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Abstract: Atmospheric pollution has become a critical problem for modern society; therefore, the
research in this area continually aims to develop a high-performance gas sensor for health care and
environmental safety. Researchers have made a significant contribution in this field by developing
highly sensitive sensor-based novel selective materials. The aim of this article is to review recent
developments and progress in the selective and sensitive detection of environmentally toxic gases.
Different classifications of gas sensor devices are discussed based on their structure, the materials
used, and their properties. The mechanisms of the sensing devices, identified by measuring the
change in physical property using adsorption/desorption processes as well as chemical reactions on
the gas-sensitive material surface, are also discussed. Additionally, the article presents a comprehen-
sive review of the different morphologies and dimensions of mixed heterostructure, multilayered
heterostructure, composite, core-shell, hollow heterostructure, and decorated heterostructure, which
tune the gas-sensing properties towards hazardous gases. The article investigates in detail the growth
and interface properties, concentrating on the material configurations that could be employed to
prepare nanomaterials for commercial gas-sensing devices.

Keywords: gas sensors; semiconductors; polymers; nanomaterials; metal oxides

1. Introduction

With the increase in demand for energy and economic growth, there is continuous
emission of several pollutants, namely, H2S, NOx, NH3, CH4, SOx, CO, and fluorocarbons,
from industries and automobile exhaust into the environment, creating many health prob-
lems [1,2]. To minimize and control the harm resulting from air pollution, there is a need to
monitor the units that detect these factors and determine pollutants within the range of
standard norms. In 2018, at the Global Conference on Air Pollution and Health, the General
Director of the World Health Organization, Dr. Tedros Adhanom Ghebreyesus, stated that
air pollution is a “silent public health emergency” and “the new tobacco” [3]. Therefore,
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detecting and observing flammable and toxic pollutant gases are required to safeguard
human health and protect the environment [4,5]. Throughout the years, several types of gas
sensors have emerged that employ numerous sensing materials with diverse transduction
platforms [6–8]. In the 1960s, Seyama tried to demonstrate that gas sensing can be done
with ZnO thin-film electrical devices [9]. He employed chemoresistive ZnO thin films
working at a temperature of 485 ◦C. The chemoresistive thin films showed approximately
a 100-times detection response to propane in comparison to the thermal conductivity gas
sensor. In 1970, Taguchi synthesized the first practical application of a chemoresistive
gas sensor with tin dioxide (SnO2) [10]. With the pioneering work conducted by Seyama
and Taguchi, many researchers have started working with and proposing the use of gas-
sensing devices with varied functionalities. Metal oxides are regarded as the material of
choice for a gas sensor owing to their low cost, high stability, ease of fabrication, and high
sensitivity [11,12]. With the advancement in nanotechnology, researchers have focused
on low-dimensional nanoparticles and quasi-one-dimensional (1D) structures, namely,
nanowires and nanotubes [13]. Nanostructured metal oxide semiconductors enhance the
signal sensing due to their large surface area and because they are stable at a high operating
temperature in comparison to their bulk form. The issue with metal oxide semiconductor
sensors is the baseline resistance drift during the interactions, which lessens the surface
accessibility to reactive gases, resulting in low selectivity [14]. This difficulty may be
partially resolved by combining an array of different sensors, also called an “electronic
nose”, to simultaneously analyze several signals at once [15]. Combining various metal
oxides or using them with different materials, such as graphene, conducting polymers,
etc., to form heterostructures has been found to improve the selectivity and exhibit unique
gas-sensing characteristics [16–24]. Different fabrication methods can be employed to syn-
thesize one-dimensional (1D) and two-dimensional (2D) layered heterojunctions, core–shell
nanostructures, and three-dimensional (3D) hierarchical structures [25–31].

Despite advancements in nanotechnology and material science and the outcomes
achieved with heterostructure gas sensors, further investigations and studies are needed,
such as those focusing on the reproducibility of the fabrication process, possible diffusion
across the junction, synergistic effect among the material forming the heterostructure,
and stability of the contact. Consequently, a careful investigation of the growth and the
interfacial properties of gas-sensing nanomaterials can fill the present gap in the laboratory
studies and the real-world exploitation of heterostructures. This review aims to provide
insights on the growth and use of different structures for gas-sensing nanomaterials that
detect specific types of gas operating at room temperature or at high temperatures, where
it can be applied commercially.

2. Performance of Gas Sensors

The performance of gas sensors has been analyzed using different parameters, such as
response time, selectivity, sensitivity, recovery time, stability, and fabrication cost [32,33].
Selectivity is the capability of a gas sensor to recognize a specific gas present in the gas
mixture. Sensitivity is a change in the measured signal per analyte concentration unit,
i.e., the slope of a calibration graph—that is, the sensor response versus the target gas
concentration. Response time, Tres, gives the duration when the concentration of the gas
reaches 90% of the total response of the signal, such as resistance upon exposure to the
target gas. Reversibility refers to the ability to check whether a gas detector returns to its
starting state after the gas returns to its normal concentration level [33]. Recovery time, Trec,
is the time it takes for a gas sensor to return to 10% of the final value after the removal of
the measured variable. It represents the ability of a gas sensor to reproduce the output for a
certain period of time. These results include retaining selectivity, sensitivity, and response
along with recovery duration. Ideally, a gas detector should show high sensitivity, stability,
fast response, fast recovery, high selectivity, and low cost of fabrication [32].
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3. Gas-Sensing Devices

Over the past years, several gas sensors have been designed based on different sensing
materials and different methods. Gas sensors are classified as electrochemical, catalytic
combustion, infrared absorption, thermal conductive, solid electrolyte, paramagnetic, and
metal oxide semiconductor sensors [34], depending on the change in electrical resistance
with different materials and their compositions. Semiconducting metal oxide, polymers,
carbon nanotubes (CNTs), graphene, etc., are mostly used (Figure 1).
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Gas sensors can also be classified based on optic, acoustic, calorimetric, and chro-
matography methods. According to Comini [36], a gas sensor can be classified based on the
measurement methods, such as (1) DC conductometric gas sensors, (2) photoluminescence
(PL)-based gas sensors, and (3) field effect transistor (FET)-based gas sensors. Table 1
illustrates the comparison of various gas sensors studied by Korotcenkov [37]. Target gas
detection by a metal oxide semiconductor has gained wide attention because of its various
advantages over other types of sensors. Electrochemical gas sensors have become unpop-
ular due to their short lifespan, limiting their use to only a few applications. Although
an optical gas sensor has good sensitivity, an adequate lifespan, good selectivity, and fast
response, the cost is high and the size is large. Although metal oxide semiconductor gas
sensors are less selective, the low cost and simplicity in fabricating them are the main
factors that contribute to their wide usage.

Table 1. Comparison of various types of gas sensors. Reprinted with permission from Ref. [37].
Copyright 2007, Korotcenkov, G.

Parameters

Types of Gas Sensors

SMO Gas
Sensors

Catalytic
Combustion
Gas Sensors

Electro
Chemical Gas

Sensors

Thermal
Conductivity
Gas Sensors

Infrared
Absorption
Gas Sensors

Sensitivity E G G P E
Accuracy G G G G E
Selectivity F P G P E

Response time E G F G F
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Table 1. Cont.

Parameters

Types of Gas Sensors

SMO Gas
Sensors

Catalytic
Combustion
Gas Sensors

Electro
Chemical Gas

Sensors

Thermal
Conductivity
Gas Sensors

Infrared
Absorption
Gas Sensors

Stability G G P G G
Durability G G F G E

Maintenance E E G G F
Cost E E G G F

Suitability to portable
instruments E G F G P

E: excellent, G: good, F: fair, P: poor.

4. Gas-Sensing Materials
4.1. Metal Oxide Semiconductors

A metal oxide semiconductor gas sensor is constructed using a sensitive material; it
can also be fabricated on a suitable support, where the gas molecules are recognizable. The
gas molecule can be recognized either on the surface of the sensing material or present
in the material. The change in concentration of the sensing element can be transformed
into an electrical signal. This simple sensing mechanism process enables the device to be
fabricated using several configurations. The Taguchi gas sensor uses a sintered porous
sensitive ceramic body material (Figure 2).
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Other examples of metal oxide semiconductor gas sensors with different forms and
dimensions are displayed in Figure 3. The slurry of the gas-sensing materials can be
deposited onto an alumina ceramic tube and then sintered to an elevated temperature in
order to form a layer of thick sensing film. The temperature is monitored using a metal-coil
heater present within the tube, as shown in Figure 3A. The planar form of gas sensors
consists of a thick/thin layer of sensing material deposited onto a ceramic substrate using
physical or chemical methods employing interdigited electrodes, as shown in Figure 3B.

The sensing material layer is synthesized onto a plastic support, thus enabling the
formation of flexible metal oxide semiconductor gas sensors, as shown in Figure 4a. These
gas detectors are small; however, there is an increased demand for miniaturized gas sensors
for various applications, particularly to make them compatibile with integrated circuit (IC)
technology. IC devices are synthesized with a top-down approach, which results in higher
throughput for large-scale integration. Using this process, micromachined metal oxide
semiconductor gas sensors can be designed on a chip substrate, allowing easy interface with
the conventional Si micro-electronics (Figure 4b). The development of finer microstructures
has led to the creation of a synthesized nanosize gas sensor [37].
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Metal oxide-based gas sensors sense gas by monitoring the variations in electrical
signals due to gas. The model of the adsorption or desorption process is the most-followed
gas-detecting mechanism, focusing on chemical or physical adsorption and desorption
of the analyte gas on the sensing surface, causing a change in the material resistance
attributed to the variation in the concentration of the charge carrier. When metal oxides are
exposed to air, the oxygen (O2) molecules get adsorbed on the material surface. When O2
is adsorbed on the metal oxide surface, the molecules tend to reside in the O2 vacancies
formed previously and then take up electrons from the conduction band of the material to
obtain negative O2 species.

O2 (g)→ O2 (ad) (1)

O2 (ad) + e− → O2
− (ad) (2)

O2
− (ad) + e− → 2O− (ad) (3)

O− (ad) + e− → O2− (ad) (4)

After consuming the electrons that are present in the conduction band, a depletion
layer of electrons is formed. The O2 adsorption causes the Fermi level to slide downward
and bend the conduction band upward. Here, with the arrival of the target gas, it expe-
riences a redox reaction with the negative O2 species liberating electrons again into the
conduction band. There is shrinkage of the depletion layer, the O2 vacancies re-form, the
conduction band and the Fermi level to return to normal, and resistivity is regained, as
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shown in Figure 5 [42]. In metal oxide semiconductors, the main charge carriers are the
electrons, as in n-type materials, such as TiO2, ZnO, WO3, and particularly SnO2, or holes
in p-type materials, such as CuO and NiO [43]. Most research has investigated n-type metal
oxide semiconductors for chemical sensing [44]. However, p-type metal oxides are less
often examined than n-type metal oxide semiconductors, due to the lower performances as-
sociated with the nature of charge carriers [45,46]. When the metal oxide surface is exposed
to reducing elements, such as hydrogen, acetone, and ethanol, there is a decrease in n-type
resistance, but p-type resistance increases. Due to interactions with oxidizing elements,
such as ozone and carbon dioxide, electrical resistance increases in n-type semiconduc-
tors and decreases in p-typesemiconductors. The advancement of nanotechnology has
enhanced the phenomena and knowledge of existing materials at the nanoscale. In the early
2000s, the research community prioritized metal oxide gas sensors on zero-dimensional
nanoparticles and 1D structures, namely, nanowires, nanorods, and nanobelts [13].
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Nanostructured metal oxide semiconductors enhanced the sensing of the signals due
to their large surface-like nature and their stability at high working temperatures.

Solution synthesis techniques are known to be simple yet powerful ways to prepare
semiconductor nanomaterials. Hydrothermal synthesis is considered to be the most re-
searched technique, enabling the synthesis of a variety of metal oxides [47]. This is carried
out by chemical reactions and variations in the solubility of the substances present in
aqueous solution under ambient pressure and temperature. This synthesis is done in
an autoclave in which the concentration of the solution, the time, and the temperature
of the reaction are controlled [48]. Solvothermal [49], pulse laser deposition (PLD) [50],
atomic layer deposition (ALD) [51], RF sputtering [52], thermal evaporation [53], E-beam
evaporation [54], electrospinning [55], the facile solution method [56], sol-gel [57], and
chemical vapor deposition (CVD) [58] are also employed for the synthesis of metal oxide
nanostructure films.

SnO2 is a widely researched n-type metal oxide material that can be applied in many
practical commercial devices. It is a wide band gap semiconductor (3.6 eV) known for
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its good electrical charateristics [59]. It is highly sensitive to different gas species and it
enables the detection of low-concentration gaseous species. Figure 6 displays an MQ-9
module of an SnO2 gas sensor for detecting CO, which is readily available on the market.
However, it suffers from a lack of selectivity. A titania (TiO2) n-type semiconductor is
known for its gas sensing due to its lesser cross-sensitivity to humidity in comparison to
various metal oxides [60]. TiO2 has been explored as a resistive oxygen gas-sensing layer
working at temperatures ranging from medium to high for air or fuel automotive ratio
control. At 400–600 ◦C temperatures, the detection of oxygen is largely attributed to the
reaction occuring on the surface, whereas for temperatures between 700 and 1000 ◦C, the
detection of oxygen is mostly attributed to oxygen ions diffused in the bulk materials [61].
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Copper oxide (CuO), a p-type semiconductor where the holes are most of the carriers,
has a high response to gas that cannot be obtained in n-type semiconductors. Here, the key
parameters for obtaining high sensitivity to gas is the high interparticle connection [62]. The
p-type semiconductor metal oxides, CuO, NiO, Mn3O4, and Cr2O3, catalyze the oxidation
of volatile organic material, thus attaining excellent selectivity to those gases [35]. An
additional benefit of a p-type gas sensor is its humidity tolerance. The p-type semiconductor
nickel oxide (NiO) (3.6–4.2 eV) material withstands and works at temperatures above
500 ◦C and can sense H2 [63]. It also exhibits a high ratio response to NH3, a quick
response to recovery in temperatures ranging between 250 and 350 ◦C for the thin film
synthesized by employing RF sputtering [64]. NiO nanowires show good gas-sensing
operation towards toluene, acetone, ethanol, methanol, and triethylamine at 350 ◦C [65],
whereas NiO nanowires synthesized by employing a catalyst, such as Pt and Au, exhibited
improved sensing to H2 and CO at 300 ◦C and at 500 ◦C for acetone [66]. The p-type
chromium oxide (Cr2O3) (3.4 eV) has been explored for use as a gas sensor [67], where
enhanced sensing of toluene is obtained by the Cr2O3 microspheres [68].

4.2. Conducting Polymers

In 1983, the properties of conducting polymer sensors were first reported. The gas
sensor employed doped polypyrrole (PPy) operating as an ammonia sensor [69]. Now, con-
ducting polymers, poly (3,4-thylenedioxythiophene), polyaniline (Pani), and polythiophene
(PTh), with their composites, are employed in chemical sensors due to their advantageous
properties, such as versatility, low cost, high sensitivity, low working temperature upon
exposure to various gases, and ease in processing variations in electrical and optical prop-
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erties [70–75]. Conducting polymer sensors convert the analyte into observable signals:
resistance, absorption, waves, or audible variables. When the sensor is exposed to the
analyte vapor, the interaction occurs between the gas molecules and the polymer sensor ma-
terial, which causes variations in the physical properties of the sensor’s material. Electron
acceptors, such as NO2, have the ability to detach electrons from the aromatic conducting
polymer rings. During this event, the electric conductance and the level of doping in the
p-type polymers (PANI or PPy) increases. Consequently, their electrical resistance decreases.
This process can be elaborated upon with the support of the following equation.

NO2 (gas) + e− → NO2
− (ads) (5)

Based on the equation given above, the concentration of electrons on the polyaniline
surface are reduced. In fact, the conductivity of a pure conducting polymer is rather low.
Thus, to achieve higher conductivity and make it suitable for sensing, a doping procedure
is necessary. Poly (9-vinylcarbazole) (PVK) and poly(3-hexylthiophene-2,5-diyl) (P3HT)
are the two semiconducting polymers widely used as an active layer in organic field effect
transistors (OFETs) for the sensing of NO2, as depicted in Figure 7 [76].
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Rakesh et al. studied the synthesis of polyaniline (PANI) film under a room-temperature
condition for sensing NO2. With ammonium persulphate employed as the oxidant and
aniline as the monomer, using the chemical oxidative polymerization process, the PANI film
was successfully synthesized and it exhibited excellent sensitivity of 12.10% at 100 ppm
of NO2, showing a rapid response of ~11 s and a recovery of 7 min, respectively [77].
Matindoust et al. investigated the gas-sensing characteristic of PANI films, where the
films were coated using polyimide on a flexible sheet. PANI films were studied at several
humidities and variations in the NH3 gas flow ranging from 50 to 150 ppm to sense the
odor emitted from meat spoilage. The gas sensor displayed high sensitivity and a quick
NH3-sensing response [78]. Liu et al. studied a PANI nanofiber–metal oxide gas detector
for detecting CO in hydrogen. In that study, the gas-sensing device was fabricated using an
interdigitated electrode. It showed a good sensing response to a 1 ppm concentration of CO
in hydrogen under 25 ◦C [79]. Karmakar et al. investigated a NO2 gas sensor employing
a silver–polypyrrole nanocomposite (Ag-PPy). The Ag-PPy thin film doped using 15%
PTSA (p-Toluene sulfonic acid) exhibited more selectivity and sensitivity to NO2 at room



Membranes 2022, 12, 555 9 of 27

temperature. It displayed a good sensing response of 68% at 100 ppm NO2, showing a
148 s response time and a 500 s recovery time [80].

4.3. Graphene and Carbon Nanotubes

Since 2004, scientists have shown great interest in manufacturing graphene, its modifi-
cations, and their applications in several fields [81], due to its outstanding characteristics,
such as single-atom thick 2D conjugated structures, stability at room temperature, large
specific surface areas, and ballistic transport. High conductivity and ballistic transport en-
abled graphene to exhibit less signal hindrance when operated as a gas sensor [82]. It does
not necessitate electric heating, due to its chemically stable nature under room temperature
for chemical sensing [83,84] All these features enable graphene to be a potential candidate
for gas sensing. There are four major ways to fabricate single-layer and multilayered
graphene: micromechanical exfoliation, vapor deposition, epitaxial growth, and chemical
reduction [85–87]. In 2007, the first experiment using graphene for sensing gas molecules
was approved. Schedin et al. discovered that a micrometer-sized graphene gas sensor can
detect single gas molecule adsorbed to or detached from the graphene’s surface [88].

Choi et al. reported on the use of multilayered graphene to effectively sense NO2. The
multilayered graphene films were fabricated employing the CVD method using a flexible
substrate embedded with a microheater [89]. It exhibited a low NO2 detection limit at
200 ppb levels and a quick response time upon exposure to 1 ppm NO2 at room temperature.
Nemade et al. developed a graphene-based CO2 sensor [90]. They synthesized layered
graphene employing an electrochemical exfoliation method that displayed high stability,
quick response, fast recovery times, and a low detection limit. This layered graphene also
displayed excellent sensing characteristics to liquid petroleum gases. Figure 8 hows the
real-time response of dimethyl methylphosphonate (DMMP) vapor detected by a para-
phenylene diamine reduced graphene oxide-based vapor sensor. Its excellent repeatability,
superior selectivity, and low limit of detection are displayed in Figure 8 [91].
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Researchers have been employing CNT as a material for gas sensors for 20 years [92].
The seamless cylinders obtained using graphene sheets wrapped in the axial direction form
a single-wall CNT (SWCNT) if all the atoms present in one sheet act as surface atoms. In a
multi-wall CNT (MWCNT), many sheets are present and the atoms on the outermost layer
account for the sensing response [93]. CNTs have a high surface area-to-volume ratio and
good mechanical properties, chemical stability, and electronic properties that are reliable for
gas-sensing applications. They are considered to be the next generation of gas sensors that
can bring a change in the market [94]. CNTs are highly sensitive to the gases that donate or
withdraw electrons, such as NH3 and NO2. However, there are difficulties in technologies
that hamper their commercialization; the synthesis is expensive and it is challenging to
grow defect-free nanotubes [95].



Membranes 2022, 12, 555 10 of 27

SWCNT can be produced using the CVD method [96] and the arc-discharge method [97].
Wongwiriyapan et al. developed a SWCNT network gas detector that was synthesized on
Al2O3 substrates using a CVD setup [96]. Prior to the CVD process, a Fe (0.5 nm) thin-film
layer was synthesized on an Al (6 nm) layer on the substrate using the electron-beam
evaporation method. On the back of the substrate, a Pt layer was formed that worked as
a heater. The SWCNT was deposited using CH4 (99.99%) as the carbon source at 53 kPa
pressure and a 300 sccm flow rate at 850 ◦C for 5 min. The deposited SWCNT network had
a uniform diameter covering the Al2O3 substrate region. The SWCNT network exhibited
good sensitivity to NO2 gas at a concentration of 50 ppb.

In 2000, Kong et al. found that there are three orders of magnitude changes in the
electrical conductivity of semiconductors when they are put under NO2 and NH3 gases [92].
SWCNT exhibits a p-type semiconducting nature with a Fermi level at 25 meV above
the valence band, resulting in a semiconducting performance at room temperature and
resistances of 0.3–5 MΩ [98]. Due to the adsorption of NO2 molecules on the SWCNTs,
there is a transfer of charge to NO2 from SWCNT, as NO2 molecules tend to seize more
electrons. In the case of NH3, a lone pair of electrons is collected by the SWCNTs. Hence,
the conductivity of SWCNTs rapidly increased when exposed to NO2 and decreased when
exposed to NH3. The SWCNT network displayed good sensitivity to NH3 and NO2 under
room temperature, as displayed in Figure 9a,b, respectively [99]. There was an increase in
resistance as the NH3 concentrations increased. The sensors displayed quick response time
and fast recovery time. The response to NO2 sensing is also shown in Figure 8b. Compared
to NH3, there was a decrease in device resistance. The resistances were reduced by 7%,
32%, 41%, and 46% at various respective concentrations of 0.5, 5, 50, and 500 ppm for NO2.
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MWCNTs were also explored in gas-sensing applications. Ahmadi et al. designed
gas sensors using MWCNTs. MWCNTs were synthesized using the electrophoretic depo-
sition (EPD) technique on a polytetrafluoroethylene (PTFE) membrane in non-aqueous
media [100]. Furthermore, the MWCNT layer was formed using paste and employing
doctor blade deposition. From the experimental results, it can be concluded that the EPD
method required a lower amount of MWCNT in comparison to the doctor blade method.
Valentini et al. employed plasma-enhanced CVD (PECVD) to synthesize MWCNT film on
Si3N4/Si substrates and form NO2 gas sensors. The resistivity decreased when exposed
to NO2 gas. The sensor worked at an optimal temperature of 165 ◦C and it detected a
low sensing limit of 10 ppb. It showed quick response and good selectivity. Furthermore,
MWCNT-based sensing behavior could be enhanced with heat treatment in oxygen [101].
The semiconducting nature of MWCNT film changed to metallic after heat treatment in
oxygen. It was found that when exposing the device to NO2, the electrical resistance
decreased suddenly. Chung et al. observed that the electrical resistance of an MWCNT
with a large diameter decreased in air after electrical breakdown, whereas no sensitivity
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was seen if no electric breakdown occurred [102]. Hence, MWCNT sensitivity could be
controlled by the degree of electrical breakdown. MWCNTs with a larger diameter showed
higher sensitivity, because MWCNTs with a large diameter have more damage in the shells
during an electrical breakdown, thus forming more places for oxygen molecule adsorption.

Kawano et al. built a gas sensor using the electrothermal effect of MWCNTs placed
within two Si microbridges as seen in Figure 10 [103]. Placing the Joule-heated MWCNT
under different levels of gas pressure, the device resistance changed depending on the
conductive heat transfer nature of the gas molecule. The electrothermal MWCNT gas sensor
was sensitive to different concentrations of gas used and also helped in differentiating the
gases. Moreover, the MWCNT gas sensor showed quick reversible responses, small volume,
and low power consumption with the provision of integrating it with microelectronic
fabrication processes. Figure 10 displays the schematic of the MWCNT electrothermal
gas-sensing principle, where a single MWCNT is present between two Si microbridges.
The system is heated using electrical current. The total heat generated was divided into
three parts: heat conduction to the two microbridges (WC), heat radiation (WR), and
heat transfer through the gases (Wgas1 and Wgas2 for two gases having different thermal
conductivities). Since the heat-transfer process is associated with the gas pressure and
the gas item, the change in temperature and thus the change in resistance of the MWCNT
would be dependent on the gas pressure and gas item.
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5. Strategies for Improving Gas-Sensing Properties
5.1. Bilayer or Multilayered Heterostructure

A heterostructure is basically a physical as well as an electronic junction present among
two dissimilar materials. As materials connect, electrons, which are at a higher energy
level, tend to flow along the interface to unoccupy the lower energy states until the Fermi
levels are alligned. This results in the formation of a depleted charge-carrier region at the
interface. A potential barrier builts at the junction owing to the band bending, due to the
variation in the Fermi level of the material. After overcoming the potential energy barrier,
the charge carrier moves through the interface. This combination of various materials
provides a unique way to enhance the structural and functional properties, thus enhaning
the structure’s gas-sensing capabilities.

A heterostructure on bilayer or multilayered films exhibits a clear interface, which is
suitable for characterization and can be readily modeled due to the easy stacking of the
2D material. The thermal stability in these structures can be easily investigated and the
possible growth of mixed phases can be studied due to the diffusion along the interface [90].
Hsu et al. studied [Pd/Fe]2 multilayers formed on MgO(001) to investigate the hydrogen
impact on the magnetic interlayer coupling [104]. In this work, the complex magnetic
hysteresis nature, consisting of single, double, and triple loops, was analyzed as a function
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of the azimuthal angle in a transverse direction and a longitudinal direction. With the
exposure to hydrogen gas, the separation of two minor loops increased due to the creation
of Pd-hydride, enhancing the ferromagnetic coupling among the two Fe layers. Upon
applying a favorable constant magnetic feld, there is a reversible 90◦ rotation of the top-Fe
moment following hydrogen exposure, suggesting that the Pd space layer employed for
mediating the magnetic interlayer coupling is highly sensitive to hydrogen; consequently,
this multilayered system can work as a giant magnetoresistance sensor applicable for
hydrogen sensing, as depicted in Figure 11a,b.
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Verma et al. synthesized a highly sensitive H2S gas sensor using a multilayered
SnO2/CuO thin film and pulse laser deposition (PLD) [50]. In this work, sequential laser
ablations were employed for each material for every 10 layers. The contents of the material
were found by changing the laser pulses. There was enhanced H2S detection using SnO2
with 3 vol% of CuO content, forming SnO2/CuO multilayered films. The creation of p-n
junctions as well as the adsorbed O2 species enabled higher electrical resistance of the
multilayered SnO2/CuO thin-film devices in comparison to single SnO2 thin-film devices.
Furthermore, a p-n-p-n multilayered interface was made, resulting in different depletion
regions. CuO changed to CuS upon exposure to H2S. CuS possesses metallic properties,
causing shrinkage of the space charge regions at the interfaces of CuO/SnO2. It was found
that the reduced depletion width allowed more charge carriers to flow through the SnO2
layer. Maximum response was found with 3 vol% of CuO multilayered structures; this was
attributed to the decrease in porosity of the film with the increase in the content of CuO.

Zhang et al. fabricated a high-performance sandwich CuO–rGO–CuO H2 sensor
using the hydrothermal technique and drop-casting method [105]. Two sensor groups
were prepared, one with three-layer (CuO–GO–CuO) and one with five-layer ((CuO–GO)2–
CuO) structures. For comparison, sensors on pure GO along with CuO films were also
designed. All the films were heat treated under 180 ◦C for 3 h in order to reduce GO
into rGO. Of all the devices, the CuO–rGO–CuO film gas sensor displayed the highest
performance to H2 over a wide concentration range. This is because the conductivity
of bare CuO was lower and the capability of the hydrogen molecule captured by bare
rGO was weaker in comparison to the CuO–rGO–CuO film. The (CuO–rGO)2–CuO film
thickness was greater than the CuO–rGO–CuO hybrid film, so the electrons disappeared
in the multi-layer transfer process, leading to a weaker performance in comparison to the
CuO–rGO–CuO film.

Liang et al. reported on humidity sensing using sputtered ZnO and In2O3; their
multilayered thin films were anlayzed by impedance measurement [106]. They found
that the chemisorption of H2O molecules can tune the sensor impedance in low relative
humidity conditions even with the high-impedance bare In2O3 and ZnO films. They also
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found that the increase in the concentration of relative humidity allowed Grotthuss chain
reactions to occur on the surface of the films. The adsorbed H2O molecules led to free
hydrogen ions hopping among the H2O molecules, releasing H3O+ by dissociating H2O.
In the multilayered ZnO/In2O3 thin film, the existence of a heterojunction and enhanced
charge density increased the humidity-sensing performance.

Larin et al. reported on the comparison of an H2S sensor between bare, bilayer, and
multilayered SnO2/TiO2 films [107]. It was found that the sensor response decreased when
the content of TiO2 in the multilayered sensors increased due to the agglomeration of the
TiO2 content into larger grains, which decreased their catalytic activity.

Hoa et al. built a gas detector using hybrid graphene and NiO nanosheets. They
reported two orders higher sensitivity in comparison to the bare NiO nanosheet devices for
NO2 sensing at the 1 ppm level [108].

Pasha et al. worked on the synthesis of PEDOT-PS reduced graphene oxide organic
thin flms for NH3 gas sensing at room temperature; 10% rGO-doped PEDOT-PSS thin films
showed enhanced sensitivity with a rapid response and recovery duration of 1.05 and
2.84 min for different concentration of NH3 gas from 200–1000 ppm [109].

5.2. Mixed Compounds

Mixed compounds have received a lot of attention due to the ease in their preparation
techniques. The compounds are obtained by combining two or more materials with the
help of chemical or physical methods. Evans et al. reported on MWCNTs and SWCNTs
modified using VO2 for sensing H2O vapor and NH3 at room temperature [110]. The VO2–
SWCNTs and VO2–MWCNTs were synthesized by employing a continuous hydrothermal
flow synthesis. First, the powder of SWCNTs or MWCNTs was spread in a salt solution
of vanadium to synthesize the hybrids. The VO2-CNTs gas sensors showed excellent
sensitivity in comparison to pure VO2. Both the composition of the surface as well as
the microstructure had a significant effect on the performance of the hybrid gas detector.
Zhou et al. described the synthesis of an rGO/Cu2O nanocomposite for an H2S gas sensor
that can detect gas at a low limit of 5 ppb under room temperature. This was due to
the large adsorption of H2S molecules on the surface and the absence of any capping
surfactant [111]. Wang et al. reported on a room-temperature NH3 sensor using CeO2
nanoparticles@cross-linked PANI, which showed a fast response time and high long-term
stability. The nanohybrids exhibited an enhanced sensing response under room temperature
from NH3 in the range of 6.5 to 50 ppm, owing to the formation of p-n junctions through
the interaction between both of these materials [112]. PANI is the most prominent material
amongst the conducting polymers employed for highly selective and sensitive materials
for low-concentration NH3 sensors at room temperature. Eising et al. employed PANI to
synthesize a hybrid MWCNTs-PANI film for an NH3 gas sensor [113]. The hybrid was
modified using three different dopants: camphorsulfonic acid, sulfuric acid, and m-cresol.
This gas sensor exhibited higher sensing than the bare PANI device, which was attributed
to the stability of MWCNTs. The MWCNTs-PANI film doped with camphorsulfonic acid
showed the highest sensitivity. These hybrid sensors demonstrated an NH3 gas-sensing
limit of 4 ppm at room temperature.

Ge et al. investigated porous hybrid In2O3-SnO2-sensing nanostructures synthesized
successfully using the facile hydrothermal technique and calcination [114]. The hybrid
structures with 3% In2O3 showed a higher response of 30.7–100 ppm formaldehyde de-
tection at 100 ◦C, 14 times greater than pure SnO2. The In2O3-SnO2 nanostructure gas
sensor exhibited good stability and selectivity for formaldehyde. Here, the improved
formaldehyde sensing characteristics were due to the n-n heterojunctions and the synergis-
tic interaction between the In2O3 as well as SnO2 in the hybrid nanostructure, as depicted
in Figure 12a,b.

Shaposhnik et al. reported on the comparison of hydrogen sensing using TiO2-doped
SnO2 produced by coprecipitation and mechanical mixing, respectively; this yielded similar
randomized dispersions [115]. The optimal composition for sensing H2 was 10 mol% of
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TiO2 for the coprecipitation and 20% of TiO2 mixing mechanically. Thus, composition has a
significant impact on the gas-sensing performance.
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Bai et al. reported on the gas detection response by varying the content of WO3 in
the mixed compound of WO3-SnO2 produced using the sol precipitation technique [116].
The compound obtained with 20% of WO3 showed a high NO2-sensing response value
ranging from 186 to 200 ppm. However, the sensing response was reduced slowly as the
WO3 content in the compound decreased or increased. Substitutional ion dissolution into
the lattices of other metal oxides could be seen in the mixed compound, although the ionic
radii of the material was different.

5.3. Decorated Structure

In these structures, the host material is decorated with nanoparticles of a secondary
material. This method is employed to combine different types of materials, such as metals
and carbon-based materials like graphene [18–21]. The existence of a semiconductor–
semiconductor junction or a Schottky contact results in several sensing properties that
alter the nature of heterostructures. Common methods used to decorate nanoparticles
are sputtering, thermal evaporation, and solution. The second decorating material of the
structure has to be applied in lower quantities to make it effective.

Gautam et al. found that the NH3 gas-sensing nature of graphene deposited using
CVD showed enhanced sensitivity and improved recovery time after decorating with
gold nanoparticles on the surface of graphene films [117]. Huang et al. prepared an NO2
sensor using sulfonated rGO decorated with Ag nanoparticles (as displayed in Figure 13).
This device demonstrated quick responses to NO2 in comparison to other graphene-based
sensors. When rGO decorated with Ag nanoparticles were put under 50 ppm of NO2, the
sensor displayed a good sensitivity of 74.6% and a response and recovery time of 12 s and
20 s, respectively. Liu et al. reported on an H2 sensor using SWCNT decorated with Pt
nanoparticles synthesized with the aerosol jet-printing technique [118]. After treating the
SWCNT powder using acid to remove the catalyst and the carbonaceous impurities, the
purified SWCNT was mixed into sodium dodecyl sulfate (SDS) and ethylene glycol (EG)
solution. To the mixture, H2PtCl6·H2O was then added and reduced to form the Pt-SWCNT
hybrid. Finally, printable ink was made from the hybrid nanoparticles. The ink was coated
on an Si substrate to obtain a thin-film gas sensor. The sensor demonstrated high sensitivity
to H2 with a limit of detection of 20 ppm.
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Nguyen et al. employed Co nanoparticles to modify the MWCNT synthesized on
Al2O3 substrates, resulting in enhanced and highly promising NH3 gas sensitivity at room
temperature [120]. The Co nanoparticles were distributed on the surface of the MWCNT
film using the sputtering technique. Decorating with Co nanoparticles increased the
thickness of the film to about 2 nm, and the roughness of the individual MWCNT surface
was also increased. The sensor showed excellent reproducibility along with good selectivity
to NH3 in comparison to alcohol and LPG.

Wei et al. [121] worked on improving SWCNT sensing behavior towards NO2 by
incorporating SnO2. SWCNTs with an average diameter ~0.8 nm were first synthesized
using high-pressure CO disproportionation. Using the SWCNT-dispersed organometallic
solution of Sn[OOCCH(C2H5)C4H9]2,aq. Tin (II) 2-ethylhexanoate ~90% in 2-ethylhexanoic
acid, a SWCNT/SnO2 layer was formed with spin coating on an Al2O3 substrate with
comb-designed Au electrodes. The hybrid layers were heated in air to eliminate the solvent
with the help of an IR dryer at 150 ◦C for about 30 min, then further annealed at 500 ◦C
for 35 min to form SnO2. In these structures, the SWCNT bundles were embedded into
the SnO2 matrix. The SWCNTs/SnO2 hybrid sensor exhibited high sensitivity and fast
recovery in comparison to the SnO2 sensor. The high sensitivity of the SWCNTs/SnO2
hybrid was due to the widening of the depletion layer at the grain boundaries of SnO2 and
the interface of SWCNT/SnO2.

Khalilian et al. used TiO2 nanoparticles decorated with MWCNT to produce a hybrid
gas sensor for detecting O2 and methanol [122]. CVD was employed to obtain both the
MWCNTs and the TiO2 nanoparticles under different conditions. The average diameter
of the MWCNTs was 50 nm; the size of the TiO2 nanoparticles was ~5 nm. The surfaces
of the MWCNTs were uniformly distributed with TiO2 nanoparticles. The p-n junction
created at the interface between MWCNT and the TiO2 nanoparticles weakened the elec-
tron and hole pair recombination, thus enhancing the charge density when exposed to
O2. It was found that the gas-sensor sensitivity depended on the sensitivity of the TiO2
nanoparticles. The optimized thickness of the TiO2 nanoparticle was 6 nm. When the layer
of the TiO2 nanoparticle was too thick, it was found that the effect of the TiO2-MWCNTs
heterostructure disappeared.

Kaniyoor et al. compared the performances of a gas sensor based on graphene and
MWCNTs decorated with Pt nanoparticle for detecting H2 at room temperature [123]. The
hybrid sensors were synthesized using the drop-casting technique. The MWCNTs and
graphene were prepared with the help of CVD and the thermal exfoliation technique. To
decorate the nanocarbon, the H2PtCl6 solution was gradually mixed with graphene and
MWCNT suspensions, and then the mixed solution containing NaOH and NaBH4 was
reduced. The sensitivity of the Pt-graphene device was twice as great as the sensitivity of
the Pt-MWCNT hybrid under low 4 vol% H2 concentration.
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Karaduman et al. compared the effects of Ag, Au, and Pt noble metallic nanoparticles
on the rGO-sensing cahracteristics of NH3 at room temperature [123]. The nanoparticles
were decorated using a chemical reduction technique. The Ag nanoparticle-based sensor
had the best stability, sensitivity, response/recovery time, and selectivity. Modification with
Ag nanoparticles resulted in strong adsorbtion of the NH3 molecules on the rGO nanosheet
surface. Tang et al. also found that SWCNTs decorated with Pd noble metal nanoparticles
improved the gas-sensing response to H2 [124].

Shao et al. decorated n-SnO2 nanowires using p-CuO nanoparticles [125]. It was
found that the catalytic activity of the p-type nanoclusters favored the detection of the
specific analyte gas. The H2S-sensing performance was improved due to the decoration
of CuO nanoparticles because of the strong chemical reaction of H2S and CuO, as seen in
Figure 14. In that study, the CuO nanoparticles reacted with H2S, then sulfurized into CuS.
Consequently, hydrogen, which was left out, was transferred to the host surface, serving as
a reducing agent. This decreased the electrical resistance.
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Mashock et al. reported on the decoration of p-CuO nanowires with n-SnO2 nanopar-
ticles. The depletion region was created between the p-CuO nanowires and the n-SnO2
nanoparticles, impinging the conducting core [126]. The electrical resistance increased
after decorating with discrete SnO2 nanoparticles. Furthermore, they obtained a uniform
coating, resulting in a core–shell assembly when the deposition time was doubled for the
nanoparticles. It was found that the longer the deposition time, the higher the electrical
resistance, producing a slight increase in sensitivity towards NH3 in comparison to the
nanowires grown in a short timeframe. Two principles were proposed for the sensing
nature: (1) transfering of electrons to the CuO nanowires from NH3 and lowering the
concentration of the hole in the CuO nanowire, thereby enhancing the resistance, and
(2) high concentration of electrons in SnO2 owing to the lower exposure of oxygen adsor-
bates, which makes the pn junction robust and blocks the transport of the hole close to the
junction in the CuO nanowire, enhancing the nanowire resistance.

Jiao et al. reported on ZnO nanowire growth using the hydrothermal technique and
decorated ZnO nanwires with PdO using sputtering [127]. The well-dispersed PdO along
the ZnO nanowire surface delivered a higher surface area-to-volume ratio, increasing the
area of gas adsorption. Studies found that decorating enhances the sensing response of p-
type materials for gas-detecting applications [128,129]. Tan et al. used 1.5% of porous Fe2O3
decorated on NiO nanosheets. This increased the response to 170.9 and 107.9 toward the
sensing of ethanol and methanol, respectively, at 255 ◦C, which is approximately 25 times
greater than bare NiO nanosheets [130]. Decorating Fe2O3 on NiO also decreased the
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response time and recovery time. Cui et al. demonstrated that SnO2 nanocrystals decorated
on MoS2 nanosheets resulted in higher sensitivity, good selectivity and stability, and
reproducibility toward NO2 sensing in a dry environment; however, the MoS2 nanosheets
alone were unstable under the same working environment without decorating with SnO2
nanocrystals [131].

R. Zhan et al. devoloped a strategy that enhanced the sensativity of the sensors by
effectively confining Au nanoparticles with analyte molecules together in a short amount of
time on a needle tip. They used the capillary force and Leidenfrost phenomenon and a small
sensative region was created on a needle tip. The evaporated Au nanoparticles and analytes
condensed on the needle tip, creating a small 0.5 nm area. Due to the high enrichment
capability and reproducibility, surface-enhanced Raman scattering (SERS) was used to
detect analytes with high sensitivity. It was obsered that with the SERS techinique, the
limit of detection was lowered to 0.08 nM for crystal violet molecules, and for several other
pesticides the detection limit was achieved in nM. They furthur applied this tehiniques with
a mixture of pigments in a solution and achived high selectivity and sensitivity. Morever,
they showed that the SERS techinique, with a highly thermal conductivity substrate, can
open the possibility of universal applications wihout surface modification [132].

Zizzari et al. reported highly sensitive pressure sensors based on a thin membrane for
calalytic reaction monitoring. In this research, elastic thin membranes were integrated with
a reaction chamber to develop a highly sensitive membrane-based pressure sensor (MePS).
The MePS was tested for different pressure, ranging from 2 and 50 Pa, which allowed
dioxygen variation to be monitored in the order of µmol L–1 s–1 [133].

Wang et al. also reported highly sensitive pressure sensors based on electrospun mem-
branes. A dielectric layer of an AgNW/TPU composite was used with the thermoplastic
polyurethane elastomer rubber (TPU) electrospinning nanofiber membranes. The device
was completed by printing the carbon nanotubes with flexible electrodes. The results
showed a high sensitivity of 7.24 kPa−1 within the range of 9.0 × 10−3~0.98 kPa, and a
low detection limit of 9.24 Pa was achieved. In addition to that, fast responsiveness of
<55 ms was achieved in this research. Moreover, the authors reported remarkable stability,
sensitivity, and durability of this flexible pressure sensor [134].

5.4. Core–Shell Structures

In core–shell structures, the host core material is completely covered by a secondary
shell material, thereby increasing the interfacial area in spite of exposing the host material
to ambient atmosphere. The host structure is usually a single crystal structure synthesized
using PVD, hydrothermal, CVD, and other methods. The outer shell is polycrystalline and
deposited by electrospinning, sputtering, spin coating, or ALD. These types of heterostruc-
tures have good potential for use in gas-sensing applications due to the wider combinations
of various materials and surface interactions, namely, core–shell, shell–gas, shell–shell,
and core–gas. It is important to look for compatible core–shell materials to enhance the
heterojunction synergy. Furthermore, tuning shell–shell and shell–gas interactions is a good
way to improve the sensing response, as the shell layer grain boundary can be decisive
for the performance of sensors. For instance, the shell layer thickness can vary the sensor
responses due to changes in the grain boundary characteristics. Woo et al. worked on
the growth of a core n-ZnO nanowire coated with shell p-type Cr2O3 heterostructures
to sense trimethylamine (TMA) [135]. That study showed that the Cr2O3 layer narrows
the ZnO channel conduction, thereby enhancing the resistivity of the sensors in air, thus
demonstrating strong deviations while interacting with the TMA-reducing gas. Moreover,
Cr2O3 exhibited a strong catalytic nature toward methylamine decomposition. The p-type
Cr2O3 layer was the dominant path for conduction in the core–shell structures.

Park et al. worked on improving the NO2-detecting characteristics of TeO2 nanorods
by growing core–shell CuO/TeO2 nanorods [136]. TeO2, along with CuO, possesses p-type
semiconducting properties. The sensing mechanism is based on the barrier-controlled
carrier transport process. They reported on pp heterojunctions formed with TeO2 and CuO,
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and they found they effectively enhanced the sensing characteristics in comparison to
the grain boundaries and nanorod–nanorod contact due to the higher interface area of
the core–shell structure. Rivera et al. worked on sensing methanol using ZnO nanorods
and coaxial core–shell ZnO/MgZnO structures [137]. That study found that a high con-
centration of oxygen vacancies in the core–shell structure led to improved gas-sensing
charateristics in comparison to the ZnO nanorod. They also found that there was quick
adsorption/desorption on the core–shell structure. They added the claim that the neutral
oxygen vacancies’ energy level was shallow in comparison to the single charged oxygen
vacancies’ energy level. Consequently, faster adsorption along with desorption processes
occurred in the core-shell ZnO/MgZnO structures in comparison to the ZnO nanorods.

Liu et al. studied a Si nanowire/TiO2 array core–shell nanostructure synthesized using
sol-gel and dropcasting methods, as depicted in Figure 15 [138]. The hybrid core–shell
nanostructure exhibited excellent CH4 detection at room temperature. The sensor showed a
linear characteristic response to CH4 in the 30–120 ppm range at a detection limit of 20 ppm.
The enhanced performance was related to the depletion layer formed at the junction of the
Si nanowires and TiO2. The oxygen adsorption, along with gas analyte adsorption, on the
TiO2 surface induced variations in the thickness of the depletion layer; thus, the width of Si
nanowire conductive channel cause a sensitive response to the gas analyte. This gas sensor
constructed from Si nanowires/TiO2 operating at room temperature did not require an
extra heating device, and it operates at the µW power level. This low power consumption
is vital for sensing when used widely and connected to the Internet of Things (IoT). The
innovation of these sensing materials at room temperature will enable the integration of
gas sensors with wireless devices.
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linked by a mobile phone fitted with Andriod software, the integrated circuit, and the sensing trace
depicted on cell phone figure are real pictures of products. Reprinted with permission from Ref. [138].
Copyright 2017, Liu, D. et al.

Li et al. fabricated SnO2, TiO2, and SnO2/TiO2 core–shell nanofibers using the electro-
spinning technique [139]. The gas-sensing characteristics of these sensors were investigated
to determine their selective response to gases, such as acetone, ethanol, formaldehyde,
ammonia, methanol, and toluene. The core–shell nanofiber showed improved sensing
reponse to acetone. This sensing operation depends on the carrier transport controlled by
the barrier. Chen et al. also synthesized a core–shell structure consisting of TiO2 nanobelts
and Sn3O4 nanosheets through a two-step hydrothermal process [27]. Arafat et al. studied
various gas-sensing operations of an Al2O3/TiO2 core–shell nanostructure toward H2,
CO, H2S, CH3OH, CH4, C2H4, C2H5OH, O2, and NO2 gases [140]. They found that the
gas-sensing ability of a core–shell Al2O3/TiO2 depended on the electron tunneling-assisted
surface depletion process. Al2O3 worked as an insulation layer on the TiO2 nanowire;
however, electron tunneling occurred due to the small Al2O3 layer thickness where the
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electron could pass through the Al2O3 layer, forming a depletion layer in the core TiO2.
Hence, the study found that the sensing mechanism worked by modulating the depletion
region of TiO2.

5.5. Branched 1D Heterostructures

In the 1D branched morphology, the branch or brush-like heterostructure is syn-
thesized by combining secondary nanowires on a host single nanowire. These exhibit
interesting characteristics, similar to the decorated heterostructure, but with a significant
increase in the surface area. In the branched heterostructure, the host offers the location for
the growth of the secondary material. It is essential to control the uniformity, dimensions,
crystallinity, and morphology of the host, as these factors have a direct impact on the growth
of the secondary material. Generally, the techniques most often employed for preparaing
1D branched heterostructures are electrospinning and hydrothermal methods [47,141]. The
synthesis of 1D branched nanostructures often requires a multi-step approach; however, it
is usually possible to achieve the growth of highly crystalline secondary nanowires on a
host nanowire [25,26].

Woo et al. deposited porous ZnO nanowires through Au-assisted VLS growth [142].
By a cation-exchange reaction, owing to the thermal evaporation of CoCl2 powder, the ZnO
nanowires were changed into CoO nanowires. This resulted in the growth of co-deposited
ZnO branches (Figure 16). In a p-xylene environment, there is great variation in resistance
due to the presence of more free electrons, which results in improving the response of the
gas sensor. This high response can also be related to the Co catalytic activity, enabling the
dissociation of p-xylene, which is less reactive, into smaller reactive gases.
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Kaur et al. reported on a NiO/ZnO branched heterostructure synthesized using the
vapor transport condensation technique [25]. The angle maintained between the longer NiO
nanowire and the shorter ZnO nanowire branches seemed fixed at about 50◦, signifying the
presence of lattice matching among both of the crystalline phases. Here, the selected area
electron diffraction (SAED) analysis indicated the epitaxial growth of the ZnO nanowire
(101) planes on the surface of strongly oriented NiO nanowire (200) crystallographic planes.
In comparison to the host NiO nanowires, the NiO/ZnO branched heterostructure exhibited
a higher sensing response to ethanol and acetone. The resistance increased after forming the
heterostructure. Lou et al. also worked on the growth of TiO2-branched α-Fe2O3 nanorods
synthesized using a two-step solution process for a trimethylamine gas sensor [47]. To tune
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the host to the guest mass ratio, the amount of secondary materials was adjusted, which
affected the sensing properties of the heterostructures. The various studies reporting on
gas sensor applications that were published in the past years are listed in Table 2.

Table 2. Works reported and published in the past years for gas-sensor applications.

Composition Synthesis Route Analyte Gas Performance Reference

PANI thin film Chemical oxidative
polymerization process NO2

12.10% at 100 ppm
Tres = 11 s

Trec = 7 min
[77]

Ag-doped PPy thin film In-situ oxidation NO2

68% at 100 ppm NO2
Tres = 148 s
Trec = 500 s

[80]

Single SWCNT CVD NO2

1000 fold @ 200 ppm
Tres = 2–10 s
Trec = 12 h

[92]

MWCNT CVD N2
Tres = 10 s
Trec = 10 s [103]

Sulphonated rGO decorated with
Ag nanoparticles Wet chemical pathway NO2

74.6% @ 50 ppm
Tres = 12 s
Trec = 20 s

[119]

Multilayered graphene CVD NO2
6% @ 1 ppm
Tres = 1800 s [89]

SnO2/CuO multilayered film PLD H2S 2.7 × 104 @ 20 ppm
Tres = 2 s

[50]

SnO2/TiO2 multilayered film Sputtering H2S
1.6 × 104 @ 10 ppm

Tres = 3.2 s
Trec = 2.4 s

[107]

WO3/SnO2 mixed compund Sol-precipitation NO2 186 @ 200 ppm [116]

VO2–SWCNT mixed compound Hydrothermal flow synthesis NH3

10% @ 45 ppm
Tres = 7 s

Trec = 30 min
[110]

PANI-CNT mixed compound Interfacial polymerization NH3

418% @ 4 ppm
Tres = 18 s
Trec = 46 s

[113]

SWCNT
decorated with Pt nanoparticles Aerosol jet printing H2 4% @ 200 ppm [118]

MWCNTs with TiO2 nanoparticles CVD O2

15% @ 1000 ppm
Tres = 50 s

Trec = 100 s
[122]

Fe2O3 decorated on NiO nanosheets Thermal decomposition
nanosheets Ethanol

170 @ 100 ppm
Tres = 0.1 s

Trec = 11.4 s
[130]

ZnO nanwires decorated with PdO Hydrothermal and sputtering H2

3.6 @ 500 ppm
Tres = 207 s
Trec = 92 s

[127]

Coreshell CuO@TeO2 nanorods Thermal oxidation
and sputtering NO2 424.91 @ 10 ppm [136]

SnO2@TiO2 core–shell nanofibers Electro-spinning method Acetone
13.5 @ 100 ppm

Tres = 2 s
Trec = 60 s

[139]

NiO/ZnO-branched heterostructures Vapor phase growth technique Ethanol 6.7 @ 50 ppm [25]
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6. Conclusions, Future Trends, and Challenges

This review presents an overview of the recent development of different materials
and their heterostructures for chemical gas-sensor applications. We have shown the pos-
sibility of synthesizing various materials whose morphology and structures have unique
sensing properties in relation to chemical compounds. In a significant number of the
reviewed studies the research community focused on producing heterostructures using
the hydrothermal method due to the ease of finding precursor materials and the simplicity
of the hydrothermal and solvothermal methods for the synthesis. Electrospinning, ALD,
PVD, and CVD methods are the other tehcniques that are widely explored for growing
heterostructures, particularly core–shell, bilayer, decorated, and branched. These meth-
ods have advantages for growing selectively on patterned substrate, as well as preparing
composites and multilayered structures. Combining various fabrication methods is also
an effective strategy for obtaining different morphologies, heterostructures, and dimen-
sions. Despite advancements in material science and nanotechnology, there are issues with
these complex configurations and shortcomings that must be addressed. The decrease
in nanostructure dimensions and trials make distinct interfaces degrade the long-term
stability of these mateirals due to the coalescence of the nanoparticles and the diffusion
along the interfaces. High temperatures are mostly required during the operation of gas
sensors, which can lead to diffusion and the formation of mixed compounds, changing
the electronic properties. However, heterostructures normally possess a lower optimal
functioning temperature in comparison to their bare structures; hence, there can be partial
mitigation of the diffusion process. Moreover, stability can be enhanced by employing
highly crystalline 1D nanowires in place of nanoparticles, which suffer from diffusion
and coalescence.

Reproducibility of the fabrication process and improvement in the performance of the
sensors are needed before these devices can enter the market for mass scale production.
It is important to employ techniques that give a high degree of control, such as ALD
and sputtering processes. Consequently, characterization of the heterosructures is critical,
and it needs to be performed carefully. The synergistic mechanisms that exist among
heterostructure materials as well as their catalytic behaviors must also be considered.
There is a strong analogy between conductometric gas sensing and the catalytic materials,
which also needs to be carefully investigated. To fabricate high-performance sensing
devices, the design of the materials is vital. Moreover, the active transducer needs an
electrical connection to interface with the nearby electronics. These contact electrodes have
a dramatic impact on the performances of these devices. The choice of contact materials
and the deposition techniques varies the sensing properties.

There are also challenges that persist when integrating nanostructured heterojunc-
tions with silicon-based devices, as technology is advancing with IoT and smart devices.
Commercial sensors need to perform diagnostics and communicate and interface with the
network configuration. Thus, the stages needed for fabricating heterojunctions are not
compatible with Si processing and the high temperatures required for chemical sensors.
In this case, heterostructures can be directly deposited using ink-jet printing or hotplates.
These growth techniques require careful attention to processing methods that employ
temperatures that match the substrates and do not use a destructive chemical precursor.

Composite nanoheterostructure devices can revolutionize gas sensing, but more dis-
coveries and experiments are need to recognize the full potential of these materials. This
review concentrated on the configurations and materials that could be used to prepare
heterojunctions to show their advantages and properties. The composite materials obtained
by combining metal oxides with rGO and other carbon-based materials, transition metal
dichalcogenides, and phosphorene have proven to be important for gas-sensing applica-
tions. Therefore, the final goal of this review was to summarize the state of the art and to
stimulate curiosity among readers to inspire them to further investigate these exceptional
classes of nanomaterials.
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