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Abstract: Endocytosis is a critical process for cell growth and viability. It mediates nutrient uptake,
guarantees plasma membrane homeostasis, and generates intracellular signaling cascades. Moreover,
it plays an important role in dead cell clearance and defense against external microbes. Finally,
endocytosis is an important cellular route for the delivery of nanomedicines for therapeutic treatments.
Thus, it is not surprising that both environmental and genetic perturbation of endocytosis have been
associated with several human conditions such as cancer, neurological disorders, and virus infections,
among others. Over the last decades, a lot of research has been focused on developing advanced
imaging methods to monitor endocytosis events with high resolution in living cells and tissues.
These include fluorescence imaging, electron microscopy, and correlative and super-resolution
microscopy. In this review, we outline the major endocytic pathways and briefly discuss how
defects in the molecular machinery of these pathways lead to disease. We then discuss the current
imaging methodologies used to study endocytosis in different contexts, highlighting strengths
and weaknesses.

Keywords: endocytosis; protein receptor; disease; fluorescence; electron microscopy; super-resolution
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1. Introduction

Endocytosis is a shared process by which molecules, proteins, lipids, and liquids are
sorted inside the cell via formation of intermediate vesicles [1]. Vesicle formation occurs
at the plasma membrane, where ligand receptors, binding proteins, and structural pro-
teins are localized. After their internalization, the vesicles containing protein receptors
or soluble molecules undergo a round of recycling, eventually leading to the fusion of
the vesicle with an intracellular organelle. Such a process is an essential hallmark in all
cell types—it regulates major cellular functions such as antigen presentation, intracellular
signaling cascades, cell polarity, and synaptic transmission. Moreovet, it is required to
remove aged and dead cells from the body and is part of the defense against microbes.
Given its importance, it is not surprising that even subtle perturbations affecting the en-
docytic machinery often impair cell function and cause several pathological conditions,
such as cancer, and neurological and storage diseases [2-5]. Finally, endocytosis represents
an important cellular route for targeted drug-delivery in many diseases [6]. The term
“endocytosis” was used for the first time by Christian De Duve in 1963, but the emerging
concept of internalization/endocytosis goes way back in time—to the end of the nine-
teenth century. The 1908 Nobel Prize zoologist Elie Metchnikoff was the first to identify
phagocytes and recognized the importance of phagocytosis as part of the defense against
microbes [7]. The existence of endocytosis was definitively demonstrated in the 1950s by
electron microscopic studies of George Palade [8]. Yet, for about two decades, endocytosis
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was viewed as a nonspecific process that transports fluid and solutes into cells. In the
1970s, the fundamental observation that nutrients and hormones specifically bind to cells
led to the assumption that cells have specific receptors on their surfaces for the uptake of
extracellular molecules. This finding generated a milestone paper in endocytic research,
namely the discovery of the Low-Density Lipoprotein (LDL) receptor and the description
of (LDL) receptor-mediated endocytosis by Anderson, Goldstein, and Brown [9]. This
pioneering work put endocytosis at the center of cell biology and disease mechanisms.
The motivation behind the identification of this mechanism was the study of the familial
hypercholesterolemia (FH), a human genetic disease. Due to the diversity of functions of
endocytic mechanisms and their implication in human diseases, endocytosis has become
and still is a very active research area. A key point in understanding endocytic mechanisms
is to develop probes, methods, and equipment to track them in live cells and tissues. The
advantage of endocytosis occurring at the cell surface has allowed researchers to take
advantage of optical tools to identify and monitor protein internalization over time [10].
Moreover, the use of monolayered primary cultures and cell lines has permitted to easily
access and manipulate receptors on the cell surface. Finally, modern labelling tools and
advanced microscopy technology has recently guaranteed a more precise visualization of
recycled cargoes or intracellular organelles [11]. In this review, we will first introduce the
major endocytic pathways and their association with disease, in particular neurological
disorders and cancer. We will then focus on the current technical strategies used to visualize
endocytosis in vitro and in vivo, highlighting strengths and weaknesses.

2. Endocytic Pathways

Several endocytic routes allow nutrients, liquids, compounds, receptors, and pathogens
to enter cells [12]. Each pathway (except for caveolae) presents characteristic cargoes, in-
cluding cytosolic markers, endocytic machineries, ligands, and receptors, which use them
to enter the cell (Figure 1). Based on their dependence or independence on GTPase dynamin
for vesicle fission, endocytic pathways might be distinguished as dynamin-dependent and
dynamin-independent. Among dynamin-dependent pathways, we will describe clathrin-
mediated endocytosis (CME), fast endophilin-mediated endocytosis (FEME), EGFR non-
clathrin endocytosis (EGFR-NCE), neuronal-specific activity-dependent bulk endocytosis
(ADBE), and (10) ultrafast endocytosis (UFE). Among dynamin-independent pathways, we
will describe clathrin-independent carrier (CLIC) endocytosis/glycosylphosphatidylinositol-
anchored protein enriched early endocytic compartment (GEEC) endocytosis, IL2R3 up-
take, micropinocytosis, and phagocytosis. As caveolae/raft dependent endocytosis is still
controversial and does not require dynamin, it will be reported as a separate mechanism.

dynamin dependent caveolae dynamin independent
CME FEME EGFR-NCE ,\/- CLIC/GEEC  macropinocytosis
caveolin
NP cavin
EDH2 (neck)
clathrin actin EGF high BAR proteins actin
AP-2 erzudophllln doses (G,afﬂ’) CTBP-1
& BAR
proteins
UFE ADBE
phagocytosis
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Figure 1. Overview of primary endocytic pathways in cells. Endocytosis mechanisms can be addi-
tionally classified upon their dependency on dynamin to end the internalization process. Dynamin-
dependent processes include CME, FEME, EGFR-NCE, ADBE, and UFE. Clathrin-mediated endocytosis
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(CME) is driven by the adaptor complex, AP2, that recruits clathrin to cytosolic receptor domains,
initiating the formation of a clathrin-coated pit. Fast endophilin-mediated endocytosis (FEME) is
that recruits clathrin to cytosolic receptor domains, initiating the formation of a clathrin-coated
pit. Fast endophilin-mediated endocytosis (FEME) istriggered by ligand-receptor interactions and
regulated by endophilin A2 recruitment and actin polymerization. EGFR-mediated not-conventional
endocytosis (EGFR-NCE) is an unconventional clathrin-independent process which occurs when
EGF is present in high doses in the extracellular environment. Ultrafast endocytosis (UFE) mediates
the recycling of synaptic vesicle components in a clathrin-independent but dynamin-dependent
way during very low frequency stimulation, while activity-dependent bulk endocytosis (ADBE) is
the dominant mode of synaptic vesicle endocytosis during high-frequency stimulation. Uncertain,
instead, is the dependency on dynamin by caveolae. Formation of caveolae is dependent on caveolin
and cavin proteins. The EHD2 protein is also important in stabilizing caveolae neck formation.
CLIC/GEEC endocytosis is a constitutive clathrin and dynamin independent process, but actin
and BAR protein-dependent (e.g., Grafl). Macropinocytosis is controlled by actin dynamics and
different BAR domain proteins. Macropinosome fission from the surface is regulated by C-terminal-
binding protein 1 (CTBP1). Phagocytosis occurs after a binding event at the cell surface triggers actin
polymerization and a vesicle form tightly around the bound material. Created with BioRender.com
(accessed on 15 March 2022).

2.1. Dynamin-Dependent Pathways
2.1.1. Clathrin-Dependent Endocytosis

Clathrin-mediated endocytosis (CME) represents the most characterized internaliza-
tion pathway [12]. It occurs in all mammalian cells and is the principal route for cells to
obtain nutrients; for example, facilitating the uptake of iron (via transferrin) and cholesterol
(via low-density lipoproteins) [9] (Figure 2).

Figure 2. Clathrin-coated pit (CCP) at the plasma membrane and multivescicular bodies (MVB) filled
with the endocytic probe BSA conjugated with 5 nm colloidal gold particles (black arrows) of epoxy
resin flat embedded ERBB2 + BT474 breast cancer cells. This image was taken by K.C. and represents
the lab’s unpublished material.

Although historically considered a receptor-induced process, it is now known that
clathrin coats can spontaneously assemble at the PM and that cargo-to-clathrin interactions
are important for the stabilization of the process. Clathrin-coated pits occupy 0.5-2% of
the cell surface and provide the membrane-deforming scaffold, which is fundamental
in shaping the coated pit at the plasma membrane [13]. At the PM, clathrin assembles
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into a trimer of heterodimers, each unit consisting of one heavy and one light chain form-
ing a triskelion [14]. Triskelia assembly lead to the formation of a lattice-like structure
around the vesicles and such assembly is coordinated by several cargo-binding adaptor
complexes; the most known of these is represented by the adaptor protein complex 2
(AP2), which is part of a wider family of hetero-tetrameric adaptor complexes (AP1-5).
AP2 binds both to clathrin and protein cargoes via a peptide motif in their cytoplasmic
domains. Alternatively, clathrin adaptors can recruit client cargoes more selectively [15].
These events are also strongly regulated by local actin and phosphoinositides on the plasma
membrane. For instance, protein receptors clustering and phosphorylation recruits adaptin
proteins at the plasma membrane, which initiates a cascade of low-affinity protein—protein
and protein-lipid interactions (particularly with phosphatidylinositol 4,5-bisphosphate,
PtdIns(4,5)P2), leading to the formation of a clathrin-coated pit (Smith et al., 2017). This
is a highly dynamic and cooperative system in which a multitude of interactions form
a pit within 30-120 s of ligand binding [16]. Clathrin-coated pits at the cell surface are
highly diverse and with respect to the usage of adaptor and associated proteins [17]. This
creates distinct microenvironments for the regulated entry of specific combinations of car-
goes [13,18]. Moreover, ligand concentration also affects the mode of this endocytic route.
For example, EGF is generally internalized by a clathrin-dependent endocytic route, but at
higher concentrations, it enter cells through clathrin-independent routes [18]. Once formed,
the pit rapidly invaginates to form a clathrin-coated vesicle, which pinches off the plasma
membrane through the activity of dynamin, a large mechanical GTPase. PtdIns(4,5)P2 phos-
phatases, notably synaptojanin, complete the vesicle cycle by uncoating the vesicles [19].
Several viral pathogens such as the recent SARS-CoV-2 coronavirus and well-characterized
families of virus (e.g., alpha-, rhabdo-, flavi-, picorna-, pox-, and adenoviruses, among
others) enter cells by clathrin-mediated endocytosis, targeting receptors, or machineries
internalized by the clathrin-dependent pathway [20,21]. For some pathogens, this route is
obligatory, and for others, CME is one of the available escaping routes. Bacteria and large
particles up to 1 um in diameter have also been shown to co-opt clathrin and form actin-rich
pedestals to facilitate their uptake [21]. Although longer than the diameter of the typical
clathrin-coated vesicle, these pathogens can be internalized by CME through the actin
elongation of the clathrin-coated pit [22]. The requirement for actin recruitment, although,
can slow the endocytic process, leading to altered internalization kinetics, compared to
conventional CME [23].

2.1.2. Fast Endophilin-Mediated Endocytosis (FEME)

FEME recently emerged as a novel fast endocytic pathway of specific membrane
receptors, which are important in cell migration and growth factor signaling [24]. Cargoes
that follow FEME include f1-adrenergic, dopaminergic, and acetylcholine receptors; the
IL-2 receptor and growth factor receptors (EGFR, HGFR); and toxins such as CTxB and
STxB. However, so far, only the 31-adrenergic receptor relies on FEME. The FEME pathway
is clathrin-independent, but dynamin dependent. Unlike CME, FEME is not constitutive
but is rapidly triggered by binding of receptors by their ligands. Similar to CME, FEME
requires a pre-enrichment of its main component, endophilin-A2, into discrete clusters
on the plasma membrane prior to receptor activation. Such protein interactions recruit
the PtdIns(3,4)P2-binding protein lamellipodin, which stabilize endophilin at the edge
of the migrating cells. Formation of FEME carriers is extremely rapid (<10 s). Upon
receptor activation, indeed, the direct interaction between the SH3 domain of endophilin
and cargoes or the indirect association through intermediate proteins such as CIN85 and
Cbl activate a cascade of intracellular signaling, culminating in the formation of a 60-80 nm
tubular invagination [23]. In the absence of receptor activation, endophilin spots are rapidly
unclustered from the plasma membrane. Recently, Cdk5 and GSK3[3 were identified as key
negative regulators of FEME, allowing the cells rapid uptake by the pathway only when
their activity is low. Indeed, Cdk5 and GSK3 antagonize the binding of Endophilin to
Dynamin-1 and to CRMP4 for local regulation of FEME [25].
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2.1.3. EGFR Non-Clathrin Endocytosis

Although traditionally internalized by CME, EGFR receptors can be internalized by
alternative endocytic routes in an activity-dependent manner. High concentrations of
EGF (>2 ng/mL) can trigger the EGFR receptor to enter cancer cells using an unconven-
tional clathrin-independent pathway called EGFR-NCE identified by light and electron
microscopy [26,27]. At even higher EGF concentrations (>50 ng/mL), both FEME and
micropinocytosis mediates rapid EGFR internalization from the cell surface required to
protect cells from excessive ERK and AKT signaling [28]. EGFR-NCE occurs via the mono-
ubiquitination of EGFR and the release of IP3-mediated Ca* release stored in the endoplas-
mic reticulum (ER), which triggers the carrier formation. Moreover, the co-internalization
of at least one CD147 receptor is required to internalize EGFR via EGFR-NCE [28,29].

2.1.4. Ultrafast Endocytosis (UFE)

Ultrafast endocytosis (UFE) is a rapid endocytic route for synaptic vesicles, which
have been recently observed both in primary neurons and acute brain slices [30]. UFE
occurs within 100 ms from the end of an action potential and generates several 80 nm
small and elongated cisternae at the plasma membrane, in proximity of the fusion site [31].
Once internalized, cisternae fuse with synaptic endosomes from which synaptic vesicle are
reformed. This process is clathrin-mediated [32]. Although most of the mechanisms that
govern UFE are still not fully understood, it is known that (1) UFE is triggered by Ca?*,
(2) is sensitive to membrane tension and that (3) endophilin, synaptojanin, and dynamin,
as well as actin, are important for cisternae membrane curvature [19]. Moreover, local
protein organization, as well as lipid composition favoring membrane fluidity, are likely
to support UFE [33]. Putative UFE cargoes are represented by synaptic vesicle proteins,
which are critical for vesicle function and need thus to be recycled rapidly, such as SNAREs
or glutamate transporters. However, how such cargoes are sorted back to the cisternae is
still unknown.

2.1.5. Activity-Dependent Bulk Endocytosis (ADBE)

In neurons, CME and ultrafast endocytosis (UFE) recycle synaptic vesicles in response
to low to moderate frequency of action potentials. During sustained neuronal activity, a
different endocytic process called activity dependent bulk endocytosis (ADBE) takes over.
ADBE resembles micropinocytosis but is triggered by elevated local calcium within synaptic
terminals and a high amount of exocytosed membrane [34]. This process is dynamically
regulated by two kinases, Cdk5 and Glycogen Synthase Kinase 3b (GSK3b), which inhibit
ADBE modulators in resting neurons. During high neuronal activity, the local increase in
Ca®* activates the phosphatase calcineurin, which in turn activates ADBE modulators [35].
Once triggered, ADBE generates large actin-driven membrane invaginations, namely bulk
endosomes, at the plasma membrane, where newly-released synaptic vesicle cargoes are
located. VAMP4 is the main ADBE cargo, but many other synaptic vesicle proteins can be
nonspecifically retrieved on the large (up to 500 nm) bulk endosomes [36].

2.2. Dynamin-Independent Pathways

A growing number of endocytic pathways do not rely on coat proteins or on a pinching
system. Most of these pathways do not need coat assembly even during the endocytic
intermediate steps. This is guaranteed by the involvement of lipid or protein components,
which are sufficient to initiate membrane deformation without defined coat proteins. Shiga
toxin entry, for instance, is one such example where binding of toxin to the ganglioside,
Gb3, induces invaginations in cells as well as model membranes [37]. Similarly, endocytosis
of many lipid-anchored proteins such as glycosylphosphatidylinositol-anchored proteins
(GPI-APs) also does not appear to require any of the well-characterized coat proteins [38].
However, the GPI-anchored prion protein (PrP) might be internalized through both CIE
and CME endocytosis, depending on the expression of the LRP-1 receptor, which drives PrP
to CME [39,40]. The two main features that distinguish these pathways are the dependency
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on dynamin and the main protein mediators involved. In the next paragraphs, we will
briefly discuss them.

2.2.1. Clathrin-Independent/Dynamin-Independent Endocytosis, CLICs/GEEC

Clathrin-independent carrier (CLIC) endocytosis/ glycosylphosphatidylinositol-anchored
protein enriched early endocytic compartment (GEEC) endocytosis is a cholesterol/GRAF1-
dependent, but clathrin and dynamin-independent endocytic route [41,42]. Similar to
FEME, CLIC/GEEC endocytosis occurs at the edge of migrating cells and involves tubu-
lar carriers. However, unlike FEME, CLIC/GEEC, endocytosis is a constitutive pathway
that mediates the internalization, among others, of hyaluronic acid receptor (CD44) and
glycosylphosphatidylinositol-anchored proteins, the adeno-associated virus 2 (AAV2),
as well as fluids and membrane [42]. Moreover, CLICs do not pre-form on the plasma
membrane before receptor activation. After pathway activation, CLICs tubules mature
into GEECs and such process is modulated by ARF1/GBF1, the actin regulatory com-
plex Arp2/3, and the small GTPase Cdc42. For their maturation, CLICs also require
the binding of two specific BAR domain proteins to the membrane, IRSp53 and GRAF1,
respectively [43]. In addition to the intracellular machinery, extracellular lectins called
galectins also contribute to cluster CLIC cargoes on the plasma membrane prior to their
invagination [44]. The CLICs pathway is highly sensitive to changes in membrane tension
and can, in turn, regulate plasma membrane tension homoeostasis as well. Such regulation
is coordinated by the mechano-transducer protein vinculin [45].

2.2.2. IL2R3 Uptake

IL2R receptor is generally internalized by FEME in T cells [46]. However, it can also
internalize using a distinct, unconventional route, which involves the WAVE 1 complex [47].
Mechanistically, the recruitment of WAVETI to the cytosolic tail of IL-2R(3 leads to IL-2Rf3
clustering and N-WASP activation. N-WASP activation induces local Arp2/3-mediated
actin protrusions, which generate macropinocytic-like endocytic pits. This process is further
supported by an intracellular signaling involving PI3K, Rac1, and PAK-1 activation [47].
Although similar to the macropinocytosis process, IL-2R[3 endocytosis generates smaller
(<0.5 pm) and confined spherical carriers.

2.2.3. Macropinocytosis and Phagocytosis

Macropinocytosis and phagocytosis are endocytic processes that involve the inter-
nalization of large volume fractions of liquids or large-sized particles. Even though they
differ in their nature of induction and mechanisms, these processes share multiple mecha-
nistic similarities, including slow kinetics, major membrane remodeling, and cytoskeleton
support [48]. Macropinocytosis is a unique process which rapidly allows the intake of large
amounts of fluids in different cell types, including immune cells, epithelial, fibroblasts, neu-
rons, microglia, and cancer cells [49]. Although constitutively active in quiescent circulating
cells, macropinocytosis is downregulated in mature immune cells [48]. Macropinosomes
can vary in size (0.2 to 10 pm in diameter) and can be modulated by both pathogens and
chemical compounds. As macropinocytosis is not identical in different cell types, the most
common feature is the strict dependency on actin-polymerization machinery and on both
Racl and PAK1 recruitment [49]. Despite its importance to physiology, the molecular mech-
anisms underlying macropinocytosis remain only partly understood. For example, how
and which molecules contribute in macropinosome scission from the plasma membrane,
instead, is still unknown. This is largely due to the difficulty in studying macropinosomes
owing to the lack of unique molecules present in these structures.

Phagocytosis is a universal pathway that involves the uptake of large particles (>0.5 um),
including nutrients and pathogens such as bacteria. Macrophages, neutrophils, monocytes,
dendritic cells, and osteoclasts are called professional phagocytes, as they perform phago-
cytosis with high efficiency [50]. This process requires triggered cell surface membrane
deformations that usually encircle the particle, which result in phagosomes formation [51].
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Two well-described types of phagocytic processes exist: (i) FcR-mediated engulfment of im-
munoglobulin G-opsonized particles and (ii) complement receptor CR3-mediated ingestion
of C3bi-coated particles [50,51]. FcR-mediated phagocytosis, also known as ‘zipper-like’,
is mediated by the binding of FcR receptors to the ligands and the activation of a local
signaling response which activates actin rearrangement, membrane extension around the
ligand, and finally formation of a protruding cup with a zipper-lock arrangement around
the pathogen. CR3-type or ‘trigger-like’ phagocytosis, instead, is generally activated by
extracellular chemical compounds or particles, which are then loosely encased in a large
membrane vesicle. In this process, actin is activated to create local patches that control
cell membrane depression. Once formed, phagosomes are gradually acidified and cargo-
degraded. Both phagocytic process and phagosome degradation can be manipulated by
pathogens to either promote their internalization or escape their degradation [52].

2.3. Caveolar Endocytosis

Although controversial, another endocytic process which uses a membrane coat is
caveolin. Caveolae are characterized by a unique morphology composed by a bulb-shaped
pit of approximately 60-80 nm diameter connected to the plasma membrane by a slightly
smaller neck [53]. Structurally, caveolae are formed by assembly of cholesterol binding
membrane proteins, termed caveolins, and cytoplasmic protein termed cavins. There are
three subtypes of caveolin proteins, two of which are ubiquitarian (cav-1 and cav-2) and one
is muscle specific (cav-3). Caveolae formation is cholesterol-dependent and loss in mem-
brane cholesterol leads to disassembly of the caveolar structures. Although highly abundant
in some cell types, caveolae are absent in neurons and many blood cells. In cells with
abundant caveolae, such as skeletal and smooth muscle, adipocytes, and endothelial cells,
recent evidence suggests that caveolae mediate mechano-protection and control of lipid
homeostasis, likely acting as a general stress-sensing membrane domain [54,55] (Figure 3).

Figure 3. Abundant caveolae at the plasma membrane of vascular smooth muscle cells. Cav: caveolae,
mit: mitochondria, bm: basal membrane, col: collagen. Scale bar: 500 nm. These images were taken
by K.C. and represents the lab’s unpublished material.

Early work focused on caveolar endocytosis for albumin, toxins such as tetanus and
cholera toxin, and viruses such as polyoma and simian 40 (5V40) and identified SV40 entry
in a specific endocytic structure, termed the caveosome. This compartment had a neutral
pH and did not accumulate the lysosomal dye lysotracker [56]. However, more than a
decade ago, new elegant evidence provided by the same group demonstrated that caveolae
bud, albeit infrequently, from the plasma membrane carrying caveolin and cavins to the
classical early endosome, recommending to dismiss the term caveosome [57]. More recently,
caveolar endocytosis has been described as a high-efficiency route for cytosolic siRNA
delivery of polymeric nanoparticles in macrophages by circumventing lysosomes [58].
Despite these new findings, endocytosis via caveolae remains a controversial issue. It is
not clear, for example, whether this endocytic route is constitutive, albeit occurring at a
low rate and massively up-regulated upon specific triggers. Insights have been obtained
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by caveolin knockout mice, which revealed novel roles of caveolin and clarify caveolar
cargo specificity [59]. However, the lack of selective specificity for traditional caveolae
cargoes observed in knockout mice has raised the hypothesis that caveolin expression level
is critical in defining the entry route of certain cargoes. Endocytosis of SV40 virus, for
example, has been reported to increase in cells lacking caveolin-1, suggesting an inhibitory
role of caveolin-1 in this process [60,61].

3. Diseases Caused by Defective Mechanisms of Endocytosis

Diseases associated with defective endocytosis mechanisms manifest in all tissues.
Some of these dysfunctions can be multi-organ and others restricted specifically to one
or two. Such diseases often arise from mutations of genes of (i) cargo endocytic proteins,
(ii) endocytic machinery components. Depending on the impact of the mutation on the
physiology of the tissue, diseases can be developmental or manifest later in aging. In the
following paragraphs, we briefly summarize neurological and cancer diseases associated
with mutation in endocytic proteins.

3.1. Neurological Diseases

Major neurodegenerative diseases are strongly associated with defects in endocytic
pathways, particularly within the endosomal system [62]. Genetic association studies
have identified mutations which alter the expression of endocytic machinery genes with
Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS).
AD-related endocytic genes identified correspond, among others, to the CME-linked
phosphatidylinositol-binding clathrin assembly protein (PICALM) [63], CME-linked AP2A1
and AP2A2 [64], CME/FEME-linked bridging integrator 1 (BIN1)/amphiphysin 2 [65],
CME-related cortactin-CD2-associated protein (CD2AP) [66], and CME and UFE-related
synaptojanin protein [67]. Such mutations can impact AD in multiple ways: for exam-
ple, by affecting neuron ability in degrading 3 amyloid or by directly affecting synaptic
function [68]. Parkinson’s disease (PD) is also strongly associated with defective endocy-
tosis. Mutation and altered expression of several endocytic proteins, such as cyclin CME
related G-associated kinase (GAK) [69], CME-related auxillin [70], and CME/UFE-related
synaptojanin [71], have been frequently observed in PD patients. Mutations in endocytic
proteins have been also observed in amyotrophic lateral sclerosis (ALS), a neurogenerative
disease with results in progressive degeneration of motor neurons. Such mutations include
genes such as the RAB5 GEF Alsin (also known as ALS2) [72] and the inositol phosphatase
factor induced gene 4 (FIG4), which modulate endocytosis by acting on phosphoinositides
synthesis. Moreover, mutations in the CME adaptor SV2A have been widely associated
with epilepsy [73]. Lastly, milder mutations in the genes encoding AP-2c (AP251) and
AP-2u1 (AP2M1) have been identified as cause for familial hypocalciuric hypercalcemia
(FHH) type 3 [74] and epileptic encephalopathy [75], respectively. Although many mu-
tations in endocytic genes have been identified, most of the mechanistic causes that lead
to disease are still largely unknown. These mutations may affect presynaptic function,
channels transport, postsynaptic neurotransmitter receptor availability, and ultimately
synaptic protein homeostasis. Further studies will be required to better dissect the impact
of disease progression on such mutations.

3.2. Cancer

Endocytosis is intimately linked to cancer as it plays a primary role in transducing
intracellular signaling, favoring tumor proliferation and invasiveness, and promoting
cell reprogramming [76]. In cells, endocytic organelles act as signaling platforms for
different intracellular pathways, including mitogen-activated protein kinase (MAPK),
phosphatidylinositol 3 kinase (PI3K), and transforming growth factor b (TGF-b). Such
transducing signal is generally activated by the binding of extracellular ligands to tyrosine
receptor kinases (RTK) present on the plasma membrane [77]. RTKSs are then internalized via
different endocytic routes and either degraded or recycled back to the membrane to sustain
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the intracellular signaling [78,79]. In cancer cells, canonical endocytic pathways that clear
RTKSs from the plasma membrane or sort RTKs to lysosomes are often compromised [80].
In particular, two famous RTKs families are classically associated with cancer: the ERBB
and HGEFR families, of which EGFR and cMet are the prototypes, respectively [77]. An
escape route to internalization often observed in both RTK families is gene amplification of
the receptors. Increased expression of RTKs on plasma membrane prolong their signaling
and alter receptors internalization routes, which is often dose-dependent [18]. Head and
neck, brain, breast, and other tumors often overexpress ERBB receptors as a result of
gene amplification [77]. NSCLC, breast, renal, and ovarian cancer, instead, often present
cMet overexpression [81]. Moreover, receptors’ over-expression promotes RTKs” homo
and hetero-dimerization at the plasma membrane, which further reinforce intracellular
signaling or receptor recycling. This is the case for the ERBB2 receptor, which is often over-
expressed in different tumors, such as breast and gastric tumors [82]. Heterodimerization of
EGFR with ERBB2 increases RTK escape from the endocytic routes, as ERBB2 lacks a ligand
binding domain and it is therefore often retained to the plasma membrane [83]. Moreover,
when ERBB2 is internalized, it rapidly recycles back the plasma membrane, unless it is
forced to traffic toward late/lysosomal compartments by anti-neoplastic drugs [84,85]. This,
therefore, enhances the recycling of all ERBB receptors associated with it [86]. Another
way to escape degradation is by gene deletion of exons that include ligand binding. An
EGFR mutant (EGFRVIII) as described often is present in glial tumors [87]. Such mutant
can dimerize and activate in the absence of ligand binding. EGFRVIII is inefficiently
internalized and degraded but is rather recycled back to the membrane, thus conferring its
high tumorigenic potential [88]. Similarly, exon 4 (Ex4) skipping in cMet gene was found
in lymph node metastases of head and neck squamous cell carcinomas, non-small cell
lung cancer, and associated with metastatic spread and tumorigenesis [89]. Ex4 deletion
leads to cMet accumulation on the plasma membrane and persistent signaling [90]. Other
mutations in ErbB genes observed in non-small-cell lung cancer include somatic activating
mutations in EGFR tyrosine kinase domain, which slow down receptor deactivation [91,92].
Epithelial-mesenchymal transition (EMT) is a critical step in metastatization. Cancer cells
loss cell-cell adhesions and apical-basal polarity, and develop a motile phenotype [93]. Such
transformation requires a myriad of transcriptional and post-transcriptional events, which
include both new protein synthesis and modulation of vesicular trafficking. Endocytosis
can modulate polarity changes by refining junctional complexes trafficking. Polarity-
maintaining trafficking is regulated by Par and Cdc42 proteins, which are often mutated
or down-regulated in tumors [94]. In breast and lung cancers, Arf6 pathway is often
up-regulated and represents a risk factor for metastasis when associated with ErbB2 over-
expression. This is partially due to the fact that RTKs can regulate trafficking of E-cadherin
by themselves [95,96].

4. Current Imaging Tools and Techniques to Study Endocytosis in Living Cells and Tissues

To study endocytosis, it is critical to identify and monitor nanometer to micron-sized
endocytic structures and their dynamics over time. Over the last 50 years, several optical
tools have been developed and further optimized to trace all stages of endocytosis [44].
These include prevalently microscopy approaches and the use of primary cultures or
cell lines grown in monolayers, which are easy to access and manipulate. However, the
complexity and regulation of endocytic routes increase in complex systems, such as organ
cultures and acute slices and even more in live animals, where endocytosis is further
regulated by several additional factors (vasculature, extracellular matrix, and hormones),
thus requiring specific tools and technologies [10]. In the following paragraph, we discuss
different imaging tools and their spatiotemporal resolution used in the study of endocytosis
both in vitro and in vivo (Figure 4).
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Figure 4. Spatiotemporal resolution plot for imaging methods to study endocytosis. Plot reca-
pitulating the estimated spatiotemporal resolution of all the available imaging methods currently
used to investigate endocytosis at both in vitro and in vivo dimensions. Methods are shown as
colour-coded squares and their size and position reflect their spatiotemporal resolution in the context
of investigation of endocytosis. IVM, intravital microscopy; SRM, super-resolution microscopy.

4.1. Fluorescence Microscopy (FM)
4.1.1. Internalization Assay by Fluorescence Microscopy

To track a cargo along its preferential internalization pathway, one of the most used
tools in cell biology is the internalization assay, which has been developed using either
fluorescent probes or labeled antibodies or ligands. The classical internalization assays
work as follows: live cells are incubated with the labelled ligand or antibody and, after a
defined interval of time, are fixed and the internalized fraction identified by fluorescence
microscopy. In such configuration, the fraction of ligand remaining on the cell surface can be
specifically removed by wash-out before the fixation or immunolabelled using an antibody
after fixation to quantify the net fraction of internalized cargo. These assays are quantitative
but can only be used to monitor one moment in the endocytic process at a time. In addition,
extreme caution is recommended when the antibody-binding technique is used. It might
alter endocytic rates and even endocytic routes due to antibody valency. Alternatively,
pulse-chase experiments can be used. However, in order to track receptors over time,
it is still required to tag the receptor with a switchable tag, which can simultaneously
induce receptor internalization when activated by light or drugs (pulse) and allow to track
the receptor in its inactive state (chase) [97,98]. Therefore, to assess the dynamics of the
endocytic process over time, live imaging techniques are the preferred ones.

4.1.2. Fluorescent Probes for Live Fluorescence Imaging

A feature shared among all endocytic pathways is that endocytic intermediates
(e.g., early endosomes, multivesicular endosomes, late endosomes, and lysosomes) present
an increasing acidic environment (from pH 5.5 to 4.5) [99]. Taking advantage of that, several
pH-sensitive genetic fluorescent probes for endocytic compartments were designed. A
powerful example is the genetic probe pH-sensitive variant of GFP (superecliptic pHluorin,
SEP) [100]. Such GFP variants can sense variation in intravescicular pH and decrease their
fluorescence when pH undergoes pH 6, thus indirectly reporting endocytosis of membrane
cargo proteins when fused in their extracellular domain. This tool has successfully allowed
to study synaptic vesicle (5V) endocytosis in synapses and receptor trafficking [101,102].
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However, this approach presents several limitations. First of all, this method works effi-
ciently in triggered endocytosis, where differences in fluorescence from resting state are
substantially high. However, the abundance of protein cargoes on the plasma membrane
and the relative resting fluorescence signal of fused SEP, as well as the constant recycling
of cargoes from and to the plasma membrane, produce a background fluorescence that
lowers SEPs signal-to-noise ratio and thus limits the visualization of spontaneous endocytic
events. In addition, SEP is a genetically encoded tool, and its transfection can induce cell
toxicity (Figure 5).
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Figure 5. (A). Schematic representation of an imaging tool based on SEP to study synaptic protein
recycling. Briefly, a vesicular protein tagged with SEP is quenched in the resting condition into
acidic SVs (blue). Upon external electrical stimulation that induces action potential firing, SV
fuses with PM and increases its fluorescence in a basic environment (green). At the end of the
stimulation, SV is internalized back and reacidified (blue). (B). Representative synaptic SEP response
to an electrical stimulation of 200 APs at 40 Hz (red rectangle) in WT primary cortical neurons
expressing Synaptophysin-SEP. An increase in Synaptophysin-SEP fluorescence within seconds from
the electrical stimulation corresponds to synaptic vesicle exocytosis. After the stimulation ends, SEP
fluorescence decreases, reflecting synaptophysin endocytosis and vesicle acidification. The indicated
trace is expressed as AF/Fmax, where AF is the variation in SEP fluorescence over time respect to
the SEP baseline fluorescence (F-F0), and Fmax represents the maximal fluorescence obtained at the
end of the stimulation. (C). Representative TEM image depicting a synapse from cultured IPSCs cells
reprogrammed into neurons at resting. Presynaptic compartment (blue asterisk) can be identified by
its enrichment in synaptic vesicles (size 35 nm). Occasionally, clathrin-coated vesicles can be observed
(i, red arrow). Post-synaptic compartment (green asterisk), on the contrary, is mainly enriched in
Right, zoomed images of the clathrin-coated vesicle and early endosomes highlighted in the main
figure. Scale bar: 400 nm.

This can be partially overcome by the use of pH-sensitive fluorophores such as CypHer,
which behave reversely to SEP and can be conjugated to antibodies [103,104]. CypHer is
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a red-shifted pH-sensitive cyanine dye whose fluorescence is de-quenched under basic
or acidic pH conditions, and quenched under neutral pH conditions. Cypher antibodies
against the luminal domain of vesicular proteins can be added directly in the medium and,
in response to stimulation, increase in fluorescence upon vesicle endocytosis [105]. The
greater advantage of CypHer is then that it does not require cell transfection. However,
CypHer has a high bleaching rate, which can compromise endocytosis measurements.
Moreover, organelle re-acidification occurs within tens of seconds, therefore limiting the
use of both pHluorin and CypHer to slow forms of endocytosis such as CME and some
forms of CIE. The most commonly-used pH-sensitive probes used to stain acidic compart-
ments that do not require transfection are fixable Lysosensor probes and DQ-BSA (Dye
Quenched-Bovine Serum Albumin), and non-fixable probes like Magic Red (Cathepsin
B assay) and the less-specific acridine orange (OA). These tools are designed to fluoresce
only in highly acidic lysosomal compartments and are widely used mainly to detect late
stages of endocytic trafficking and/or highly acidic compartments (e.g., lysosomal activity
in endocytic and autophagic processes). Advantages of these probes include the speed and
ease of staining. Limitations of non-fixable probes are that labelling must be performed on
living cells/tissue and therefore must be examined immediately; OA also stains nucleic
acids [104]. As an alternative to pH-sensitive probes, the dynamics of endocytic associ-
ated proteins can be used to indirectly monitor endocytosis using total internal reflection
fluorescence (TIRF) microscopy—also known as evanescent wave or evanescent field mi-
croscopy. By exciting fluorophores exclusively near the cell surface (within 100 nm), this
technique has significantly contributed to gain insight into the components that are neces-
sary for vesicle formation and the dynamics of this process. Using TIRF, several groups
have successfully recorded clathrin and dynamin dynamics when fluorescently tagged in
cell monolayers. This tool has allowed to understand the dynamics of clathrin uncoating
and dynamin recruiting in live cells during CME [105,106]. Moreover, these studies have
also demonstrated that some proteins are present throughout the endocytosis process
(e.g., clathrin and epsin) [107] and others are critical during specific events [108]. This tool
has allowed to understand the dynamics of clathrin uncoating and dynamin recruiting in
live cells during CME [105,106]. However, this technique requires transfection and does
not precisely measure endocytosis, but rather clustering and dissociation dynamics of its
accessory proteins. Moreover, in some cell types, such as neurons, clathrin turnover is
much slower than the CME process itself, therefore not perfectly representing this process.
This limitation, therefore, makes this tool rather qualitative than quantitative.

4.2. Super-Resolution Microscopy (SRM) Technigues

Although live imaging techniques have provided greater insight into the kinetics of
different endocytic pathways, they cannot allow to resolve individual organelles.

To meet this demand, several super resolution microscopy (SRM) techniques have
come to help. Broadly speaking, SRM techniques can be divided into two categories:
ensemble SRM techniques, which improve the resolution of overall structures, and single
fluorophore SRM techniques, which use individual molecules localization to build an
overall structure [109,110]. Stimulated emission depletion (STED), structured illumination
microscopy (SIM), and expansion microscopy (ExM) are included in the first category,
while single-molecule localization microscopy (SMLM) including direct stochastic optical
reconstruction microscopy (dASTORM) and photoactivated localization microscopy (PALM)
are single fluorophore techniques.

These techniques have contributed to provide fundamental information on traffick-
ing among different cell types [111-113]. For example, SIM microscopy has been useful
in revealing that CME and caveolar endocytosis occur at distinctive sites on the plasma
membrane [11]. SMLM studies have similarly observed that different receptors on immune
cells share communal clustering motifs and that acetylcholine receptors diffuse on neuronal
plasma membrane till they are trapped by cytosolic clusters of clathrin and its adapter AP-2.
In line with previous investigations, a combination of SMLM, total reflection fluorescence
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(TIRF), SIM, and STED, has revealed that membrane lipids, e.g., phosphatidylserine and
phosphoinositides, also cluster in microdomains in the majority of cell types and that lateral
diffusion of receptors is limited by transmembrane proteins [105,106]. Moreover, SRM
has also dug out the dynamics of different endocytic pathways. Using SRM correlative
microscopy, CME adaptors and actin arrangement during clathrin coat assembly have
been mapped, revealing the precise displacement of both actin and accessory proteins in
CME [107]. Using fPALM, Mund and Colleagues developed a high-throughput super-
resolution microscopy to reconstruct the nanoscale structural organization of 23 endocytic
proteins from over 100,000 endocytic sites in yeast [114]. Using this approach, they revealed
that nano-scale pre-patterning of actin nucleation present a general design principle for
directional force generation in membrane-remodeling processes such as during cell mi-
gration and division [114]. SRM has also revealed more insights into caveolin-mediated
endocytosis. For instance, SIM and STED have revealed that purinergic receptor P2X7R
signaling and Ca?* release from endoplasmic reticulum modulate caveolae rearrangements
in osteoblasts [115] and muscles [116], respectively. In some cell types, endocytosis is
coupled with exocytosis to dynamically maintain membrane homeostasis. Using SIM
microscopy, it was shown that both dynamin and actin are critical players to guarantee
an efficient exo—endo coupling [117]. Moreover, at specific cellular compartments, such
as synapses, it is still difficult to precisely locate endocytic structures without recurring
electron microscopy. The recent advent of expansion microscopy (ExM) has allowed
to precisely locate dynamin at the active and pre-active zone of individual synapses in
C. Elegans [118].

Although SRM has provided impressive improvements in studying endocytic traf-
ficking events, some limitations in spatial, spectral, and temporal resolution need to be
resolved. The resolution of super-resolution techniques varies widely—from 100 nm in
in-vivo STED, which is still too low to resolve small structures, to the recently developed
MINFLUX technique, which has a reported resolution of down to 1 nm [119]. However, an-
tibodies or fused tags (GFP-derived, Halo-tags), conventionally used to visualize endocytic
structures, cannot reach that limit spatial resolution due to their size. To overcome this prob-
lem, DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT)
technique, has been improved by combining it with smaller molecules [120]. DNA-PAINT
uses short dye-labelled DNA oligonucleotides that transiently and specifically interact with
their complements, which are attached to the molecule of interest [121,122]. This means
that DNA-PAINT can be used for multiplexing, targeting any molecule that can be linked
to a docking oligonucleotide strand and to label it via indirect immunolabelling. Therefore,
when combined with nanobodies, as well as affimers and novel aptamer probes called
SOMAmers, spatial resolution is substantially increased [123,124].

However, more work will be needed to reliably employ these tools in routine SRM.
Another drawback of SRM is that most of the techniques can acquire only two colors
simultaneously. This is often due to the method used for the image acquisition (beam
depletion or fluorophore switching, for example). However, resolving complex endocytic
structures require more proteins labelled at the same time. Three and four-channels SRMs
are currently being implemented and in the future will be critical in resolving multiple
stages of the endocytic process at the same time. Collectively, another limitation of current
SRM techniques is that they also present a very low temporal resolution that ranges in
seconds and minutes and substantially affects the study of endocytic dynamics in live
cells. Novel ongoing developments, such as optical lattice STED (OL-STED) imaging, is
demonstrated with a resolution down to 70 nm and will be critical for future temporal
monitoring of endocytic events in different cell models [125].

In Vivo Imaging and Its Applications to Visualize Membrane Trafficking

Despite significant progress in SRM techniques, their application in living samples
are limited due to poor imaging depth. Considerable efforts have been extended to en-
hancing the imaging depth and developing highly-sensitive fluorescent probes to realize
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real-time imaging in vivo [126]. For example, Adaptive Optics (AO) has been introduced
in many SRM techniques to enhance the imaging depth by eliminating sample-induced
distortions [127]. Nowadays, improvements in optical system construction, camera tech-
nologies, and labeling methods have made it possible for SRM to visualize physiological
activity in living organisms. Although work on primary cell culture and cell lines have
extended our knowledge of the underlying molecular mechanisms in endocytosis, it is
still unknown whether in vivo cells show the same endocytic mechanisms and how dif-
ferent endocytic pathways contribute to the physiopathology of a specific tissue or organ.
Classically investigated by EM, the study of endocytosis in live mammals was recently
challenged by recent developments in intra-vital subcellular microscopy (ISMic) method-
ologies, including the use of light microscopy techniques such as spinning-disc, confocal,
and multiphoton microscopy [128]. ISMic combines surgical techniques, organ stabilization
tools to reduce motion artifacts, and two or multi-photon microscopy [129]. Two-photon
microscopy ensures deep tissue penetration and reduced phototoxicity, which is perfect
for the long-term in vivo experiments. ISMic has been extensively used to study tumor
progression, but only recently has this tool been used to study endocytosis in vivo. For
example, ISMlic was successfully used to visualize human squamous cell carcinomas overex-
pressing EGFR implanted in immunosuppressed mice using carbon nanotubes conjugated
with EGF and Qdots [130]. Similarly, the uptake of antibodies against EGFR or EpCAM in
colon cancer tumors successfully allow to identify differences in endocytic activity among
metastases and primary tumors [130]. Moreover, ISMic permitted the determination that
GTPase Rab25 controls tumor cells invasion and dissemination in lymph nodes in vivo
by remodeling actin at the plasma membrane and promoting endosomal recycling [131].
However, ISMic has technical spatial and temporal resolution limitations which prevent the
visualization of fast forms of endocytosis in vivo. Similar to SRM, novel developments in
both optical probes and microscope technology will significantly improve both the spatial
and temporal resolution of ISMic techniques [132]. Moreover, ISMic is still limited to a
few organs, such as kidney, salivary gland, and few solid tumors. Novel surgical proce-
dures and tools will be needed to access more organs, including the use of microlenses
for microendoscopy [133], microstage organ stabilizators [134], and chronic windows for
long-term imaging experiments [135].

4.3. Electron Microscopy Techniques to Study Endocytosis

From the first characterization of endocytosis by Roth and Porter [136], EM techniques
remain one of the most used tools used to investigate the complex membrane structure
of endocytic pathways [137]. Here, we briefly describe, together with their strength and
weaknesses, the main types of EM tools and techniques that are applied to study endocytic
pathways. Classical EM, which involves chemical fixation of cells and tissues, dehydration,
embedding in resins, and ultrathin sectioning, was used for decades to study the subcellular
morphology of vesicles and organelles [138]. However, in addition to chemical fixation,
high-pressure freezing (HPF), followed by freeze substitution, represent an alternative to
optimally preserve the ultrastructure of organelles [137]. However, HPF requires expensive
equipment and is not easily combined with cytochemical or immunocytochemical methods.
In the last decades, EM techniques, based both on chemical and/or HPF fixation methods,
allowed to classify and resolve the structure of new types of CIE carriers and caveolae in 2D
and 3D [60]. Widely-used and affordable tools to track endocytosis by EM include the label-
ing of endocytosed structures with soluble or extracellular antibody-conjugated horseradish
peroxidase [38,138] or the use of fluid-phase endocytic probes like BSA-colloidal gold con-
jugated (see Figure 2), used to visualize endocytic intermediates [139].

Immunoelectron microscopy (IEM) methods allow simultaneous visualization of
up to three components of endocytic proteins (both cargo and regulatory molecules) by
using antibodies or probes marked with specifically-sized gold particles [139]. A general
drawback of immuno-EM techniques is their relatively low sensitivity. When IEM is
combined with the Tokuyasu ultrathin cryosectioning technique, most antigens retain their
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antigenicity. Moreover, because antibodies can to some extent penetrate into the section,
labeling efficiency is improved over resin sections. Together with excellent membrane
visibility, this makes cryosectioning the IEM method of choice to study the endolysosomal
system (Figure 6). The complex and fascinating ultrastructure of the endosomal carriers and
network has been better visualized by adding the third dimension by electron tomography
(ET). When combined with HPF and freeze substitution in resins, ET is the method of
choice to establish contacts and continuities between endosomal compartments and other
organelles. Combining ET with protocols that require permeabilization of cells should be
interpreted with caution, especially for its impact on structural preservation. The most
evident limitation of EM is the impossibility to detect living cells; thus, images represent
a specific point in time of the endocytic process, and cannot be used to study endocytic
dynamics. In certain cellular models, such as neurons, it is possible to get away with that by
coupling EM with advanced genetically-encoded optical tools, such as optogenetics, which
allows to obtain snapshots of the endocytic process within hundreds of milliseconds [140].
In particular, the flash and freeze technique is based on a combination of optogenetics
that enables to trigger action potential in neurons by expressing a channel rhodopsin,
which depolarizes the cells upon light illumination, and results in rapid fixation via the
high-pressure method [140]. This method has been successfully used to visualize UFE for
the first time, as it allows instantaneous fixation within milliseconds from the end of the
light stimulus [141].

Lo w s

Figure 6. The ERBB2 receptor visualized by two different immuno-EM techniques. On the left,
ERBB2 is revealed by using HRP-conjugated anti-ERBB2 Trastuzumab antibody in epoxy resin
embedded cells; on the right, using an anti-ERBB2 antibody (9G6) revealed by protein A gold 10 nm
(arrows) in Tokuyasu cryosections of SKBR3 breast cancer cells. Membrane ruffles (mf, arrows),
clathrin-coated pit (CCP, arrow). Scale bar: 500 nm, 200 nm. These images were taken by K.C. and
represents the lab’s unpublished material.

4.4. Correlative Microscopy Techniques to Study Membrane Trafficking

Most light microscopy (LM) studies on the endocytosis use fluorescent probes. These
can provide dynamic information from living cells or provide a wide field of view that
EM lacks. However, they only visualize fluorescently-labeled components and do not
provide information on membrane composition or cellular context. Optimally, one would
like to investigate a sample from fluorescence to EM, or even ET, to identify the nature and
morphology of the dynamic structures observed by live-cell imaging or peculiar fluorescent
patterns seen in fixed cells. As a beautiful example, direct correlation of the dynamics
of 211 endocytic proteins with 3D ultrastructural data has been performed by correlative
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microscopy in budding yeast, precisely defining protein-mediated cell shape changes
during endocytosis [142].

Correlative microscopy techniques and novel genetic and/or bimodal probes applied
in cell biology have rapidly grown over the last two decades; today, the field has broad-
ened, incorporating preclinical research and diagnostics [143,144]. However, besides the
requirement of expensive equipment and expert microscopists, a main limitation of these
approaches is achieving a robust quantitative analysis [145,146]. To overcome this lim-
itation, a systematic and quantitative CLEM method performed on Tokuyasu ultrathin
cryosections was successfully designed to characterize Rab5, Rab7, EEA1, and APPL1 posi-
tive endosomes, classically poorly distinguishable by immuno-EM [147], thus overcoming
the throughput problem. New advances in the development of bimodal probes led recently
to the development of fluorescent BSA-gold (fBSA-Au), a fluid-phase endocytic tracer.
fBSA-Au consists of colloidal gold (Au) particles stabilized with fluorescent bovine serum
albumin (BSA). The conjugate is efficiently endocytosed and distributed throughout the
3D endo-lysosomal network of the cells, and has excellent visibility both in fluorescence
microscopy (FM) and EM [148]. Performing correlative microscopy in cryo modality, al-
lowing the visualization of structures in their native state, has been also extensively used
and resolved, for example, in nanoscale organization of neuronal tunnelling nanotubes
(TNTs), structures that mediate intercellular transport of various cargoes [149]. Bloom-
ing new technologies, such as volume-scanning EMs (SEMs) based on focused ion-beam
scanning electron microscopy coupled with fluorescent imaging, provide the possibility of
visualizing large volumes at nanometer resolution in a semi-automated way. An exciting
application has enabled the accurate visualization and quantitation of SARS-CoV-2 interac-
tion and endocytosis in cell culture, revealing that SARS-CoV-2 viruses are preferentially
located at areas of plasma membrane with positive curvature [150].

5. Conclusions

Endocytosis is a fundamental process of cell proliferation and function in tissues.
Therefore, defects in endocytic machinery often led to tissue-related diseases or multi-organ
disorders. Several forms of endocytosis have been identified so far; however, most of the
mechanisms involved in such pathways are still unexplored. Although electron microscopy,
fluorescence imaging, and super resolution microscopy have significantly contributed in
obtaining nanoscale reconstructions of protein, membrane, and lipid organization during
endocytic events, novel optical developments and image-analysis algorithms for both
in vitro and in vivo investigations are still needed. In particular, algorithms based on deep
learning and artificial intelligence [151] will certainly allow for a more precise analysis
of fundamental biological questions behind endocytosis, and determine the relative con-
tribution of endocytosis in organ metabolism and diseases, and ultimately promote the
development of better therapeutical strategies to cure diseases.
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