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Abstract: This work aims to overview multiphysics mechanobiological computational models for
receptor dynamics along advecting cell membranes. Continuum and statistical models of receptor
motility are the two main modeling methodologies identified in reviewing the state of the art.
Within the former modeling class, a further subdivision based on different biological purposes
and processes of proteins’ motion is recognized; cell adhesion, cell contractility, endocytosis, and
receptor relocations on advecting membranes are the most relevant biological processes identified
in which receptor motility is pivotal. Numerical and/or experimental methods and approaches are
highlighted in the exposure of the reviewed works provided by the literature, pertinent to the topic of
the present manuscript. With a main focus on the continuum models of receptor motility, we discuss
appropriate multiphyisics laws to model the mass flux of receptor proteins in the reproduction
of receptor relocation and recruitment along cell membranes to describe receptor–ligand chemical
interactions, and the cell’s structural response. The mass flux of receptor modeling is further
supported by a discussion on the methodology utilized to evaluate the protein diffusion coefficient
developed over the years.

Keywords: mechanobiology; receptor motility; advecting membranes; multiphyisics methodologies

1. Introduction

The present manuscript focuses on the multiphysics modeling of protein motility
along advecting animal cell membranes, overviewing the state of the art and proposing
suitable physical laws to couple receptor relocation on membranes with cellular mechanical
deformation. From a conceptual point of view, physical theories and mathematical tools
allow us to relate the mechanical principles with the behavior of living matter: thermo-
mechanics of continua [1,2] is the ideal framework to model nature’s laws. Due to its
intrinsic interdisciplinarity, a multi-physics approach to biological phenomena may have
the potential to highlight key and limiting factors, providing innovative pathways for
analysis and interpretation.

Receptor motility along cell membranes is involved in several biological processes,
such as cell, bacteria, and virus adhesion and motility, as well as endocytosis and exo-
cytosis, to cite a few [3–8]. The cell membrane plays a crucial role in cellular protection,
in the control and transport of nutrients [9], and in regulating the interchange of different
substances in the cell [10]. Its structure facilitates directional or Brownian diffusion of re-
ceptors, internalization, and segregation. Acting as a barrier between the extra-cellular and
intra-cellular environments, the cell membrane controls the flux of matter across and along
its surface [11]. Being constituted of two sheets of phospholipid (amphoteric) molecules,
cell membranes in aqueous environments acquire the conformation of a phospholipid
bilayer, with the hydrophobic end inside the bilayer and the hydrophilic outside. Such a
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conformation, including the various embedded proteins (receptors, ion channels, trans-
porters, and other proteins), constitutes the so-called fluid-mosaic model [12]. Membrane
fluidity represents one of the most critical membrane properties [9], and it is still the object
of several studies [9–11,13–17]. Among numerous molecules relocating along the plasma
membrane, we focus here on the motility of receptor proteins. For the sake of generality,
and due to the aim of this manuscript, we do not distinguish among the different types of
receptors in terms of structure and second-messenger systems.

The paper is organized as follows. Continuum models of receptor motility along
advecting membranes are illustrated in Section 2; in it, we will collect and discuss publica-
tions on receptor–ligand-mediated cell adhesion, cell contractility, protein relocation on
advecting membranes, receptor-mediated endocytosis, and a few other subjects. Statistical
models of receptor dynamics are shortly recapitulated in Section 3. In view of the huge
number of publications in this realm, we cannot aim at being exhaustive. In the following
Section 4, we discuss some specific thermodynamic prescriptions for the mass flux of
receptors and the kinetics of receptor– ligand interactions. The summary in Section 5
completes the manuscript.

2. Continuum Models of Receptor Motility
2.1. Receptor–Ligand-Mediated Cell Adhesion

Receptor–ligand-mediated cell adhesion is one of the most common and widely
studied mechano-biological processes. In it, receptor motility plays a significant role. To
the best of our knowledge, the pioneering studies of Bell [18] and co-workers [19] paved
the way in developing multi-physics models in mechanobiology. The receptor density in
receptor–ligand-mediated cell–cell adhesion was analyzed in a thermodynamic framework,
investigating the competition between attractive receptor–ligand and repulsive electrostatic
forces. The former was proven to be of greater influence [18]. An increment of receptor
concentration in the adhesion zone was further proposed as a transduction mechanism for
triggering different cellular responses. Similarly, the redistribution of receptors is viewed as
a signal for cell polarization. Phase transitions occur in cell adhesion, and the stabilization of
the cell–cell contact is achieved via cooperative rearrangements of the internal components
of the cells [19] (Bell and co-workers [19] used internal variables literally, instead of internal
components . As for other terminology such as plasticity, this example displays how very
similar words have completely different meanings in mechanics and biology. Such an
outcome of the cultural and historical evolution of the disciplines is a further challenge in
mechanobiology). Goldstein et al. [20] published a theoretical study of the interaction of
low-density lipoprotein (LDL) receptors with coated pits (specialized cell surface structures
in which receptors aggregate). They evaluated the diffusion limits for the forward rate
constant of the receptor–ligand chemical interaction on a human fibroblast, as well as the
average time that LDL receptors spend on the cell surface before being trapped in a coated
pit. The obtained results, in agreement with the experiments, led them to conclude that
if LDL receptors are inserted at a random position in the cell membrane, their motion is
driven by pure diffusion before being trapped in coated pits. A further study [21] found
that the way in which coated pits return to the surface does not affect the average time that
receptors spend on the membrane, the forward rate constant or the fraction of receptors
aggregated in coated pits at high values of the diffusion coefficient, whereas the effect is
substantial for “immobile” receptors.

To mimic cell–tissue interaction, the kinetics of cell adhesion due to the bonding
between αIIb β3 integrins and ligands, gravitation, and Helfrich repulsion were studied
in [22] for a single giant vesicle on a solid substrate. The analysis of the growth of the
adhesion front revealed the prominent role of the receptor–ligand pairs: at high concentra-
tions, the kinetics of ligand–receptor formation drives the propagation of the front of (tight)
adhesion at constant velocity, whereas small ligand densities entail a diffusion-limited
growth with a square root dependence on the time. The role of receptor motility in the
process of adhesive contact was analyzed in the transient growth of the adhesion zone by
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Freund and Lin [23]. They assumed the flow of receptors to be proportional to the local
gradient in chemical potential and formulated a continuum model of the adhesion of an
initially uniformly curved elastic plate to a flat substrate. For very large plates, they solved
the problem in closed form, whereas the necessity of numerical methods emerged for those
of a limited size. Using the same model, Shenoy and Freund [24] investigated the expansion
of a circular adhesion zone when binder (ligand) density is insufficient to overcome the
repulsive barrier that resists cell adhesion. They explained the cross-over effect observed
in [22] when the densities of ligands and receptors are equal. Indeed, the growth of the
adhesion front radius with a time square root dependence observed experimentally in [22]
was recovered

R(t) = 2 a
√

D| L t , (1)

with t meaning time, D| L ligand diffusivity and a coefficient depending on the ratio between
the ligand and receptor concentrations, cL and cR; particularly, a assumes finite values for
cL/cR < 1, whereas the square-root growth regime breaks off for cL/cR ' 1.

Liu et al. [25] extended the former framework [23,24] and introduced a so-called
traction–separation relation to model cell–substrate interaction. They provided an addi-
tional contribution to the flux of receptors, otherwise governed by the classic Fick’s law,
proportional to the traction component tangent to the membrane surface, to account for the
role of non-specific force as driving force for the recruitment of receptors towards the adhe-
sion front. Numerical simulations via finite-element methods shown that the advancing
adhesion front might be stable or unstable if exposed to small perturbations, as a function of
the membrane shear modulus, the adhesive tractions, and the receptor density. Instability
occurs at high adhesive tractions, soft membranes or high ligand–receptor concentration
ratios. The traction–separation model [25] was extended in [26], performing simulations
of biotin receptor-streptavidin ligand binding-mediated attachment–detachment of a red
blood cell to a substrate. A surface diffusion model described receptor motility. The
governing equations were implemented in a finite element scheme, providing results in
agreement with experimental data.

Golestaneh and Nadler [27] introduced a spontaneous area dilation to account for
the influence of receptors on cell deformation and adhesion. Similar to the adhesion–
traction model [25,26], a non-linear receptor–ligand binding force replicated the charge-
induced dipole interactions, while Fick’s law governed the diffusion of the receptors on the
membrane. This study examined the nature of the coupling between electrostatic adhesive
forces and the deformation of particle [28] via a non-linear continuum model. A strong
coupling was found for small and moderate membrane deformations.

2.2. Cell Contractility

Deshpande and co-workers proposed a bio-mechanical model, widely used later
on, to couple cell contractility with focal adhesions (FAs) [29]. The mechano-sensitive
properties of FAs were modeled in a continuum framework, wherein the cytoskeletal
contractile forces generated by stress fibers (SFs) drive and stabilize the assembly of the
FA complexes. The model accounts for the diffusion of low-affinity integrins along the cell
membrane and predicts different levels of concentration of FAs. Simulations replicated high
concentration of FAs around the periphery of the cell, the increment of FAs at decreasing cell
sizes, and the decrease in intensity of FAs if cell contractility is curtailed. Stemming from
this framework, a signaling model was devised based on the generation of IP3 molecules
during the FA growth [30], predicting the range of IP3 diffusivities at which the SF activation
signal is spatially uniform. The model [29] was also employed for investigating the role
of actin cytoskeleton in compression and cell adhesion [31,32], and to account for the
feedback between intracellular signaling, FA formation, and SF contractility in the osteoblast
response on a grooved substrate [33]. Simulations revealed the presence of stretched
SFs dominant bundles during compression for polarized and axisymmetric spread cells.
Round cells were predicted to have fewer SFs and a lower compressive strength. Highly
contractile cells were revealed to provide greater resistance to compression by means of
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dominant circumferential SFs [31]. Supported by experimental observations, the substrate-
dependent response of contractile cells with no predefined SF or FA arrangement was
predicted. SF contractility was found to affect the substrate-dependent response of cells,
including changes in nuclear stress and cell tractions. An increment in SF and FA formation
was numerically predicted for stiffer substrates [32]. In [33], it was shown that the cell
orientation is governed by the diffusion of signaling proteins activated at FA sites on the
ridges. The responsiveness of osteoblasts to the topography of substrates was rationalized
by the model. Broadening [29,33], a non-local finite element setting, was implemented
in [34] to study the competition between cytoskeletal and passive elastic-free energies as a
driving mechanism in cell spreading. As experimentally observed, a high concentration
of aligned SFs along free edges corresponds to a state with low free energy. McMeeking
and Deshpande [35], while summarizing previous models [36,37], presented a bio-chemo-
mechanical model implemented in a finite element code for simulating in vitro cell behavior.
They targeted contractility, adhesion, signaling, cytoskeleton formation and remodeling.

A coupled formulation of chemo-diffusive integrins with the cytoskeleton, underlying
cell contraction and spreading, was proposed in [38]. In agreement with experimental ob-
servations, numerical simulations suggested that substrate stiffness and chemistry strongly
affect cellular contraction and spreading. The relevant role of mechanics in contraction,
adhesion, and spreading of adherent cells was highlighted.

2.3. Protein Relocation on Advecting Membranes

Mikucki and Zhou [39], using an energetic variational principle on advecting mem-
branes, derived a curvature-driven transport equation, relating molecule concentrations to
a gradient flow governed by a drift-diffusion equation. They predicted the molecular local-
ization on static membrane surfaces at locations with preferred mean curvatures, and that
the molecular localization is in turn driven by the generation of preferred mean curvature.

Carotenuto et al. [40] developed a multi-physics approach to investigate how ligand–
receptor interactions along the cell membrane trigger raft formation. Diffusion and kinetics
of binding and unbinding were studied. Understanding how transporters and active
receptors trigger raft formation and clustering is of paramount relevance in membrane-
mediated phenomena such as COVID-19 virus–cell interaction.

A discrete model of chemotaxis, which takes into account possible alterations in
cellular motility, was presented in [41]. A derivation of the Patlak–Keller–Segel (PKS)
model as a continuum limit from the discrete model was shown. Comparisons between
numerical simulations of the discrete model and numerical solutions of the PKS model
were performed, showing an excellent agreement between the two models.

The authors of this review studied the relocation of transmembrane receptors along ad-
vecting cell membranes, like for Vascular Endothelial Growth Factor Receptors 2 (VEGFR2)
and αvβ3 integrins, by designing chemo-transport-mechanical multi-physics
formulations [42–45] to describe how the mechanical behavior of an endothelial cell (EC)
affects receptor dynamics during the early phases of tumor angiogenesis. VEGFR2 dynam-
ics on cell membranes was studied in [42] for EC adhesion onto a rigid substrate coated
with specific immobilized ligands, on the basis of the established role as activator of the
angiogenic process of the chemical interactions between soluble non-canonical ligands,
as gremlins [46,47], released by cancer cells. Although strongly simplified assumptions on
cell mechanics were made, VEGFR2 dynamics was well captured and validated against
co-designed experimental investigations [48]. The emergence of three different phases of
VEGFR2 relocation and complex generation was unveiled and related to distinct mecha-
nisms, including: (i) the initial cell–substrate contact interaction and the VEGFR2–gremlin
high chemical reaction rate, (ii) the mechanical deformation, (iii) the VEGFR2 relocation on
EC membrane due to diffusion. The mathematical description of the model was detailed
in a companion paper [49]. The model, framed in the mechanics and thermodynamics of
continua, follows a general description proposed in [50], and takes advantage of successful
descriptions of physically similar systems [51–53]. The model has been broadened [43,44]
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to account for the interplay between VEGFR2 and VEGF-A or thegremlin, αvβ3 integrin
and the glycoprotein fibronectin embedded in extracellular matrix, and the experimentally
revealed interaction between αvβ3 integrin and the VEGFR2–gremlin complex [54]. The
induced receptor polarization was identified in cell protrusions and in the basal aspect of
ECs. Relocation and reaction of αvβ3 receptors along cell membranes were also included
in a general framework for cell spreading, motility, and receptor dynamics [44,45]. The
mechanics of the cell was accounted for in the field of finite strain theory in continuum
mechanics and in a consistent (continuum) thermodynamic setting, together with the
modeling of relocation and reaction of actin proteins to form biopolymer structures.

2.4. Receptor Mediated Endocytosis

Based on [23,24], Gao, Shi and Freund [55] presented a receptor-mediated endocytosis
study, considering the role of mobile receptors in wrapping the cell membrane around a
cylindrical or spherical particle coated with immobile and uniformly distributed ligands.
They showed the existence of a minimum value of both particle radius and receptor density
below which wrapping cannot take place. An estimation of the size of the smallest and the
largest particle that can be successfully wrapped was given.

A similar study was performed by Decuzzi and Ferrari [56]. They considered both
elliptical and cylindrical particles, showing how the internalization is affected by size and
aspect ratio.

The same model proposed in [55] allowed us to develop a framework for modeling
uptake and release of nanoparticles in human and animal cells. In that paper, the mechanics
of cell–nanomaterial interactions was investigated, showing how nanoparticles enter cells
by receptor-mediated endocytosis. Coarse-grained molecular dynamics was implemented
to perform simulations of nanoparticles interacting with cell membranes [57].

Further works on receptor-driven endocytosis were presented by Wiegold, Klinge,
Gilbert, and Holzapfel [58,59]. They considered viruses as a substrate with fixed receptors,
whereas receptors of the host cell could relocate on its membrane. Numerical simulations
performed via finite difference methods showed a rapid variation in receptor density at
the early stage, while approaching a steady state as the time progresses.

2.5. Protein Motility Miscellanea

Lee et al. [60] proposed a finite-difference mathematical model to describe charged
receptor transport on the cell membrane, showing the importance of cell shape in receptor
diffusion and in the response to an extracellular sinusoidal electric field. They illustrated
how the distribution of receptors may alter transmembrane potential and highlighted
the prominence of cell shape (i.e., of the mechanics that rules its evolution) in governing
interactions between alternating current electric fields and receptors.

Mac Gabhann and Popel [61] modeled the effect of placental growth factor (PlGF)
on the response of VEGF ligands in pathological angiogenesis. A set of coupled reaction–
diffusion equations described secretion, transport, binding, and internalization of ligands.
The presence of PIGF was established to determine a change in the formation of endothelial
surface growth factor–VEGFR1 complexes, and a less significant increment in the number of
VEGFR2 complexes. Similar equations were used in [62] to study the binding kinetics and
signaling pathways of basic fibroblast growth factor (FGF-2) through a reaction–diffusion
model of in vitro FGF-2 transport and receptor–ligand binding. Based on experimental
results that included degradation of the internalized cell surface species, formation of
double triads, and dimerization of FGF-2 ligands, the role of the low-affinity heparan
sulfate proteoglycans (HSPGs), the identity of the minimal signaling complex leading to
FGF-2 activity, and the importance of FGF-2 dimerization were pointed out.

Rattanakul, Crooke et al. [63] modeled the signal transduction pathways involving
G-proteins by including reaction–diffusion equations of various reactants both inside
and on the extra-cellular surface membrane. They investigated the dynamic and steady-
state properties of the model via weakly nonlinear stability analysis, showing the robust
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formation of Turing-type patterns under different system parameters, and discussing
theoretical predictions against reported experimental evidence.

As an extension of [64], Earnshaw and Bresslof used reaction–diffusion equations
to describe the trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid re-
ceptors (AMPA-Rs) and to evaluate how lateral diffusion contributes to the strength of
a synapse [65]. They calculated the distribution of synaptic receptor numbers across the
population of spines, determining the effect of lateral diffusion on the strength of a synapse.

Daniels [66] deduced a mathematical expression, in the perturbative deformation
regime, to describe the diffusion-limited reaction rate. The coupling between the defor-
mation of a curved membrane and the chemical activities along it was accounted for. The
reduction of 20% of the receptor–ligand reaction rate due to the locally induced membrane
curvature was theoretically derived.

3. Statistical Models of Receptor Motility

Kusumi et al. [67] studied the relocation of E-cadherin and transferrin receptors along
mouse keratinocyte cell membranes. A compartmentalization of the cell membrane in
small domains, wherein receptors are confined, was suggested as a consequence of the
detection of four types of receptor motion (stationary mode, simple Brownian diffusion, and
directed and confined diffusion). This conjecture arose from the development of a mean-
square displacement (MSD)-based method and the experimental comparison between
single-particle tracking (SPT) and fluorescence photobleaching recovery (FPR).

In investigating the non-Brownian diffusion of molecules on membranes by the STP
method, Monte Carlo simulations on particles undergoing short-term confined and long-
term hop diffusion within a compartment were performed. This simulation strategy detects
and characterizes the anomalous diffusion by systematically varying the frame time and
rate [68].

By means of a coarse-grained triangular element model, Atilgan and Sun [69] devel-
oped a Monte-Carlo methodology, examining the changes in free energy during membrane
shape transitions. They showed how a critical value of the concentration of proteins
may bring to the formation of small vesicles, therefore influencing the topology of the
plasma membrane.

A bimolecular fluorescence complementation (BiFC)-based approach combined with
fluorescence correlation spectroscopy (FCS) was used to monitor the diffusion of G-protein-
coupled receptor oligomers in the plasma membrane [70]. The approach was used for
the first time to measure the membrane diffusional characteristics of adenosine A1 and
A2A receptor homo- and heterodimers in Chinese hamster ovary cells, demonstrating the
differences in diffusivity between adenosine receptor homo- and heterodimers.

Paszek et al. [71] developed a chemo-mechanical model in which integrin diffusion,
changes in integrin activation status, and integrin–ligand interactions were simulated via
kinetic Monte Carlo (KMC) algorithms. The results show the mediator role of glycocalyx in
integrin–ligand interactions, which was found to be sufficient to drive integrin clustering
even in the absence of cytoskeletal crosslinking or homotypic integrin–integrin interactions.

Receptor dynamics was also accounted by Duke and Graham [72] in reviewing statisti-
cal mechanical models for receptors clustering. They accounted for cluster generation and
discussed the equilibrium thermodynamics of receptors, ligands, and cytosolic adaptor pro-
teins. The role of adaptor proteins in permitting cells to exert control on cluster formation
and to target clustering at specific locations on the cell surface was highlighted.

A nano-meter scale mathematical model that couples membrane bending and long
surface molecules (LSMs) compression was presented in [73] to reproduce the lateral
mobility of LSMs by drift–diffusion equations. Size-based segregation of LSMs from a
receptor–ligand complex was proposed as the mechanism of receptor triggering. Supra-
diffusive segregation of LSMs from a single receptor–ligand complex was found.

The reduced mobility of receptors after aggregation processes on the membrane was
modeled via both standard and density-dependent diffusion equations in [74]. Critical val-
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ues of the mobility were compared with numerical simulations, showing that the formation
of the aggregate is quite influenced by density-dependent diffusion.

Martini et al. [75] studied the kinetics of a membrane-integrated protein that locates at
specific binding sites on the genome, and also acts as a transcriptional activator. Mathe-
matical analysis and KMC simulations of lattice models were combined with fluorescence-
microscopy experiments. CadC (the pH receptor of the acid stress response Cad system
in E. coli) diffusion along the membrane and conformational fluctuations of the genomic
DNA were accounted for. They found that diffusion and captured mechanisms are po-
tentially sufficient for bacterial membrane proteins to establish functional contacts with
cytoplasmic targets.

4. Discussion
4.1. Modeling the Mass Flux of Receptors

Most continuum models described in Section 2 account for the protein transport. The
mass flux of receptors, hR, is usually described via Fick’s law,

hR = −D| R ∇S [ cR ] , (2)

with diffusivity D| R and surface gradient operator ∇S [ ].
Other authors [25,26] reformulated Equation (2) for hR, assuming that receptors are

attracted by ligands by means of a traction force function of the receptor-l-igand distance—
within a certain cutoff distance—and concentrations. In this case, in addition to Fick’s law
concentration gradient, a further flux term

hT
R = uR t cos β (3)

shall be accounted for, where uR is the receptor mobility under ligand attractive forces and
t cos β represents the tangential component of the traction—see Figure 1 .

Figure 1. Schematic of an adherent cell onto an enriched ligands substrate, inspired by [25,26].
The image depicts the concept formulated within the adhesion traction model. Vectors nS and tS
represent the normal and the tangent vector at a certain location on the cell membrane, respectively.
Within the cutoff limit δ, the tangential component t cos β of the traction exerted by ligands (vertical
traction t), attracts the receptors on the cell membrane, generating an additive flux term, hT

R, appearing
in Equation (3). β is the angle with respect to the vertical defined by t.

The influence of non-specific traction forces exerted by ligands on receptor motility
and cell adhesion has to be related to the cell size and/or the stage of adhesion consid-
ered. Studies performed on different time scales and cell sizes, for the spreading of a
mouse embryonic fibroblasts on a matrix-coated surface [76], or for a bovine aortic EC
on polyacrylamide gels [77], confer an influence of such forces mostly related to the early
stages of adhesion. The adhesion–traction model predicts the isotropic early stage of
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cell adhesion [25] well, essentially independent to cytoskeleton remodeling and strongly
dependent on high ligand densities. This was made even more clear in [26], where a
micropipette-manipulated red blood cell attachment–detachment model showed, for an
analysis of ≈ 50 ms, a level-off of the adhesion–traction forces after approximately a third
of the adhesion-spreading time, and a consequent need for receptor diffusion from remote
areas of the cell to fuel the spreading. Moreover, at lower densities of ligands, the spreading
becomes strongly dependent on cytoskeletal structures, and cells tend to spread anisotropi-
cally by randomly extending pseudopodia [77]. Furthermore, studies on charged flexible
particles that adhere to an oppositely charged rigid substrate due to electrostatic attraction
forces [28] established that surface forces drive small particle adhesion. The underformed
cell radius was considered in the micron/sub-micron range 1 µm [77], or even smaller,
12.5 nm [27]. It follows that, in dealing with cells of radius 10 µm or higher (such as ECs),
receptor motility and cell adhesion can be considered unaffected by short-range surface
tractions, since their energetic contribution appears to be insufficient in cell spreading
without accounting for pseudopodia migration mechanisms.

4.2. Evaluation of the Protein Diffusion Coefficient

The diffusive motion of a particle α is predicted by the well-known Einstein–
Smoluchowski relation,

D| α = u| α kB T (4)

with kB as the Boltzmann constant, u| α mobility coefficient and T temperature. To the best
of our knowledge, the first model to evaluate the diffusivity was proposed by Saffman
and Delbrück (SD) [78], describing the diffusion of a particle due to Brownian motion in
biological membranes, and demonstrating a weak logarithmic dependence of the lateral
diffusivity on the particle radius rα,

D| α ∝ ln[ rα ] . (5)

Several experiments have been devoted to investigating the parameters that influence
the diffusivity of proteins on the membrane, such as the membrane’s thermal fluctua-
tions [79], the bending rigidity and surface tension [80], the change in the membrane
shape [81], and the hydrophobic mismatch between protein length and membrane thick-
ness [82,83]. The Saffmann theory [84] of membrane hydrodynamics was extended to
investigate the correlated Brownian motion of protein pairs [85,86]. The influence of
protein concentration on the motion was accounted for in deriving expressions for the
diffusion coefficients as a function of concentrations for small protein size [85]; the effect of
the immobile inclusions on the membrane was studied in [86].

The Saffman–Delbrück theory [78] was questioned when investigating the depen-
dence of D| α on the protein radius [87], because a non-hydrodynamic primary source of
protein drag was found after experimental observations. A numerical framework to predict
the diffusivity of arbitrarily shaped objects embedded in lipid bilayer membranes was
proposed [88], and the influence of finite-size effects in molecular simulations was investi-
gated [89]. An underestimation of diffusion constants due to the sizes of the simulation
was predicted via coarse-grained Martini and all-atom CHARMM36 (C36) force fields [90].
By measuring the lateral mobility of transmembrane peptides via fluorescence correlation
spectroscopy (FCS), the SD theory was confirmed for low protein-to-lipid ratios, whereas a
linear dependence between the diffusion coefficient and the protein radius was found for
higher protein-to-lipid ratios [91], further accounting for the influence of the peptide struc-
ture by comparison between experimental data and coarse-grained molecular dynamics
(MD) simulations [92]. How peptide–membrane lipid interactions generate mechanisms
that drive membrane deformations and lead to the curvatures necessary in membrane
remodeling processes was examined in [93]. The surface chemistry adaptability of peptides
via side chain rearrangements in response to the environment, the amplification of their
activity by means of hydrophobicity and cationic charge, and the pivotal role of their shape-
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changing properties in interacting with membranes was demonstrated [94]. The collective
diffusion coefficient in deformable bilayer membranes hosting transmembrane proteins
that diffuse collectively was studied, revealing the resistance exerted by the presence of
proteins on monolayer sliding [95]. Via fluorescence correlation spectroscopy, diffusion
coefficients of transmembrane proteins in different types of membrane were estimated
in [96], and a linear decreasing trend of membrane-bound protein diffusivities with the
increase in membrane coverage proteins was proved in [97].

The discrepancies in the evaluation of the diffusion coefficient with that predicted
by the SD model results were analyzed in [98]. However, the mobility of a rigid spher-
ical particle of radius rα in a 3D solvent with viscosity ν has an inverse dependence on
the particle radius, as found by the SD theory [78] and expressed by the well-known
Stokes–Einstein relation,

u| α = 6π ν rα , (6)

The mobility of the same particle when embedded in a 2D fluid membrane is further
elaborated. Complexities arise from the coupling between the 2D fluid and the surrounding
3D solvent, with the constraint of no slip at the interfaces. Such hydrodynamic coupling
introduces an inherent length scale into membrane hydrodynamics, ζ = νS/ν, where νS is
the 2D membrane viscosity. It was therefore proposed to evaluate the mobility of a diffusive
particle on a membrane according to [98]:

u| α =
1

4π νS
f (ζ/rα) with f (ζ/rα) =

{
πζ/4 rα for ζ � rα

ln[ ζ/rα ]− γE for ζ � rα
(7)

with γE is the Euler–Mascheroni constant.
In conclusion, the results show that the weak logarithmic dependence (see Equation (5))

of the diffusivity on rα in fluid membranes holds particles much smaller than ζ. For proteins,
the applicable limit is ζ/rα � 1, suggesting that all membrane-bound proteins, and even
the constituent lipids of the membrane, should have approximately the same diffusion
constant [98].

4.3. Modeling Receptor–Ligand Kinetics

The chemical reaction

R + L
kon
�
koff

C (8)

portrays the conversion of freely diffusive receptors on the membrane to trapped receptors,
and vice versa. kon and koff are the forward and reverse rate factors for the formation,
or dissociation, of the complex C from free receptors and ligands, R and L.

The authors of this review modeled the reaction rate w of the chemical reaction (8)
through the following law of mass action [99]

w = kon
θR

1− θR

θL

1− θL
− koff

θC

1− θC
, (9a)

where θα is defined as θα = cα/c max
α , with cα meaning concentration (molecules per unit

area) and c max
α concentration saturation limit, for α = R, L, C.

Another common way to write Equation (9a), as in [18,26], for instance, is

w = kon (cR − cC) (cL − cC)− koff cC . (9b)

Equation (9b) appears in [18,26] written in terms of densities (number of species per unit
area) instead of concentrations. The relation which links the density of species, ρα, to the
concentration is

ρα = κα cα ,

with κα molecular density.
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Considering that external forces may cause the unfolding or disruption of receptor–
ligand complexes [18,19,100,101], it was proposed in [26] to augment the law of mass action
(9b) by two exponential terms. The first exponent multiplies the forward reaction term of
the equation and depends on the receptor–ligand separation distance (within the cutoff
limit). The latter, multiplying the backward reaction term, is assumed to be dependent
on the ligand–receptor traction force. Equation (9) arises considering only short-range
receptor–ligand interactions, which lead to strong adhesion, much more than non-specific
forces [18,25].

The chemical reaction (8) descends from a more general relation that describes the
generation of a protein complex via a two-step mechanism in which the formation of
an encounter complex R|L precedes either the generation of the final complex C or the
recovery of free proteins [102,103]:

R + L
kon
′

�
koff
′
R|L

kon
�
koff

C , (10)

where the coefficients kon
′ and koff

′ represent the rate of formation and dissolution of the
encounter complex.

In the formation of R|L , proteins change their orientations, leading either to evolution
into C, when R and L proteins match to each other, or to dissociation into free proteins.
Geometry, in terms of inter- protein distances and rotation angles with respect to the
orientation of C, is relevant in achieving the final step of association. In a certain range of
distances and angles, an electrostatic steering region determines the directional diffusion
mobility of protein(s) instead of Brownian motion [103].

If the concentration of R|L is smaller than the concentration of both the free proteins
and the final complexes, it is a good approximation [18] to neglect the variation in time
of R|L in Equation (10), leading to the most commonly used relation (8). Accordingly,
the generation of a receptor–ligand complex can be considered to occur immediately
once the receptor–ligand distance is sufficiently small. This allows us to disregard the
dependence upon the cutoff distance and the predominant rotational Brownian motion
of receptors in the R|L state [78]. Tight cell–substrate adhesion allows us to consider
complexes as immobilized to the substrate once generated, leading to the mass action law
in the form of Equation (9a).

Lastly, as introduced in Section 2, receptor motility is commonly associated to cell
adhesion and spreading, therefore requiring a description of the cell by means of the
laws of mechanics. Cell mechanical response can be assigned either to the bulk of the
cell or to the cell membrane. The former choice, supported by [29–32,34–37,44,45,104],
for instance, implies the assignment of the cell structural response to the cytoskeleton
remodeling; alternatively, other authors demand the structural functions to the cell mem-
brane, for instance [105–109]. Despite studies on red blood cells providing a description of
the cell membrane deformation at a constant area [110], the influence of curvature on the
membrane elastic stiffness is related to cell dimensions. The link among curvature, elastic
stiffness and cell dimension was highlighted in [27] in studying a small cell of the radius
12.5 nm.

We are persuaded that the attribution of the structural response to the cell membrane
and the importance of binding forces on the mechanical response of cells stated in [27] do
not match with cells with larger dimensions, as ECs.

5. Summary

In this article, we summarized theoretical approaches and computational method-
ologies developed since the late 1970s, in modeling protein motion along advecting
membranes for different biological processes. It has been our aim to collect some of the
most emblematic mathematical and computational methodologies, providing a broad
introduction to a scientific topic which is in great development nowadays.
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Multi-physics methodologies applied to receptor motility along cell membranes may
provide a rationale to the evolution in time of quantities of interest for the protein dimer-
ization processes observed experimentally, identifying limiting factors with significant ac-
curacy. Receptor dynamics and receptor–ligand chemical interactions are coupled with cell
mechanics. Mechanobiology provides the description of the evolution of cells, with the po-
tential to predict protein dynamics and cell behavior in biological processes. Co-designing
theoretical multi-physics frameworks, numerical simulations, and experimental outcomes
may allow us to identify the laws that regulate receptor activation, relocation and recruit-
ment, therefore opening new perspectives to support biological and medical research.
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