the lipid tails instead of the head
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group due to the ability to align its rings to the lipid hydrocarbon chain [33,34]. The tilt on
the tail part of DPPC represents the higher disorder in the alkyl region observed in the PM–
IRRAS analysis (Figure 5b). Once BPA was inserted in the subphase, its molecules occupied
the area around the lipid head group (phosphate) due to the interactions described in the
PM–IRRAS section, indicated by the red circle in Figure 6b, which caused the monolayer to
expand up to 6.1 Å2 (∆A), which was the highest variation at 30 mN/m, if compared to the
neat lipids. The increased order at the alkyl chain was represented by the more upright
position in the tails (Figure 6b). The presence of BPA at the monolayer is a combination of
effects such as the interaction between BPA and the phosphate group of DPPC. The surface
activity of BPA might have contributed to this effect, as well as the well-known lipophilicity
of BPA, granting it a high affinity for lipids [35]. The role of cholesterol is probably related
to the space between the lipids that facilitate the penetration and interaction of BPA since it
restructures the DPPC monolayer, promoting greater organization.

4. Conclusions

In this paper, we studied the effects of BPA on mimetic membranes using binary
monolayers composed of DPPC and cholesterol to reveal the role of cholesterol in the BPA–
membrane interaction. We have found that at the lateral pressure of natural membranes
(~30 mN/m), the presence of cholesterol induces the most significant displacement at
the Langmuir isotherms when exposed to BPA. This behavior was associated with the
monolayer’s organization, promoted by cholesterol. The organized monolayer results from
DPPC and cholesterol interaction, as seen by PM–IRRAS, and makes more space available
at the head region of the phospholipid, facilitating the BPA’s penetration.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/membranes12080729/s1, Figure S1: Triplicates of the π-A isotherms
of (a,b) DPPC, (c,d) cholesterol, and (e,f) the mixture of DPPC/Chol in the absence and presence
of BPA.
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