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Abstract: The Barka desalination plant, commissioned in 2018, is the largest desalination plant
in Oman. It has a capacity of 281 MLD with a reverse osmosis (RO) first-pass recovery rate of
46%. As part of the standard operator practice, a membrane autopsy was conducted to determine
the cause of reductions in membrane performance. This study investigated fouled membranes
(model No. SW30HRLE-440) from two different locations in the membrane rack. Various ana-
lytical methods were used to conduct the membrane autopsy. Field-emission scanning electron
microscopy/energy-dispersive X-ray (FESEM/EDS) analyses of membrane samples showed major
components of inorganic foulants. Moreover, black and salt-like crystals deposited on the membrane
surface revealed significant carbon (C) components and oxygen (O), with a small amount of magne-
sium (Mg), chloride (Cl), sodium (Na), aluminium (Al), and calcium (Ca), respectively. A Fourier
transform infrared (FTIR) analysis revealed the presence of long-chain hydrocarbons, carboxylic
acids/esters, carbohydrates/polysaccharides, and inorganic foulants. Thermogravimetric analyses
(TGA) of the membranes showed a high initial weight loss due to organic and inorganic fouling.
X-ray photoelectron (XPS) analyses further confirmed the presence of inorganic and organic foulants
on the membrane surfaces. Bacteria identification results showed the presence of Bacillus cereus
and Bacillus marisflavi. This paper offers a detailed analysis of the foulants present on the reverse
osmosis membrane surface and sub-surface before and after a cleaning process.

Keywords: seawater reverse osmosis membrane; desalination plant; fouling; scaling; bacteria; autopsy

1. Introduction

Reverse osmosis desalination is widely used for seawater desalination and for treating
advanced wastewater. A standard SWRO technology is the most energy-efficient option
for desalination, with a total cost of energy consumption of 1.5–5.5 kWh/m3; this is
significantly lower than other technologies [1–3]. The SWRO membrane lifetime depends
on raw water quality, hydraulic operation conditions, membrane fouling, and cleaning
frequency. Membrane fouling refers to the deposition of unwanted materials on or inside a
membrane’s surface or its pores. Due to their nonporous structure, surface fouling occurs
in RO systems more than in other membrane filtration processes [4,5].

Foulants are categorized into four major groups: soluble inorganic materials, colloidal
matter, dissolved organic contaminants, and biological matter. It is important to note that
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while the distinction between inorganic, colloidal, organic, and biological foulants is useful,
RO membranes are likely to encounter all four categories of foulants during a typical RO
operation. Soluble inorganic compounds and scaling cause inorganic fouling. It occurs
when dissolved salts in the feed water precipitate on the membrane due to an increased salt
concentration that exceeds the solubility limit. García-Triñanes et al. [6] identified several
types of inorganic scaling, such as silica (SiO2), sulphate (SO4

2−), carbonate (HCO3
−),

calcium (Ca), iron (Fe), sodium chloride (NaCl), and aluminium (Al). Al may be present
due to Al2(SO4)3 coagulant used in the SWRO system.

Upon filtration, the dispersed colloidal matter may precipitate out of the film, forming
a cake layer, which creates a barrier that hinders filtration and causes colloidal fouling [7].
This exacerbates the issue of high treatment costs and reduces the quality and quantity of
treated water. The complexity of colloidal fouling makes it challenging to analyze using
a simple fouling index. Accordingly, Ju and Hong [8] investigated the effect of colloidal
fouling in SWRO membrane flux using both a theoretical approach such as cake resistance
simulator-modified fouling index nanofiltration (MFI-NFCRS) and experimental approaches
using a dead-end NF process.

Organic fouling results from interactions between the membrane surface and the
organic foulants and between the organic foulants themselves [9–11]. According to Huber
et al. and Jeong et al. [12,13], humic substances (HSs), low-molecular-weight neutrals
(LMW-Ns), biopolymers (BPs), and building blocks (BBs) are the major foulants that affect
the performance of SWRO membranes. Biofouling is the attachment and growth of mi-
crobial organisms on a membrane surface [5,14,15]. Biofouling is a more complex process
compared to other fouling types. It consists of two main elements: the bacteria and extra-
cellular polymeric substances (EPSs) that are released during bacterial metabolism [16,17].
García-Triñanes et al. [6] found that Pseudomonas spp. and diatoms were primarily respon-
sible for biofouling, releasing polysaccharides containing amide (C=O), amine (N-H), and
C-O groups as identified by FTIR analysis.

As a result of membrane fouling, many desalination plants face financial impacts
from their mitigation and maintenance costs [1]. Despite various approaches and methods
to mitigate fouling, it remains a significant operational challenge. Compared to internal
fouling, surface fouling can be controlled more easily, primarily by using pre-treatment
strategies. The conventional pre-treatment strategies are cartridge filtration, antiscalant
(phosphonate-based antiscalant), and coagulants/flocculants addition. Hypochlorite, a
strong oxidant, is used for biofouling control in the intake pipeline and is one of the most
widely used disinfection substances. However, chlorine reduction is necessary (via sodium
bisulfite) before it reaches the membrane to avoid chemical oxidation that damages the
polyamide membrane. Some treatments increase the solubility of coagulants, and calcium
carbonate causes aggregation of some organic and inorganic fouling, which can be removed
later [18].

Surface fouling is more reversible than internal fouling. Nevertheless, both types
of fouling can be irreversible, depending on the composition of the feed water and the
interactions with the membrane [19]. Membrane fouling may result in pore blocking; the
adsorption of hydrophobic particles; and the formation of nonpolar solutes, gels, or cake
layers. These obstacles lead to declines in rejection and net water flux. The consequence
of these problems is the short lifetime of the membrane and the need for its eventual
replacement [15,20]. In contrast to low-pressure membrane fouling by surface water and
groundwater, research on SWRO membrane fouling has not significantly progressed to
date, despite various efforts.

A membrane autopsy is the most effective method to understand membrane fouling.
Numerous reports of RO membrane autopsies have been published, but most focused on
a lab-scale or pilot-scale RO process [21–23]. The traditional way of assessing membrane
fouling is by looking at the flux decline rate over time, but this is inadequate for evaluating
deposit growth in an RO process [24,25]. For example, Tay et al. [26] noticed a significant
reduction in the permeate flux of an RO membrane, indicating severe fouling occurrence.
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Membrane fouling has been investigated by analyzing autopsies to understand the
underlying physico-chemical processes. Only a few limited studies have evaluated the
physico-chemical processes involved in fouling [27–29]. The complexity of these deposits
limits the value of defining fouling mechanisms from their composition. Observations
using optical microscopy, including field-emission scanning electron microscopy/energy-
dispersive X-ray spectroscopy (FESEM/EDXS) and X-ray diffraction (XRD), can provide
insights into the surface deposits but not into the deeper deposits. This results in a lack
of insight into the kinetics of deposition of various foulants and hence into the fouling
mechanisms. This is especially true for thicker deposits.

Due to the complexity of fouling, several mechanistic studies simplified the problem by
focusing on only one kind of foulant. Nevertheless, it is crucial to know how these different
foulants interact with each other and how they affect fouling mechanisms. According
to recent studies, low concentrations of salt ions in the colloidal cake layer may cause
osmotic pressure to increase and also cause rapid flux to decrease during cake layer
formation [27,30]. In addition, there may be interactions between foulants such as organics
and colloidal particles. Some foulants act synergistically, leading to significant flux decline
instead of the additive effects of organic and colloidal fouling alone [31].

Membrane autopsy is useful in providing operational solutions. Additionally, pro-
tocols for the most appropriate cleaning procedure can usually be recommended once a
comprehensive study of membrane fouling has been conducted during the autopsy process.
The literature contains limited resources on understanding the fouling susceptibility of
SW30HRLE-440 SWRO membranes [32,33]. To the best of our knowledge, an autopsy of an
SWRO membrane from the Barka desalination plant has not been reported yet. This paper
presents the autopsy results from studying a spiral RO membrane after nearly three years
of service in a seawater desalination facility at Barka IWP, Oman. Further insights into
the fouling layer’s development were gained by analyzing the top surface of the fouled
membrane. The analysis of the surface deposits was carried out using morphological,
chemical, and surface analysis techniques including FESEM/EDXS, Fourier transform
infrared spectroscopy (FTIR), XRD, thermogravimetric analysis (TGA), and X-ray photo-
electron spectroscopy (XPS). Moreover, bacteria isolation and the identification of fouled
and cleaned membranes were also conducted and reported. Figure 1 shows a conceptual
visualization of the content of the SW30HRLE-440 RO membrane autopsy.
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2. Materials and Methodology
2.1. Plant Description and Location

The Barka desalination plant is located 50 km west of Muscat, Oman, adjacent to the
existing Batinah Coastal Highway. A schematic diagram of the desalination plant is shown
in Figure 2. The plant capacity is 281 MLD with a recovery of 46% and power consumption
of less than 3 kWh/m3.
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Figure 2. Schematic diagram of Barka IV desalination plant.

The seawater and product water details are provided in Table 1. The plant utilizes
pre-treatment techniques such as coarse and fine screening systems, dissolved air flotation
(DAF) units, and dual-media gravity filters to avoid damage to RO membranes. Moreover,
pre-treatment chemicals are used to ensure contractual outlet parameter values. These
chemicals include antiscalant, coagulant aid (FeCl3), sodium hypochlorite (NaOCl), poly-
mers, and some acids.

Table 1. Seawater and product characteristics of Barka desalination plant.

Parameters Concentration (ppm)
Raw Water Product Water

TDS (mg/L)
pH

Cond (µS/cm)

39,000–42,000
8.3 ± 0.2

55,714 to 60,000

<500 mg/L
8.15 to 8.2

891

Cations
Potassium (K)
Sodium (Na)

Magnesium (Mg)
Calcium (Ca)

408 mg/L
11,100 mg/L
1340 mg/L
435 mg/L

<0.1 mg/L
138 mg/L
2.3 mg/L
15 mg/L

Anions
SO4

−2

F−

Chloride as Cl−

HCO−3

3340 mg/L
2.74 mg/L

22,200 mg/L
168 mg/L

<5.0 mg/L
<0.8 & >0.60 mg/L

<250 mg/L

Boron 5.26 <2.4 mg/L
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2.2. RO Membrane Autopsy

Three membrane modules (one new and two used) from Barka IWP, Oman, were
received. The membrane supplier was Du Pont (USA) with a model No. of SW30HRLE-440.
The bin/location was M1-A1-1 (1st position in the pressure vessel) for new and Rack
J P11-1 and J P 11-2 (1st and 2nd position in the pressure vessel) membrane elements.
The fouled SWRO membrane element selected for the autopsy study was used for nearly
three years. In general, RO membrane comprises three layers [34]: (1) active layer made
up of polyamide (thickness of ~10–200 nm), (2) porous polysulfone layer (thickness of
~50 µm), and (3) support layer (thickness of ~100–150 µm); this is to reinforce the membrane
mechanical durability. In the spiral RO membrane cartridge, two layers of membrane are
sandwiched by one layer of fine spacer (called as one pair) and each pair of membranes is
separated by a thicker spacer. The basic structure of the RO membrane and multi-membrane
arrangement to make a spiral RO membrane used in this study is shown in Figure 3.
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2.3. Membrane Samples: Cleaning and Storage

Fouled membrane pieces were cut 20 cm away from the edges of Rack J P11-1 and
Rack J P11-2 (named as P1 and P2) membrane elements. P1 and P2 membrane pieces
were preserved in deionized water (DI) for 30 min before being treated with acid and base
solutions, and before bacteria isolation (see below). To avoid the cross-contamination of
bacteria from the ambient, prepared membranes were quickly transferred to the biological
lab. In order to identify cleanable fouling, some coupons from P1 and P2 were dipped in
6% w/v citric acid and 6% w/v sodium hydroxide for 30 min, followed by dipping in DI
water for 30 min. All membranes were dried at room temperature and kept in an electronic
desiccator for two days before characterization.

2.4. Membrane Samples Characterization

The fouled, cleaned, and virgin membranes visual inspection was conducted using
optical images taken with a commercial camera in reflection mode. The surface morphology
of all membranes was examined using a field-emission scanning electron microscope
(FESEM, JEOL JSM-7600F) operated at an accelerated voltage of 15 kV with working
distance of 10 mm. Energy-dispersive X-ray spectroscopy (EDXS) with AZtec 3.0 software
detectors (EDXS, Oxford instrument X-Max, UK) was used for elemental mapping of the
membranes. Data were interpreted using AZtec nanoanalysis software. The crystalline
nature of all membranes was characterized using X-ray diffraction (XRD, Miniflex 600,
Rigaku, Tokyo, Japan) with Cu Ka radiation in the scanning range from 10◦ to 90◦ in 0.05◦/s
steps. The surface functional groups of all membranes were studied by attenuated total
reflection–Fourier transforms infrared (ATR-FTIR) spectroscopy (PerkinElmer, Spectra One,
Waltham, MA, USA). The spectra were recorded at a resolution of 4.0 cm−1 in the frequency
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region of 4000–500 cm−1, with an average of 40 scans per sample. The organic and inorganic
contents in membranes were investigated by thermal gravimetric analysis (TGA) using
Perkin Elmer (STA 6000, Waltham, MA, USA) analyzer under N2 gas at a heating rate
of 10 ◦C/min and a gas flow of 20 mL/min from 25 ◦C to 900 ◦C. Surface chemistry
of the virgin, fouled, and cleaned membrane surfaces was investigated using an X-ray
photoelectron spectroscopy (XPS) technique (Scienta Omicron, Taunesstein, Germany).
Since the membrane material was an insulator, a stream of electrons was bombarded
onto the sample surface during XPS measurements to compensate for the charging effect.
Quantitative and qualitative analyses of the XPS results were carried out using Casa XPS
software (Casa Software Ltd., Terrace, Teignmouth, UK). Intrinsic carbon with a binding
energy value of 284.6 eV was used as reference binding energy and calibrated accordingly.

2.5. Bacteria Isolation and Identification

The isolation and identification of bacteria were performed under sterile conditions
in the laboratory. First, Marine Broth 2216 (Merck, Darmstadt, Germany) was prepared
according to the manual. Then, 9 mL of marine broth was placed in each culture tube and
autoclaved (temperature = 122 ◦C, time = 15 min). Second, three pieces (1 × 1 cm) from
randomly selected places of each membrane were cut using sterile scissors. Each piece
was placed individually in a culture tube. Third, the tubes were incubated at 37 ◦C for
48 h. After that, 1 mL of spent broth was transferred onto a Zobell marine agar (HiMedia,
West Chester, PA, USA) and incubated for a further 24 h at 37 ◦C. Fifth, in order to isolate
pure bacterial strains, individual colonies were collected using sterilized metal loop and
streaked on a new marine agar Petri dish. These dishes were incubated at 37 ◦C for 24 h.
This process was repeated several times until pure colonies of bacteria were obtained.
Finally, pure bacteria colonies were identified using MALDI-TOF (matrix-assisted laser
desorption ionization/time of flight) on a Microflex® LRF TOF/TOF mass spectrometer
(Bruker Daltonics, Leipzig, Germany). This method determined the unique proteomic
fingerprint of a bacterium. The mass spectrometer was calibrated using the Bruker bacterial
test standard (Escherichia coli) and run following the manufacturer’s instructions. The
mass spectral data obtained from each bacterial isolate were analyzed using the BioTyper
software (Bruker, Bremen, Germany) to identify bacteria. All samples were analyzed in
duplicates. In the case of contradictory results, the identification of bacteria was repeated
until a clear identity was obtained.

3. Results and Discussion
3.1. Optical Analysis of Fouled and Cleaned Membranes

Visual inspection is one of the most import aspects to study the physical surface
nature of the fouled membrane. This visual inspection also helps to understand the nature
of fouling. For instance, we can note the presence of foulants by observing the color
of the membrane surface. Thus, prior to the investigation with FESEM, optical images
were taken, and visual inspections were carried out. Figure 4 shows the optical images
of the fouled (P1 and P2), cleaned (P1-clean and P2-clean), and virgin membranes. The
surfaces of the fouled P1 and P2 membranes were randomly covered with brown-colored
deposits (see Figure 4a,b) that were not heavily fouled. After cleaning with acid and base
media (immersed in the acid and base media at room temperature without any agitation
or mechanical scrubbing), most of the deposits were removed, as shown in the figure for
P1-clean and P2-clean (Figure 4c,d). However, some of the scale precipitates were not
entirely removed, and the brown precipitates still existed on the membrane surface, as
shown in Figure 4c,d. These leftover precipitates were further investigated with FESEM
and EDXS methods. The virgin membrane in Figure 4e shows a clean and smooth surface
in nature.
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Figure 4. Optical images of fouled and cleaned membranes of (a) P1, (b) P2, (c) P1-clean, (d) P2-clean,
and (e) the virgin membrane.

3.2. FESEM Analysis of Fouled and Cleaned Membranes

Figure 5a–d show FESEM images of fouled membranes before and after cleaning
with acid and base media, while Figure 4e shows the virgin membrane for comparison.
The surface morphology of the fouled and virgin membranes were quite different, where
the fouled membranes (P1 and P2) had rougher surfaces with crevices and the virgin
membrane had a smooth and clean surface. The fouled P1 and P2 membrane surfaces
(Figure 5a,c) were randomly covered with different shapes and sizes of precipitates, which
could have been due to the inorganic foulants known as scaling [35]. These foulants
were later confirmed with elemental analysis using EDXS. Moreover, the cracks in some
parts of the fouled membranes, Figure 5a–c, may have occurred because of the deposition
of different foulant materials on the membrane surface. These cracks were not visually
observed in optical images due to the smaller size of the cracks (~100 to 200 µm in length).
In order to investigate the elemental composition of the foulants present on the membrane
surface, EDXS analysis was carried out on the virgin, fouled, and cleaned membranes.
Since the EDXS technique is sub-surface (1–3 µm in-depth), the detected elements emerged
from the polyamide and polysulfone layers (please see Figure 3b for the reference). For the
fouled membranes (P1 and P2), various elements, such as C, O, S, Cl, Na, Al, Mg, and Ca,
were detected (Figure S1 in Supplementary Material). These elements can be related to the
deposition of inorganic salts such as NaCl and CaCO3, which are the major components of
the feed water. After cleaning with acid and base media (see Figure 5b,d), fewer deposits
were witnessed when compared with the uncleaned P1 and P2 membranes. For comparison,
the virgin membrane was also investigated; its surface mainly consisted of C, O, S, and Al
(Figure S3), and similar elements were also detected (Figure S2) on the P1-clean and P2-
clean surfaces. However, some deposits (indicated by red circles in Figure 5b,d) were still
present on the P1-clean (Figure 5b) and P2-clean (Figure 5d) membranes, even after cleaning
with acid and base media. Moreover, it can be observed that the P1-clean membrane had
more deposition than the P2-clean sample after the cleaning process. The presence of these
deposits might have been due to the incomplete removal of strong bonding minerals on
the membrane surface during the cleaning process or the re-deposition of residues from
the cleaning solution. The differences in deposition were further confirmed using a deposit
weight density test, as shown in Table S1. An EDXS analysis was further conducted on these
deposits (indicated by red circles), and different elements including C, O, S, Si, Ca, Al, and
Mg were detected (Figures S4 and S5), which can come from SiO2 and CaMg(CO3)2 [36].
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Figure 5. SEM images of fouled and cleaned membranes of (a) P1, (b) P1-clean, (c) P2, (d) P2-clean,
and (e) virgin membrane.

3.3. XRD Analysis of Fouled and Cleaned Membranes

An XRD analysis was conducted to study the crystalline and amorphous nature of the
deposits on the fouled and cleaned membranes’ surfaces. Figure 6a,b show XRD patterns
for the fouled membranes (P1 and P2), fouled membranes after cleaning (P1-clean and
P2-clean), and virgin seawater membranes. It was found that three broad diffraction peaks
appeared at 2θ = 17.5◦, 22.5◦, and 25.8◦ for all membranes obtained from the semicrystalline
nature of the polyamide membrane [37]. For the fouled P1 and P2 membranes, two
additional peaks were observed at 2θ = 31.5◦ and 45.5◦ due to the drying of NaCl from
seawater as halite forms on the membrane surface [38,39]. The presence of NaCl on the
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fouled P1 and P2 membranes was also observed in the EDXS analysis and further confirmed
using a quantitative analysis with XPS as shown in Section 3.6 Other elemental compounds
observed in the EDXS analysis were not detected in the XRD analysis apart from the
NaCl crystal, presumably due to their low concentrations on the membrane surface. After
cleaning with the acid and base treatment, the crystalline phase deposits disappeared,
and the XRD patterns for P1-clean and P2-clean were almost similar to those of the virgin
membrane (Figure 6a,b).
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3.4. FTIR Analysis of Fouled and Cleaned Membranes

FTIR spectroscopy was used to investigate the organic compounds on the fouled
membrane surfaces before and after the cleaning process. Different types of functional
groups were detected from both the polyamide (surface layer) and the polysulfone lay-
ers (ATR-FTIR: effective depth of ~1 µm) at the lower wavenumber range between 800
and 1800 cm−1. At a higher wavenumber range between 2700 and 3700 cm−1, only the
chemical characteristics of the surface layer (200 nm from the surface) can be identified [40].
Figure 7a,b show FTIR spectra for the fouled P1 and P2, P1-clean, P2-clean, and virgin
membranes. Apparent changes in the wavenumber range of 800–1800 cm−1 appeared in
both the P1 and P2 membranes compared to the virgin membrane. The individual peak at
1664 cm−1 was noted as an amide I band (C=O), and a C=C ring vibration of the polyamide
layer at 1609 cm−1 [41] appeared as a single band around 1650–1630 cm−1 for both fouled
P1 and P2 membranes, presumably due to protein fouling. In addition, a reduction in
amide II band (N-H) intensity at 1544 cm−1 was observed for both P1 and P2 [41]. The
changes in the band between 1484 cm−1 and 1410 cm−1 could have been due to aliphatic
C-H deformation, C-O stretching, and the O-H deformation of phenol [24]. The band at
1243 cm−1 was a feature of the C-O-C asymmetric stretching vibration of the polysulfone
support layer [40]. A new peak appearing at 1035 cm−1 for both fouled P1 and P2 mem-
branes was attributed to a functional group of C-O obtained from the polysaccharides
that caused fouling [42]. Figure 6a,b show the existence of this peak in the P1-clean and
P2-clean membranes, even after cleaning with acid and base media. In addition, due
to inorganic and aromatic fatty acid and protein fouling, a reduction in some bands at
lower wavenumber regions (600–800 cm−1) was observed in the fouled membranes when
compared to the P1-clean, P2-clean, and virgin membranes [24,43]. The bands between
2900 cm−1 and 3000 cm−1 were assigned to an aliphatic C-H stretching vibration, and the
band around 3030–3090 cm−1 was attributed to an aromatic =C-H stretching vibration for
all membranes [44]. The broad band at 3300 cm−1 was attributed to free and hydrogen
bond N-H stretching vibrations. Moreover, the fouled P1 and P2 membranes showed a
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similar band at 3300 cm−1 with a more broad and increased intensity than that from the
virgin membrane due to polysaccharide fouling [41], which contains numerous amounts of
hydroxyl groups. The adhesive nature of polysaccharides could not be entirely removed by
cleaning as an intense broad band at 2900–3300 cm−1 was detected for both P1-clean and
P2-clean membranes. In addition, the polysaccharide material might behave as a trap for
organic foulants and serve as a source of nutrients for bacterial growth on a membrane’s
surface [45]. FTIR spectra from Figure 7a,b were compared with the literature, and the
results are shown in Table 2.
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Figure 7. The FTIR spectra (a,b) of fouled membranes (P1 and P2) before and after cleaning with acid
and base media and virgin membranes.

Table 2. Peak assignments for FTIR spectra from the literature.

Peaks Peak Assignments and Features References

1040 cm−1 C-O stretching, polysaccharides Rahman et al. [42],
Ashfaq et al. [43]

1243 cm−1 C-O-C, asymmetric stretching, polysulfone support layer Shafi et al. [40]

1544 cm−1 N-H stretching, amide II band Melián-Martel et al. [41],
Matin et al. [46]

1609 cm−1 C=C ring vibration, polyamide layer Melián-Martel et al. [41],
Matin et al. [46]

1664 cm−1 C=O, amide I band, protein Melián-Martel et al. [41],
Matin et al. [46]

1484–1410 cm−1 aliphatic C-H deformation, C-O stretching, and O-H deformation of phenol Tran et al. [24]
2900–3000 cm−1 aliphatic C-H stretching vibration Lee et al. [44]
3030–3090 cm−1 aromatic =C-H stretching vibration Lee et al. [44]

3300 cm−1 free and hydrogen bond N-H stretching, O-H stretching vibration Melián-Martel et al. [41],
Idarraga-Mora et al. [47]

600–800 cm−1 fatty acid, protein Ashfaq et al. [43]
2900–3300 cm−1 polysaccharides Ashfaq et al. [43]

3.5. TGA Analysis of Fouled and Cleaned Membranes

In order to confirm the presence of different foulants such as organics and inorganics,
TGA analysis carried out with the fouled membranes, cleaned membranes, and virgin
membrane. Three weight-loss regions were observed for the fouled P1 and P2 membranes,
whereas only two main weight-loss regions were observed for the P1-clean, P2-clean, and
virgin membranes, as shown in Figure 8a,b. For the fouled membranes, the initial-stage
weight loss of ~1.8% and ~1.2% for P1 and P2 appeared at 30–350 ◦C due to the adsorbed
water and inorganic and organic foulants released from the membranes. However, the
weight loss for the fouled P1 and P2 membranes around 350 ◦C appeared (indicated with a
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black arrow) faster than those for the P1-clean, P2-clean, and virgin membranes, indicating
the presence of scale precipitates and various foulants, such as organic foulants (see FTIR
analysis), on the surface. The second degradation for fouled P1 and P2, and the first degra-
dation for the P1-clean, P2-clean, and virgin membranes, occurred at 350–450 ◦C. Fouled
P1 and P2 lost ~46% and ~45 %, while P1-clean and P2-clean and the virgin membrane lost
~44%. This degradation was attributed to the membranes’ polymer degradation. The third
degradation stage for fouled P1 and P2, and the second degradation stage for P1-clean,
P2-clean, and the virgin membrane from 450 to 550 ◦C was due to the backbone cleavage
of the polymer membranes [48]. In this stage, different foulants in uncleaned P1 and
P2 resulted in an enhanced residue weight % (indicated with blue arrow), as shown in
Figure 8a,b. However, the burn-off residues at 900 ◦C were ~20% for all membranes.
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3.6. XPS Analysis of Fouled and Cleaned Membranes

In order to investigate the surface chemistry of the fouled, cleaned, and virgin mem-
branes, the XPS technique was used, and a quantitative and qualitative analysis was
performed. Figure 9a–e show the quantitative elemental analysis for virgin, fouled P1,
P2, P1-clean, and P2-clean membranes estimated from a survey scan of the XPS analysis.
XPS analysis is a surface-sensitive technique with a sampling depth of ~10 nm; thus, the
elemental composition was different than the EDXS results. Generally, all of the membranes
were predominantly composed of C, O, and N, which mainly arose from the polyamide
layer (refer to Figure 3b). The virgin membrane was composed of 69% C, 20% O, and 11%
N. The fouled P1 membrane surface consisted of 54% C, 32% O, 6% N, 5% Na, and 3% Cl
(Figure 9b), while 53% C, 33% O, 6% N, 6% Na, and 2 % Cl were detected on the fouled
P2 membrane surface (Figure 9d). The fouled P1 and P2 surfaces showed a substantial
reduction in carbon content but higher surface oxygen content than the virgin membrane,
which could have come from C=O formation on the membrane surface. This incremental
scenario was in good agreement with the FTIR results, as shown in Figure 7a,b. Moreover,
the virgin membrane had a higher C-O content than the fouled P1 and P2 membranes,
which agreed with the FTIR results shown in Figure 6a,b as well. After cleaning with acid
and base media, the C and N content slightly increased due to the removal of Na and Cl
from the membrane surface (Figure 9c–e), whereby more photoelectron signals from the
membrane active layer (polyamide) could be detected.
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Figure 9. Quantitative analysis of elemental composition on the surface of (a) virgin, (b) P1, (c) P1-
clean, (d) P2, and (e) P2-clean membranes.

Figure 10a–c show the high-resolution C 1s peak of the virgin, P1, P2, P1-clean, and P2-
clean membranes acquired from the XPS measurement. The common component of C-C/C-
H was observed at a BE value of 284.6 eV on all sample surfaces. However, a higher C-H
content was observed for the fouled membrane compared with the virgin membrane, which
could have been due to organic fouling. The FTIR and TGA results also supported this
observation (see Figure 7a,b and Figure 8a,b). For the virgin membrane, carbon components
of C-O and O=C-O or O=C-N were observed at BE values of 285.7 eV and 287.9 eV,
respectively (Figure 10a) [49]. In Figure 10b, the fouled P1 membrane consisted of three C
components, where C-C/C-H species dominated. Interestingly, four C components were
detected on the fouled P2 membrane surface with an extra peak at the BE value of 283.1 eV
(denoted as *M-C), which can be assigned as carbide-related impurities [50]. However, after
cleaning the membrane surfaces (P1-clean and P2-clean), similar C components, such as
C-C/C-H, C-O, and C=O/C-N, were witnessed. Surface C-O concentration increased after
washing, which affirmed the removal of surface contamination/fouling and subsequent
exposure of the original membrane surface (C-O content in the virgin membrane was the
highest amongst all membranes).
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3.7. Bacteria on Fouled and Cleaned Membranes

To investigate the biofouling on the membranes, bacterial isolation and identification
were conducted. Table 3 shows the identity of bacterial isolates present on the P1, P1-clean,
P2, and P2-clean membranes. No bacteria were isolated from the virgin membrane. Only
Gram-positive bacteria belonging to the Bacillus genus were found on the fouled mem-
branes. This supports the previous findings stating that Bacillus bacteria were commonly
observed on RO membranes even after chlorine treatment [51]. This could have been due
to the formation of spores by these bacteria. Five different strains were obtained from the
fouled P1 and P2 membranes (see Table 3). The fouled P1 membrane had Bacillus cereus,
while the fouled P2 membrane had Bacillus cereus, Bacillus flexus, and Bacillus marisflavi
species. Most of the strains were isolated from the fouled membranes. The P1-clean mem-
brane did not show the presence of bacteria. However, Bacillus cereus was found on the
P2 membrane after cleaning (Table 3), presumably due to cross-contamination during the
experimental process. Previous reports revealed that Bacillus subtilis and Bacillus aquimaris
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were mostly isolated from RO membranes [15,51,52]. The difference between our study
could be explained by the difference in environmental and cleaning conditions. However,
since no other genera of bacteria were isolated, our study highlighted the importance of
the Bacillus species in membrane biofouling.

Table 3. Bacterial isolates from fouled and cleaned membranes identified using MALDI-BIOTYPER
analysis. The score provided by MALDI-Biotyper analysis: 0–1.69, unreliable identification; 1.70–1.99,
probable genes identification; 2.0–2.29, secure genes identification and probable species identification;
2.3–3.0, confident species identification.

Sample Strain Code Bacterial Species Mean Score Value

P1 fouled P1 11 Unidentified 1.40

P1 fouled P1 12 Bacillus cereus 2.12

P1 fouled P1 2-2 Bacillus cereus 2.11

P1 fouled P1 3-1 Bacillus cereus 1.87

P1 fouled P1 3-2 Bacillus cereus 2.12

P2 fouled P2 11 Bacillus flexus 1.73

P2 fouled P2 12 Bacillus cereus 2.14

P2 fouled P2 21 Bacillus marisflavi 1.73

P2 fouled P2 22 Bacillus cereus 1.67

P2 fouled P2 2-4 Bacillus marisflavi 1.72

P1-clean No isolates No isolates

P2-clean P2 Cl-2 Bacillus cereus 2.02

4. Conclusions

The surfaces and sub-surfaces of virgin and fouled SWRO membranes from the Barka
desalination plant were investigated to understand the fouling components and surface
nature of RO membranes. The membrane autopsy revealed that inorganic scalants, such
as Na, Cl, Mg, Al, and Ca, were present, although bacteria and organic matter were
also detected. An XRD analysis of the fouled membranes before cleaning showed the
semicrystalline nature of polyamides and the presence of deposited salt crystals. The
presence of organic and inorganic foulants on the fouled and cleaned membranes was
revealed by using FTIR for the surface and sub-surface, TGA for the whole membrane, and
XPS. Bacteria identification results revealed different Bacillus bacteria species, especially on the
P2 fouled membrane. From the results, it can be concluded that the fouling occurred due to
either inorganic material, organic material, microbial foulant, or chemical oxidation that
affected the membrane structure and physical properties. Therefore, optimized dosages of
antiscalant and coagulant could be the best option for preventing the SWRO membrane
fouling process. Moreover, the cleaning process did not completely remove the foulants
from the membrane surface due to the presence of different types of fouling. This could be
overcome by using destructive autopsy methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes12070671/s1, Figure S1: SEM-EDX analysis of (a) P1
and (b) P2 membranes; Figure S2: SEM-EDX analysis of (a) P1-clean and (b) P2-clean membranes;
Figure S3: SEM-EDX analysis of virgin sea water membrane; Figure S4: SEM-EDX analysis of some
deposits attached on the P1-clean surface (a) spectrum 8 and (b) spectrum 9; Figure S5; SEM-EDX
analysis of some deposits attached on the P2-clean surface (a) spectrum 18 and (b) spectrum 19.
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