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Abstract: Lung transplantation (LTx) is the only curative therapy option for patients with end-stage
lung diseases, though only available for chosen patients. To provide an alternative treatment option
to LTx, we aim for the development of an implantable biohybrid lung (BHL) based on hollow fiber
membrane (HFM) technology used in extracorporeal membrane oxygenators. Crucial for long-
lasting BHL durability is complete hemocompatibility of all blood contacting surfaces, which can
be achieved by their endothelialization. In continuation to successful in vitro investigations using
human endothelial cells (ECs), indicating general feasibility, the appropriate porcine in vivo model
needs to be prepared and established to fill the translational data gap prior to patient’s application.
Therefore, isolation of porcine ECs from carotid arteries (pCECs) was established. Following, pCECs
were used for HFM endothelialization and examined under static and dynamic conditions using cell
medium or heparinized blood, to assess their proliferation capacity, flow resistance and activation
state, especially under clinically relevant conditions. Additionally, comparative hemocompatibility
tests between native and endothelialized HFMs were performed. Overall, pure pCECs formed
a viable and confluent monolayer, which resisted applied flow conditions, in particular due to
physiological extracellular matrix synthesis. Additionally, pCECs remained the non-inflammatory
and anti-thrombogenic status, significantly improving the hemocompatibility of endothelialized
HFMs. Finally, as relevant for reliable porcine to human translation, pCECs behaved in the same
way as human ECs. Concluding, generated in vitro data justify further steps towards pre-clinical
BHL examination, in particular BHL application to porcine lung injury models, reflecting the clinical
scenario with end-stage lung-diseased patients.

Keywords: biohybrid lung; hollow fiber membrane; endothelialization; hemocompatibility; porcine
endothelial cells

1. Introduction

Even before the COVID-19 pandemic, lung diseases were one of the greatest threats to
global health. In 2019, chronic obstructive pulmonary diseases accounted for approximately
6% of global deaths, making them the third leading cause of death worldwide [1]. In the
field of terminal lung diseases, symptomatic therapy has improved through the years,
but nevertheless, the only curative therapy option remains the lung transplantation (LTx),
which is still a critical surgical procedure fraught with complications. As a result, many
patients in urgent need for a LTx are not even considered, for example due to certain co-
morbidities or advanced age [2,3]. Additionally, despite the contemplated strict indication
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limitations to transplant only patients with low or moderate risks [4], a high complication
rate is evident, leading to a devastating five-year survival of 59% [5]. Moreover, a permanent
shortage of donor organs further exacerbates the situation [6].

Another major problem for patients with end-stage lung diseases is the unavailability
of a reliable long-term lung support or rather replacement system as alternative therapy
option to LTx, such as dialysis for end-stage renal failure [7] or a left ventricular assist
device for severe heart failure [8,9]. In the event of respiratory insufficiency, artificial
ventilation is initiated, but if insufficient, it needs to be expanded by the extracorporeal
membrane oxygenation (ECMO). ECMO technology is based on poly-4-methyl-1-pentene
(PMP) hollow fiber membranes (HFMs), in which the gas flow is applied and on the
outside the blood passes by for gas exchange [10]. However, due to this unavoidable
contact between the patient’s blood and the artificial PMP-HFM surface, coagulation and
inflammation activation occurs, resulting in a time-limited lung support for a few weeks.
As a consequence, ECMO therapy requires a strict anticoagulation regime, which is highly
prone to complications such as thromboembolisms and partly lethal hemorrhage [11],
needing intensive medical care. Accordingly, ECMO therapy will only be applied as a last
resort, if a bridge to successful transplantation or a bridge to recovery is secured [12].

Overall, these facts underline the compelling necessity for the development of a
biocompatible long-term lung assist device for both, as alternative and bridge to LTx. The
biohybrid lung (BHL), which we aim for can fulfill these required conditions. In this
context, the already clinically established ECMO principle represents the technology of
choice. Nevertheless, for long-term use, it is crucial to improve the hemocompatibility
of the HFMs used in contemporary ECMO. Therefore, endothelial cell (EC) colonization
of the HFMs seems to be an ideal method for hemocompatibility improvement, since the
endothelium not only provides a barrier between the blood and the artificial surface, but
also actively expresses anti-thrombogenic surface molecules [13].

The general feasibility of the BHL has already been demonstrated, as successful
endothelialization of PMP-HFMs [14–17] significantly improved their hemocompatibility,
in particular indicating significantly lower platelet aggregation compared to the native,
clinically used PMP-HFMs [18]. Hereinafter, the viable, flow-resistant, anti-inflammatory
and anti-thrombogenic endothelial monolayer could be maintained for several weeks [19]
without any significant gas exchange impairment [20]. Focusing on appropriate cell sources,
induced pluripotent stem cell-derived ECs [21] and MHC-silenced ECs were used for PMP-
HFM endothelialization, preventing allogenic cell rejection [22]. Finally, for clinically highly
relevant “off-the-shelf” use of the BHL, hypothermic storability was shown [23].

In order to fill the translational gap, various aspects of the BHL need to be thoroughly
tested in large animal studies prior to the patient’s application. Therefore, the appropriate
porcine model needs to be prepared. Thus, applying the BHL in the porcine model entails
that the biological components, i.e., the ECs, need to come from porcine sources, and not as
in all our preceding studies from human sources, in order to prevent potential rejection pro-
cesses to the foreign, xenologous material. Furthermore, it needs to be elucidated if porcine
ECs respond to the BHL environment in the same manner as human ECs, in order to allow
the transfer of reliable information to be implemented in the development of the human
BHL prototype. Accordingly, we identified an isolation protocol for highly pure porcine
endothelial cells to be used for PMP-HFM endothelialization for subsequent qualitative,
quantitative and functional analysis, including flow resistance and hemocompatibility tests
using porcine blood.

2. Materials and Methods
2.1. Porcine Endothelial Cell Isolation and Cultivation
2.1.1. Cell Isolation

Porcine carotid arteries were aseptically excised from pigs directly after sacrifice in
accordance with the animal welfare act. During transport to the laboratory, blood vessels
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were stored in 100 mL Tiprotec per blood vessel (Dr. F. Köhler Chemie, Bensheim, Germany)
at 4 ◦C.

For endothelial cell (EC) isolation, an enzymatic detachment protocol was utilized.
For this purpose, a three-way stopcock (B. Braun, Melsungen, Germany) was attached to
one end of the vessel using cable ties. Then, the blood vessel was rinsed with 10 mL Gibco
phosphate buffered saline (PBS, Thermo Fisher Scientific, Waltham, MA, USA) to remove
any remaining blood components. After closing the opposing end of the vessel with an
umbilical clamp (Dahlhausen, Köln, Germany), 1 to 2 mL of a 1% collagenase solution (Type
CLS, 240 U/mg, Biochrom, Berlin, Germany) was filled into the artery via the three-way
stopcock until the vessel was visibly inflated. Following enzymatic digestion for 20 min at
room temperature (RT), the three-way stopcock was opened over a 50 mL polypropylene
(PP) tube and the emerging enzyme-cell solution was placed directly into the tube. In order
to detach further cells, the blood vessel was then cut open a few millimeters above the
umbilical clamp and was flushed with 20 mL Gibco Dulbecco’s Modified Eagle Medium
(DMEM, Thermo Fisher Scientific, Waltham, MA, USA) containing 10% fetal bovine serum
(FBS, Capricorn Scientific, Ebsdorfergrund, Germany), which was also collected in the
PP-tube. The obtained porcine carotid artery endothelial cells (pCECs) in suspension were
sedimented by centrifugation at 300× g for five minutes and resuspended in endothelial
cell growth medium (EGM2, Lonza, Basel, Switzerland).

2.1.2. Cell Cultivation on Tissue Culture Plastic (TCP)

pCECs were seeded in TCP flasks (Delta surface, Nunc, Rochester, NY, USA) and
incubated under standard culture conditions (37 ◦C, 21% O2 and 5% CO2 with saturated
humidity). Growth medium EGM2 was replaced every 48 h and pCEC populations were de-
tached upon reaching 80% confluence using Trypsin/EDTA (0.05%/0.02% (w/v), Biochrom,
Berlin, Germany). ECs were passaged repeatedly and reseeded each time at a density of
8 × 103 cells/cm2. Cell numbers were determined using a CASY TT cell counting device
(OLS, Bremen, Germany) and population doubling times for passage two up to passage
nine were calculated using the following equation:

Population doubling time = t × ln (2)/ln (N(t)/N(0))

where t = cultivation time in hours, N(t) = number of cells at time t, and N(0) = number of
seeded cells at time 0.

2.2. Characterization of the Isolated pCECs
2.2.1. Flow Cytometry Analysis

A MACSQuant Analyzer 10 (Miltenyi Biotec, Bergisch Gladbach, Germany) was used
for flow cytometry analysis. pCECs were detached from the TCP using Trypsin/EDTA
(0.05%/0.02% (w/v)) and labeled with anti-rat CD31 Vio-Bright FITC antibodies (Mil-
tenyi Biotec, Bergisch Gladbach, Germany) according to the manufacturer’s instructions.
REA Control antibodies, human IgG1 (Miltenyi Biotec, Bergisch Gladbach, Germany),
served as isotype control. All data were collected from 2 × 104 events per sample and
analyzed using the flow cytometry analysis software Flowlogic for Windows (FlowLogic,
Mentone, Australia).

2.2.2. Staining of pCECs on TCP for Fluorescence Microscopy Assessment

For immunofluorescence microscopic analysis of the endothelial specific intercellular
junction protein VE-Cadherin and the extracellular matrix constituent Fibronectin, four-
well chamber slides (Thermo Fisher Scientific, Waltham, MA, USA) were endothelialized
with pCECs. After fixation with 4% paraformaldehyde for 10 min, samples were washed
four times with PBS and forwarded into a solution containing 0.25% Triton X-100 in Tris-
buffered saline supplemented with 5% donkey serum for 20 min at RT, to permeabilize the
ECs and block unspecific binding sites. After washing three times with PBS, samples were
incubated sequentially with the primary and the secondary antibodies, for one hour each at
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RT in the dark with a washing step in between. Antibodies were diluted in PBS containing
1% bovine serum albumin (staining buffer). A complete list of the antibodies used and the
respective dilutions is provided in Table 1. After incubation with the secondary antibody,
the sections were washed three times with PBS, and for nucleus staining, Hoechst 33342
was diluted with the staining buffer to a concentration of 10 µg/mL and was added to the
samples for 15 min at RT in the dark. After washing another three times, all specimens were
embedded using the Dako Immunomount mounting medium (Agilent, Santa Clara, CA,
USA) and analyzed with the fluorescence microscopes Discovery V.8 (Zeiss, Jena, Germany)
and AxioVert A1 (Zeiss, Jena, Germany). Pictures were taken with the AxioCam ICm1
(Zeiss, Jena, Germany). As controls, sections with isotype-matching antibodies were used.

Table 1. Antibodies used for immunofluorescence staining.

Antibody Name Dilution Vendor

Anti-VE Cadherin (ab33168) 1:300 Abcam, Cambridge, UK
Anti-Fibronectin (ab45688) 1:250 Abcam, Cambridge, UK

Rabbit IgG Isotype Control (ab172730) Abcam, Cambridge, UK
Donkey anti-rabbit Cy2 1:100 Jackson ImmunoResearch, Ely, UK

Moreover, monolayer integrity and viability were assessed by staining for 20 min in a
1 µM Calcein-am solution (Thermo Fisher Scientific, Waltham, MA, USA) and subsequent
visualization using the fluorescence microscope AxioVert A1.

2.2.3. Gene Expression Analysis via RT-PCR and Quantitative Real-Time qRT-PCR

RNA of lysed pCECs was isolated using the NucleoSpin II Kit (Marchery-Nagel,
Düren, Germany) and DNAse (Qiagen, Hilden, Germany) digestion to remove genomic
DNA following the manufacturer’s instructions. The RNA concentration was determined
spectrophotometrically by employing the nucleic acid quantification device Nanodrop
2000 (Thermo Fisher Scientific, Waltham, MA, USA) and equal amounts of RNA were
transcribed into cDNA with the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific, Waltham, MA, USA) using random hexamer primer. The obtained cDNA was
diluted 1:5 for further analysis.

To confirm the successful cDNA synthesis and the pCEC’s endothelial genotype, RT-
PCR was performed using the GoTaq Polymerase Kit (Promega, Madison, WI, USA) and a
peqStar Thermocycler (VWR, Rednor, PA, USA). The amplification products were imaged
under UV fluorescence after separation in a 1.5% agarose gel with 5% peqGreen (VWR,
Rednor, PA, USA). For real-time qRT-PCR reactions, the PowerUP SYBR Green Master
Mix (Thermo Fisher Scientific, Waltham, MA, USA) was applied using the Light Cycler
96 (Roche, Basel, Switzerland). All data were normalized to ß-Actin as a housekeeping
gene and analyzed using the ∆Ct-Method.

To assess the reaction of pCECs towards an inflammatory stimulus, confluent mono-
layers on TCP were exposed to EGM2 containing 10 ng/mL TNFα (Bachem, Bubendorf,
Switzerland) for six hours under standard culture conditions to deliberately induce the
pro-inflammatory and pro-thrombogenic EC genotype. Cells incubated in normal EGM2
served as controls. After the incubation period, culture medium was removed and the cells
were forwarded to gene expression analysis via real-time qRT-PCR.

The primer pairs used for RT-PCR and real-time qRT-PCR can be found in Table 2.
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Table 2. Primer pairs used for gene expression analysis.

Gene Name and ID Primer 1 Primer 2

ß-Actin
XM 003124280.4

GATCAAGATCATCGCG-
CCTCC

GGAATGCAACTAACAG-
TCCGCC

Endothelium-Selectin
(E-Selectin)NM 214268.2

TCCTGTCAACGGAGTC-
GTGA

GTCACAGCTTTACACGT-
TGGC

ICAM-1 (ICAM)
NM 213816.1

GCTCAGTGTCCTGTAT-
GGACC

AGAGCTGGTGGCCTGA-
CATT

Thrombomodulin (TM)
NM 001130732.1

CAACCAGACTTCGTG-
CCCTG

GTAGCCGTTGTTGCAC-
TCGT

Tissue Factor (TF)
NM 213785.1

TTAGTCAGGGTGAAC-
GGCAC

GGTCGTGGCCTTTTTC-
TTTCC

von Willebrand Factor (vWF)
NM 001246221.1

AGGGGGACCAAAGC-
ATCTCC

TGAAAGTTGCCGCTC-
CCATC

CD31
NM 01010101.01

CACGGAGGTCTGGAA-
CAAAG

TCTGCTCTGCGGTCC-
TAAGT

VE-Cadherin (VE-Cadh.)
NM 001001649.2

GCGAGTTCACCTTGT-
GCGAG

CGAGGAGGGAGATC-
ACTGCG

Krüppel-like factor 2 (KLF 2)
NM 001134351.2

CGTCTCCGCTGGAGC-
TACTA

GTAGGGCTTCTCGCC-
TGTAT

Collagen 4 subunit A1
(Col 4 A1)

XM 021065910.1

ATGCAACGGGACAA-
AGGGTG

CCCAGGTATGTGGCC-
GAGTA

2.3. Endothelialization of Gas Exchange HFMs with pCECs

Heparin and Albumin (H/A) coated and 1.8 × 3.2 cm (40 parallel aligned hollow
fibers) sized patches were trimmed from the original HFM of the iLA membrane ventilator
(Xenios, Heilbronn, Germany). After sterilization with ethylene oxide, the patches were
endothelialized as described previously [21]. In brief, HFM patches were sandwiched
between two custom made polycarbonate frames and three patches each were placed
into a 50 mL syringe (B. Braun, Melsungen, Germany), which was filled with 23 mL EC
suspension (9 × 105 ECs/mL in EGM2). After venting the syringe, it was revolved along
the longitudinal axis at one rotation per minute for four hours at 37 ◦C to allow EC adhesion.
After removing the frames from the syringe, they were incubated for 24 h under standard
conditions in culture dishes filled with EGM2. The EGM2 was then changed, and the
frames were turned over and incubated again for 24 h.

2.3.1. Immunofluorescence Microscopy of pCECs on HFMs

For immunofluorescence microscopic analysis of the endothelialized HFMs, pieces
of 0.8 cm diameter were excised using a skin biopsy punch cutter (kai Europe, Solingen,
Germany). Subsequently, staining of VE-Cadherin and Fibronectin was performed as
described in Section 2.2.2.

2.3.2. Gene Expression Analysis via Real-Time qRT-PCR

In order to comparatively analyze the gene expression of unstimulated and TNFα-
stimulated pCECs on HFMs, real-time qRT-PCR was utilized, as described in Section 2.2.3.

2.4. Assessment of Endothelialized HFMs Exposed to Flow Conditions Using Culture Medium

Endothelialized HFMs were exposed to flow conditions inside a custom-made flow
chamber that was hooked up to a mock circuit, as described previously [14]. Briefly,
EGM2 medium was recirculated through the flow chamber and the reservoir (100 mL glass
bottle), both placed in the incubator, using a peristaltic pump (ISM 404B, Ismatec, Opfikon,
Switzerland). The gas exchange between the medium and the incubator atmosphere
(21% O2 and 5% CO2) was allowed through a 0.22 µm syringe filter (Sartorius, Göttingen,
Germany) attached to the reservoir lid. Perfusion was performed with flow rates of
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15 mL/min for 24 h or rather 60 mL/min for six hours. For both dynamic conditions, static
endothelialized controls were cultivated in parallel for the same time periods.

A schematic overview of the mock circuit and the preceding experiments can be found
in the Supplementary Materials (Supplementary Figure S1).

2.4.1. Fluorescence Microscopy of Endothelialized HFMs after Flow

Directly after completion of perfusion, HFMs were dissembled from the flow chambers
and monolayer integrity and viability were assessed by Calcein staining as described in
Section 2.2.2. This procedure was also used for the static controls.

2.4.2. Gene Expression Analysis via Real-Time qRT-PCR

In case of the 24-h group, both the statically and dynamically cultured samples were
subjected to gene expression analysis by real-time qRT-PCR, as described in Section 2.2.3.

2.5. Hemocompatibility Testing of Non-Endothelialized versus Endothelialized HFMs

In order to compare the hemocompatibility of non-endothelialized and endothelialized
HFMs, the above-described mock circuit was utilized. Instead of cell medium, 100 mL of
porcine whole blood, which was anticoagulated with unfractionated heparin (Rotexmedica,
Trittau, Germany), was used in each flow chamber circuit to perfuse the HFMs for six hours
at a flow rate of 60 mL/min.

2.5.1. Fluorescence Microscopy of Endothelialized HFMs after Blood Flow

In case of the endothelialized HFMs, adherent pCECs were labeled in serum free
EGM2 using 25 µM cell tracker red dye (Thermo Fisher Scientific, Waltham, MA, USA)
45 min prior to blood flow application. After flow application, endothelialized HFMs were
transferred into EGM2 and examined with the AxioVert A1 fluorescence microscope to
assess the monolayer integrity. Endothelialized HFMs cultivated statically during perfusion
time and dyed at the same time served as controls.

2.5.2. Thrombus Formation Assessment via Photographs and Scanning Electron
Microscopy (SEM)

At the end of perfusion, HFMs were removed from the flow chambers and washed
in Gibco Dulbecco’s Balanced Salt Solution (DPBS, Thermo Fisher Scientific, Waltham,
MA, USA) to remove non-adherent blood residues. For the macroscopic assessment,
HFMs in DPBS were photographed. Using a skin biopsy punch cutter, circular pieces of
0.8 cm diameter were taken from the endothelialized and non-endothelialized HFMs and
fixated for 24 h in a SEM fixation buffer containing 150 mM HEPES, 1.5% PFA and 1.5%
Glutaraldehyde. After fixation, a graded series with 30%, 50%, 70%, 90% and 100% (v/v)
of EtOH was used for dehydration. For further SEM preparation, samples underwent
critical point drying (CPD 030, Balzers, Balzers, Liechtenstein) and were sputtered with
gold (Polaron High Resolution Sputter Coater E 5400, Polaron Equipment Ltd., Watford
Herts, UK). Imaging was done with the SEM 505 (Philips, Eindhoven, The Netherlands).

2.5.3. Quantification of Blood Parameters Associated with Thrombus Formation

Blood samples were collected from the mock circuits into different blood collection
tubes directly before and after six hours blood perfusion of the endothelialized and non-
endothelialized HFMs. Blood was collected in citrate tubes (1:10) 2.9 mL (Sarstedt, Nürm-
brecht, Germany) for D-Dimer measurement using turbidimetry on the Atellica COAG 360
(Siemens, München, Germany). Determination of the thrombocyte count was carried out
with blood collected in K3 EDTA 1.6 mL tubes (Sarstedt, Nürmbrecht, Germany), using
impedance measurement on the XN-10 (Sysmex, Kobe, Japan). The relative change in D-
Dimer concentrations and thrombocyte counts was expressed in percentages, which were
calculated by subtracting the values obtained after flow exposure from the corresponding
baseline values before flow divided by the baseline values and multiplied by 100%.
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2.6. Statistical Analysis

All data are expressed as mean with standard deviation (SD). Comparison between
two groups was done using the unpaired, two-tailed t-test, whereas statistical significance
between multiple groups was checked via one-way ANOVA with correction for multiple
comparisons using the Šídák test. All analyses were performed using GraphPad Prism 9
for Windows (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. High Expansion Capacity and Purity of Endothelial Cells Isolated from Porcine Carotid
Artery (pCECs)

After isolation from porcine carotid arteries, the endothelial cell (EC) population
showed a robust proliferative capacity for more than eight passages, with an average
population doubling of 41 h. When assessed after seven passages, flowcytometry analysis
revealed that more than 91% of the cells were still positive for endothelial specific CD31
(Figure 1a), while staining of adherent cells with Calcein attested viability and the preserved
typical endothelial cobblestone morphology (Figure 1b). Representative phase contrast
pictures also verified endothelial cell morphology (Supplementary Figure S2b). Further-
more, RT-PCR confirmed the endothelial genotype by detection of the endothelial specific
transcripts for CD31, vWF and VE-Cadherin (Supplementary Figure S2a). The confluence
of the endothelial monolayer was demonstrated by immunofluorescence microscopic de-
tection of the endothelial-specific intercellular junction protein VE-Cadherin (Figure 1c).
In addition, immunofluorescence staining also revealed the deposition of fibronectin on
the TCP, indicating physiological de novo production of extracellular matrix by the pCECs
(Figure 1d). Real-time qRT-PCR evidenced that ECs resided in a non-activated state, as
significant higher expression levels of the inflammatory genes E-Selectin (p < 0.0001) and
ICAM (p < 0.05) and upregulated expression of the pro-thrombogenic gene TF (p < 0.05),
were found after deliberate EC activation by TNFα stimulation (Figure 1e). Conversely, the
gene expression for the anti-thrombogenic TM also showed the anticipated significant level
decrease upon TNFα activation (p < 0.01).
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morphology; Immunofluorescence microscopy of pCECs on TCP for the detection of (c) the EC-
specific junction protein VE-Cadherin (green) and (d) the extracellular matrix protein fibronectin 
(green); (c,d) Corresponding nuclei were counterstained with Hoechst 33342 (blue); (e) Real-time 
qRT-PCR expression analysis of inflammatory (E-Selectin and ICAM) and thrombogenic state (TM 
and TF) marker genes with and without TNFα stimulation. Gene expression levels of the stimulated 
group were compared to its respective unstimulated control group using an unpaired t-test. TCP: 
Tissue Culture Plastic; stimulated: six hours TNFα exposure; unstimulated: control group without 
TNFα exposure. Results are given as mean with SD (n = 3) (* p < 0.05; ** p < 0.01; **** p < 0.0001). 
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Upon application of our HFM endothelialization protocol, Calcein staining revealed 
a viable and confluent endothelial monolayer covering the whole fiber surfaces and 
showing the endothelial specific cobblestone morphology (Figure 2a). Moreover, 
comparable to the monolayer on TCP, the intercellular cell junction protein VE-Cadherin, 
detected via immunofluorescence staining, was ubiquitously expressed throughout the 
complete monolayer that enveloped all HFM fibers (Figure 2b). Furthermore, 
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Figure 1. Characterization of isolated pCECs. (a) Histogram view of cultured pCECs, analyzed via
flow cytometry for the expression of CD31 (red) versus the IgG control (blue); (b) Calcein staining
(green) of the confluent and viable pCECs monolayer on TCP with a characteristic cobblestone
morphology; Immunofluorescence microscopy of pCECs on TCP for the detection of (c) the EC-
specific junction protein VE-Cadherin (green) and (d) the extracellular matrix protein fibronectin
(green); (c,d) Corresponding nuclei were counterstained with Hoechst 33342 (blue); (e) Real-time
qRT-PCR expression analysis of inflammatory (E-Selectin and ICAM) and thrombogenic state (TM
and TF) marker genes with and without TNFα stimulation. Gene expression levels of the stimulated
group were compared to its respective unstimulated control group using an unpaired t-test. TCP:
Tissue Culture Plastic; stimulated: six hours TNFα exposure; unstimulated: control group without
TNFα exposure. Results are given as mean with SD (n = 3) (* p < 0.05; ** p < 0.01; **** p < 0.0001).

3.2. pCECs Form a Confluent and Non-Activated Neo-Endothelium on HFMs
3.2.1. pCECs Adherent to HFMs Grow to Confluence and Generate Extracellular Matrix

Upon application of our HFM endothelialization protocol, Calcein staining revealed a
viable and confluent endothelial monolayer covering the whole fiber surfaces and show-
ing the endothelial specific cobblestone morphology (Figure 2a). Moreover, comparable
to the monolayer on TCP, the intercellular cell junction protein VE-Cadherin, detected
via immunofluorescence staining, was ubiquitously expressed throughout the complete
monolayer that enveloped all HFM fibers (Figure 2b). Furthermore, immunofluorescence
detection also indicated the de novo production of the basement membrane extracellular
matrix protein fibronectin (Figure 2c).

3.2.2. pCECs on HFMs Remain in the Non-Inflammatory and
Non-Thrombogenic Genotype

In order to assert that the endothelial cell genotype was preserved in a non-activated
state upon seeding and cultivation of the pCECs on the HFM substrate, we performed
an expression analysis of the inflammatory marker genes E-Selectin and ICAM, as well
as of the thrombogenic state markers TM and TF and compared the results with those of
pCECs grown on TCP. No significant differences in the expression levels of the mentioned
inflammatory and thrombogenic state marker genes could be detected, except for TM,
which was slightly but significantly upregulated in pCECs on the HFM (p < 0.01). However,
as seen with pCECs seeded on TCP, deliberate TNFα activation still resulted in a significant
physiologic regulation of the above-mentioned activation marker genes. (Figure 3).
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Figure 3. Gene expression analysis for the assessment of the inflammatory and thrombogenic
genotype of pCECs on HFMs. Expression levels of the inflammatory (E-Selectin and ICAM) and
thrombogenic state (TM and TF) marker genes were compared between untreated pCECs on TCP
versus HFMs and pCECs on HFMs stimulated with TNFα. A one-way ANOVA with correction for
multiple comparisons (Šídák test) was used to compare these three groups as indicated in the figure.
TCP: Tissue Culture Plastic; HFM: Hollow Fiber Membrane; stimulated: six hours of TNFα exposure;
unstimulated: control group without TNFα exposure. Results are given as mean with SD (n = 3)
(* p < 0.05; ** p < 0.01; *** p < 0.001; ns = no significance).

3.3. pCEC Monolayers on HFMs Resist Flow Conditions and Show Typical Physiological
Responses on Gene Expression Level
3.3.1. Flow Conditions Do Not Affect Monolayer Integrity

When assessed for the integrity and viability of the endothelial monolayer after flow
exposure (15 mL/min) for 24 h using culture medium, fluorescence microscopy images
revealed the persistence of a viable and predominantly confluent endothelial monolayer on
the HFMs (Figure 4b). In direct comparison with the respective control that was cultivated
in parallel under static culture conditions, sporadic and negligible detachment of single
pCECs after flow exposure was noticed (Figure 4a).
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Figure 4. Comparison of pCECs under static and flow conditions. (a,b) Calcein staining of viable
pCECs (green) after 24 h of static (a) or dynamic (15 mL/min flow) (b) conditions; (c) qRT-PCR
analysis of flow-exposed pCECs regarding inflammatory activation (E-Selectin and ICAM), shear
stress response (KLF 2), thrombogenic state (TM and TF) and matrix synthesis (Col 4 A1). Gene
expression levels of the flow-exposed group were compared to the static control groups using an
unpaired t-test. For abbreviations of gene names, see Table 2. Results are given as mean with SD
(n = 3) (* p < 0.05; ** p < 0.01; ns = no significance).

3.3.2. Flow Conditions Lead to Physiological Gene Expression Changes While Not
Promoting the Pro-Inflammatory Genotype

The impact of flow conditions on pCECs was also examined on gene expression levels
(Figure 4c). When compared to static controls, the analyzed genes, indicative for the pro-
inflammatory genotype, E-Selectin (p = 0.4470) and ICAM (p = 0.7166), were not significantly
different expressed in pCECs after flow exposure, indicating that flow conditions did not
result in the activation of pCECs on HFM. With regard to the anti-thrombogenic genotype,
TM was significantly downregulated (p = 0.0156) upon 24 h under flow conditions, while
TF expression was found to be significantly increased (p = 0.0036). Moreover, the capability
of pCECs to react physiologically towards shear stress was observed by the significant
upregulation of the shear stress marker KLF2 after flow application (p = 0.0474). Finally, the
expression of COL4A1 as an indicator for extracellular matrix synthesis was not significantly
altered after flow application for 24 h (p = 0.2327).
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3.4. The pCEC Monolayer on HFMs Is Capable to Withstand Clinically Relevant Blood
Flow Conditions

Next, we assessed the pCEC monolayer’s resilience under elevated flow conditions
(60 mL/min) using culture medium compared to porcine whole blood for six hours. Com-
paring the confluence of the endothelialized HFMs receiving flow application with culture
medium at 60 mL/min (Figure 5b) to control HFMs that were kept statically in parallel
(Figure 5a), no evident cell loss was detectable. The same holds true for flow exposure
experiments using whole blood. Here, cell tracker stained pCECs were still evenly dis-
tributed all over the HFM, with only few detached cells within the predominantly confluent
monolayer (Figure 5d).
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Figure 5. Analysis of EC monolayer integrity after culture medium or blood flow exposure for six
hours. (a,b) Calcein staining (green) of pCECs on HFMs that (a) were kept statically or were exposed
to (b) flow conditions using culture medium (60 mL/min); (c,d) Cell Tracker staining (green) of
pCECs on statically cultivated HFMs (c) or on 60 mL/min blood flow exposed HFMs (d).

3.5. Endothelialization Significantly Improves HFM Hemocompatibility

The results after blood flow exposure revealed striking differences between endothe-
lialized and non-endothelialized HFMs. While the non-endothelialized HFMs showed
the formation of several macroscopically visible thrombi after blood perfusion (Figure 6a),
endothelialized HFMs lacked any thrombus deposition at all (Figure 6b). These findings
were confirmed by SEM, where additionally also no formations of microscopic thrombi on
the endothelialized HFMs (Figure 6b,d) could be observed. Instead, SEM images indicated
that fibrous network structures from coagulated fibrin with entrapped erythrocytes and
platelets occurred only on non-endothelialized HFMs (Figure 6c,e). Moreover, SEM also
confirmed the integrity of the pCEC monolayer, including the presence of intact cell-cell
connections between the endothelial cells after blood flow exposure (Figure 6f).
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Figure 6. Thrombogenicity assessment of HFMs with and without pCEC monolayer after blood
flow exposure. Macroscopic examination of (a) non-endothelialized and (b) endothelialized HFMs;
(a) black arrow = macroscopically visible thrombus; SEM images of (c,e) non-endothelialized and
(d,f) endothelialized HFMs; (e) white arrow: fibrin, red +: erythrocyte, red *: thrombocyte; (f) white
arrow: cell-cell contact within confluent EC-monolayer; (g) D-Dimer and (h) thrombocyte count level
changes in the non-endothelialized and endothelialized HFM group before and after blood flow
exposure. An unpaired t-test was used to compare both groups. Results are given in mean difference
[%] with SD (n = 3) (** p < 0.01).
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As an additional indicator for induced coagulation processes, D-Dimer levels were
measured before and after blood flow exposure of endothelialized and non-endothelialized
HFMs. Here, the concentration of D-Dimers in the blood from circuits containing the
non-endothelialized HFMs increased during flow exposure by 9.926%. Conversely, and
significantly different to the non-endothelialized HFMs (p < 0.01), a drop in the D-Dimer
concentration by −5.020% (Figure 6g) was measured for endothelialized HFMs.

A reduced thrombogenicity of endothelialized HFMs was also confirmed by determi-
nation of the thrombocyte count in blood before and after flow application. The number of
non-adhered thrombocytes in the blood decreased drastically by −79.36% after contact to
non-endothelialized HFMs, while the loss by adhering thrombocytes was significantly less
prominent at −28.20% after blood exposure to endothelialized HFMs (p < 0.01) (Figure 6h).

4. Discussion

With the view to develop the BHL as an alternative therapy option to LTx, several
studies have been published in recent years, proving the general feasibility of this intention.
Representing a core achievement in BHL development, our group was able to establish
a confluent endothelial monolayer (EML) on PMP HFMs, used in contemporary ECMO
oxygenators [14]. Following this, we were able to identify and establish suitable surface
coatings [16,17] and refined seeding protocols [15]. Additionally, we focused on gas transfer
efficiency analysis indicating no impact of endothelial cells on the membrane surface [20,24].
Moreover, different studies demonstrated that the neo-endothelium, established on the
HFM, remains viable, anti-thrombogenic, non-inflammatory and resilient under clinically
relevant flow conditions that were simulated with endothelial cell culture medium even in
long-term evaluation [14,17]. Furthermore, we identified two potential candidates for EC
sources that could be safely applied for future clinical use of the BHL without the risk of
acute rejection, i.e., ECs derived from induced pluripotent stem cells [21] and MHC-Class-I
silenced human ECs [22].

With these recent promising results, the next important stage along BHL translation
is the in vivo assessment. This is essential to analyze the envisaged performance of the
device under clinical conditions, inter alia for crucial bio- and hemocompatibility analysis.
Indeed, short-time exposure of endothelialized gas exchange membranes with whole blood
has already been performed, but in a xenogeneic setting, which only provides very limited
information for the clinical application of HFMs [19]. However, for experiments focusing
on immunological reactions towards the prospective source of ECs, such as MHC-silenced
ECs [22] or iPS-ECs [21], and also in parallel to specific lung injury models to mimic and
investigate gas exchange capacities in patients with end-lung diseases, BHL testing in an
allogeneic animal model, especially for long-term performance, is mandatory.

For this purpose, the porcine model is well-suited, as pigs have comparable anatomical
and physiological properties to humans. In general, organ sizes and relative organ perfusion
rates [25], but also the immunological system [26], are comparable, which are important
prerequisites for future translation. Additionally, blood coagulation is very similar [27,28],
with the exception that porcine blood is hypercoagulable compared to humans [29,30].
Indeed, this needs to be considered with care when assessing anti-thrombogenic effects of
the EML in future in vivo experiments. However, this represents only a minor limitation
of the pig as animal model, since a confirmation of the positive anti-thrombogenic and
anti-coagulative effect of the porcine EML, in the demanding porcine setting, may indicate
that this desired effect might be even more pronounced in the human scenario. However,
the pig seems to be the best fitting animal model as multiple porcine lung injury models
have also been reported and can be used for BHL assessment [31–33].

Analyzing the BHL in the porcine model entails that the biological components, i.e.,
ECs, need to come from porcine sources and not as in all our preceding studies from human
sources, to prevent potential xenogeneic reactions, which would distort the results around
BHL application [34,35]. Furthermore, analysis tools, e.g., antibodies or primer pairs, need
to be adjusted to detect the porcine biology. Therefore, the goal of this study was to prepare
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for this translational step, i.e., testing the BHL in vivo, by establishing and assessing our
endothelialization approach for the HFM, using porcine ECs.

Therefore, we established our easy to handle and reliable EC isolation and cultivation
protocol from porcine carotid arteries, enabling the generation of a viable and confluent
monolayer of high endothelial purity on the HFM. On the one hand, it is important to
have a pure neo-endothelium as the anticipated anti-thrombogenic property will be most
effective, when endothelial cell surface molecules, which actively control hemostasis, are
abundant [36,37]. On the other hand, it is crucial, as complete cellular coverage of all artifi-
cial surfaces will prevent the adsorption of coagulation-initiating proteins. Additionally, the
gapless integrity of the porcine EML was evidenced by a strong and ubiquitous fluorescence
signal for the detection of the intercellular junction protein VE-Cadherin, which was also
detectable after several subcultivations. As the EC population could also be subcultivated
repeatedly without massive loss to viability, phenotype or doubling time, the efficiency
of our protocol to generate the needed large number of ECs (more than 5 × 108) to cover
the prospective porcine BHL prototype, was proven. Furthermore, ECs were still able to
synthesize the basal lamina protein fibronectin de novo, which is essential in signaling a
native-like environment, mediating a physiological EC behavior and contributes to the EML
stability under flow conditions, as observed recently with human ECs on fibronectin-coated
HFMs [17].

However, being a physiologically crucial contributor in hemostasis regulation, ECs in
the native blood vessels can also enter an activated, pro-thrombogenic state, to initiate blood
clot formation, e.g., needed for wound closure at EML injury. In addition, pro-inflammatory
cytokines can induce the endothelial pro-inflammatory state [38], which is an essential
physiological response for the leukocyte recruitment towards inflamed tissue to trigger
rejection processes [39]. Moreover, excessive inflammatory responses can also result in EC
apoptosis and EC detachment [40]. Thus, both pro-thrombogenic and pro-inflammatory
processes should not be triggered accidentally by the EC isolation nor by contact of the ECs
to the foreign membrane surface or any other condition during BHL application, for the
tissue engineered monolayer to prevent thrombotic occlusion, systemic inflammation or
EC detachment. In order to rule out an injury or stimuli mediated shift of the porcine ECs
towards these undesirable EC states, we measured the gene expression levels of relevant
genes. Under standard culture conditions, porcine ECs resided in a non-activated state but
were still able to respond physiologically to deliberate TNFα stimulation by upregulation
of the pro-inflammatory genes E-Selectin, ICAM and TF and the downregulation of TM.
The behavior of the porcine ECs and their response to TNFα was very similar to what we
observed in our earlier studies with anti-thrombogenic human ECs [14,17], indicating that
the insights on the reaction of the porcine EML during future BHL application can also
predict the behavior of the EML in the prospective human BHL.

After proving the general applicability of the porcine ECs, we moved on to endothe-
lialize H/A-coated HFMs, applying our seeding protocol established for human ECs [17].
Hereby, monolayer establishment was as effective as with human ECs [14–16], without
any necessary adjustment to cell number or cultivation procedure. A viable and confluent
porcine EML was detectable all over the HFM, and neither seeding procedure nor HFM sur-
face substrate change, i.e., H/A, mediated a shift towards cellular activation. In accordance
with physiological behavior and as detected on TCP, significant upregulation of E-Selectin,
ICAM and TF was only noted upon deliberate TNFα activation. When seeded on HFMs,
expression levels of TM were slightly but significantly higher compared to TCP, indicating
a minute influence probably caused by the flow evoked by the rotation during the seeding
procedure [41]. However, the higher TM expression at this stage would have no major
implications. On both, TCP and HFM, ECs synthesized the extracellular matrix protein
fibronectin de novo, suggesting that the ECs are potentially able to recreate their native
basal lamina niche, covering over time the surface they initially adhered to, and thereby
also returning to a native-like phenotype. Furthermore, the synthesized basal lamina like
matrix secreted on the artificial surface may also be beneficial to provide physiologic cues
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needed for the efficient re-population and EC migration towards HFM areas, where ECs
were accidentally worn off. Here, the pCECs and the human ECs, assessed earlier, also
shared the ability to synthesize basal membrane proteins, although for the latter, collagen-
IV, a different important basal membrane protein, and not the fibronectin deposition was
confirmed [17].

Next, we assessed the general propensity of the porcine EML on the HFM to withstand
clinically relevant flow conditions, simulated with culture medium. In order to keep the
comparability to earlier studies performed with human ECs, we applied flow rates of 15
mL/min, which represented the scale-adjusted flow rate during a clinical ECMO setting at
30% cardiac output (1.5 L/min) [14,42]. Similar to human ECs, no appreciable cell detach-
ment was detected [17]. Additionally, comparative gene expression analysis revealed on
the one hand physiological responsiveness to flow conditions by KLF2 upregulation [43,44].
On the other hand, E-Selectin and ICAM levels were not influenced by fluid flow, whereas
TF expression was elevated, but did not indicate a switch towards the pro-coagulative state
and rather represents a higher baseline expression under these conditions, as seen already
in human ECs [17]. Additionally, TM levels were slightly downregulated in porcine ECs
upon flow exposure, which, however, did not fall below the level of deliberately activated
porcine ECs on TCP, and thus, could be neglected at this point.

Gene expression analysis obtained the first piece of evidence that pCECs resided in
the endothelial non-inflammatory and non-thrombogenic state that is beneficial to actively
inhibit thrombus formation on HFMs. However, as cellular functionality is decisive for this
attribute, complementary hemocompatibility assays were performed, using heparinized
porcine blood for the first time. Prerequisite for this analysis was the proven EML flow
resistance under clinically relevant conditions. Based on former promising results regarding
flow resilience using 15 mL/min, achieved by both human and porcine ECs, flow rates
were increased to 60 mL/min representing about 100% cardiac output [45]. Moreover,
exposure time was limited to six hours to keep the potential influence of in vitro factors,
such as nutrient consumption, hemolysis or pH shifts, within acceptable limits [46]. Despite
increased shear stress, induced by the higher viscosity of whole blood [47], the EML also
withstood clinically relevant flow exposure, suggesting its resistance during in vivo BHL
application. These promising results were not anticipated, as earlier studies with human
ECs indicated a noticeable cell detachment at higher flow rates, when seeded on H/A
HFMs instead of fibronectin pre-coated HFMs [14,17]. Thus, and due to the fact that in
this study fibronectin deposition on the HFM surface by pCECs could be detected, we
hypothesize that pCECs may produce fibronectin, or extracellular matrix in general, more
efficiently or faster than human ECs, which manifested in a more stable and resistant
monolayer. The difference in extracellular matrix synthesis kinetics between human and
porcine ECs and the implications for cell adhesion strength under flow conditions will be
the subject of future experiments.

Then, the proceeding functionality assay indicated the anti-thrombogenic EML state,
already appreciable by eye, but also impressively confirmed by SEM images by the absence
of fibrin deposits and thrombocytes on endothelialized HFMs, proving the improved HFM
hemocompatibility, which is crucial for reliable BHL long-term application. In contrast,
and comparable to the situation frequently seen during clinical application of ECMO with
human patients, multiple thrombus-like aggregates attached to the non-endothelialized
HFMs, even though the blood in both settings was fully heparinized [48]. Additionally, the
anti-thrombogenic effect of the porcine EML was detectable by changes in D-Dimer levels,
cleaving products of already formed fibrin clots, which significantly increased in blood
exposed to non-endothelialized HFM, while application to endothelialized HFMs resulted
in a significant decrease, indicating the inhibition of fibrin clots by the monolayer. Likewise,
the anti-thrombogenic effect was confirmed by the respective thrombocyte counts, as a
significantly lower decline was observed for the endothelialized HFMs, indicating the pre-
vention of thrombocyte binding. Nevertheless, the experimental set-up consisted of many
blood-contacting components, such as tubing and connectors, and utilized a peristaltic
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pump, which together may have been responsible for the general thrombocyte decrease
in both approaches. Based on the aforementioned potential hypercoagulability of porcine
blood, the coagulation and thrombocyte adhesion evoked by the non-endothelialized sur-
faces in this study may be less pronounced when repeated with human blood. Although
the efficient inhibitory effect of the human EML on platelet adhesion to the HFM could be
proven in earlier studies [16,18,21], a direct comparison between porcine and human blood
in this regard will be subject of future studies. However, the witnessed propensity of the
non-endothelialized surfaces within the mock circuit to potentially attract thrombocytes
and trigger the coagulation system underscores the clear need not only to improve HFM,
but also complete BHL component hemocompatibility for safe long-term application as an
alternative to LTx.

Finally, the observed in vitro similarity of porcine and human EC behavior is essential
for the forecasting power and reliability to translate gained data of the future porcine
in vivo model to human prototype development and application. As we considered the
implementation of all mentioned assays mandatory before putting any animals at risk by
performing ill-prepared in vivo experiments [49], we will now move forward with a clearer
conscience towards porcine BHL application, based on the very good results achieved.
Future animal studies will inter alia include the application of allogeneic, genetically
modified porcine ECs, following the already established MHC-silencing of human ECs,
which potentially will be used as clinically relevant and universal EC source, as they proved
their capability to escape a potential host immune-rejection in vitro [22].

In summary, we managed to establish a first porcine in vitro model of the BHL. We
succeeded in establishing an EML from pCECs on the HFMs of the prospective BHL. The
viable and fully confluent EML showed excellent resilience towards clinically relevant
flow conditions, even when flow was generated by whole blood. Moreover, EML could
significantly improve the hemocompatibility of HFMs as witnessed by the elimination of
blood clot formation and reduction of thrombocyte adhesion, which is urgently needed
for enabling long-term application of BHL as a bridge and alternative to LTx and may
render partly lethal anticoagulative therapy unnecessary. Thus, the positive outcome of
this preparation study now justifies taking further steps towards the pre-clinical translation
of the BHL, i.e., testing in the porcine model under healthy but also lung injury models,
reflecting the clinical scenario in end-stage lung diseased patients.
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