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Abstract: A pellicle is a thin membrane structure that protects an extreme ultraviolet (EUV) mask from
contamination during the exposure process. However, its limited transmittance induces unwanted
heating owing to the absorption of EUV photons. The rupture of the EUV pellicle can be avoided by
improving its thermal stability, which is achieved by improving the emissivity of the film. However,
the emissivity data for thin films are not easily available in the literature, and its value is very sensitive
to thickness. Therefore, we investigated the dependence of emissivity on structural parameters, such
as thickness, surface roughness, and grain size. We found a correlation between resistivity and
emissivity using theoretical and experimental approaches. By changing the grain size of the Ru thin
film, the relationship between resistivity and emissivity was experimentally verified and confirmed
using the Lorentz–Drude model. Finally, we present a method to develop an EUV pellicle with better
thermal stability that can withstand high-power EUV light sources.

Keywords: EUV pellicle; emissivity; Lorentz–Drude model; resistivity; grain size; membrane

1. Introduction

Extreme ultraviolet (EUV) lithography has been applied to the high-volume manu-
facturing (HVM) of semiconductor logic devices and dynamic random-access memory
(DRAM) at 7-nm technology nodes and beyond [1,2]. The EUV pellicle is a free-standing
membrane that protects the EUV mask from the external defects generated during the
exposure process, thus improving the yield of the EUV lithography process [3,4]. The EUV
pellicle requires a transmittance higher than 90% at a 13.5-nm wavelength to minimize the
loss of throughput caused by the absorption of EUV photons by the pellicle. In addition,
the mechanical, chemical, and thermal durability of the pellicle is essential inside an EUV
scanner [5–9]. In particular, excess heating due to the absorption of EUV photons can
destroy the pellicle membrane due to thermal stress, which is fatal to the availability of an
EUV scanner [10]. Therefore, it is necessary to keep the EUV pellicle intact by improving
the cooling efficiency of the pellicle material.

Generally, a material can be cooled by conduction, convection, or radiation [11].
However, the cooling efficiencies by conduction and convection are very limited because of
the thin membrane structure of the EUV pellicle and the high-vacuum environment of the
EUV scanner, respectively. Therefore, the EUV pellicle is mainly cooled by radiation [12],
and ensuring the thermal emissivity of the pellicle structure is important [13–15]. However,
the emissivity values of nanoscale thin films are not easily available, and the measurement
of emissivity is not intuitive.
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Herein, the improvement of cooling efficiency is demonstrated by changing the grain
size of the ruthenium thin film. In addition, the relationship between the resistivity and
emissivity of the Ru thin film is experimentally verified and theoretically confirmed based
on the Lorentz–Drude model. Finally, it is argued that emissivity can be improved by
changing the microstructure in the direction of increasing the resistivity of the thin film.

2. Theoretical Approach
2.1. Emissivity and the Lorentz–Drude Model

According to Kirchhoff′s law, emissivity is equal to absorbance (α), which can be
calculated from reflectance (R) and transmittance (τ) using the energy conservation law, as
shown in Equation (1) [16].

α(λ, T) = 1− R(λ, T)− τ(λ, T). (1)

As temperature increases, the total radiated energy of a body increases and the peak
of the emitted spectrum shifts to a shorter wavelength according to Planck′s law, which
describes black body radiation [17]. During the exposure process, the EUV pellicle is heated
to hundreds of degrees Celsius such that the emitted spectrum is mainly generated in
the infrared (IR) wavelength region. Therefore, the emissivity of the EUV pellicle can be
calculated from the average absorbance of the IR wavelength region [13].

Furthermore, transmittance and reflectance are related to the refractive index and
the extinction coefficient, which can be calculated using complex permittivity (ε) [18–20].
Complex permittivity is derived from the Lorentz–Drude model, as shown in Equation (2).

ε(ω) = 1 + εDrude + ∑
n

εLorentz. (2)

The overall optical response follows the Lorentz oscillator model because the inter-
band transition is dominant in the ultraviolet and visible regions. Meanwhile, the Drude
model mainly determines the optical constants in the IR wavelength region because the
intra-band transition is dominant owing to the free electron contribution [21,22].

Because the thermal emission layer of the EUV pellicle is generally conductive and
the emitted spectrum of the EUV pellicle is primarily in the IR region during the exposure
process, the emissivity of the EUV pellicle is determined by the Drude model.

εDrude(ω) = ε∞ −
ω2

p

−ω2 − i ω
τ

(3)

τ =
m0

ρne2 (4)

Therefore, complex permittivity is related to plasma frequency (ωp) and electron
scattering time (τ) using the Drude model, as shown in Equation (3). Plasma frequency is
unique for each material, and electron scattering time can be derived as shown in Equation
(4). Here, ρ is the resistivity of the film, e is the electron charge, n is the electron concen-
tration, and m0 is the electron mass. From this equation, the inverse relationship between
electron scattering time and resistivity can be confirmed. In addition, the change in resistiv-
ity is expected to directly affect electron scattering time and subsequently emissivity [22,23].

2.2. Thin Film Resistivity Model

ρ = ρi

[
1 +

0.375(1− p)Sl
d

+
1.5Rl

(1− R)g

]
(5)

Equation (5) represents a resistivity model for thin films that considers the bulk
resistivity and the effect of surface and grain boundary scattering [24–26]. Here, d is the
film thickness, l is the mean free path of an electron, and g is the grain size. The factor



Membranes 2022, 12, 367 3 of 9

S corresponds to the surface roughness factor, which is equal to 1 for a perfectly flat
film surface and increases as the surface becomes rougher. Moreover, p is the specularity
parameter, which is related to the surface roughness factor, and R is the scattering coefficient,
which indicates the probability that an electron is scattered at a grain boundary. Therefore,
variables such as the surface roughness, grain size, and film thickness are the main factors
that influence the resistivity, which subsequently affect the emissivity of the EUV pellicle.

3. Experimental Methods
3.1. Sample Preparation and Analysis

A full-size (110 × 144 mm) EUV pellicle is required to sufficiently protect the EUV
mask from external defects during the EUV exposure process. However, it is technically
challenging to fabricate a full-size pellicle membrane as the pellicle is an ultra-thin film with
a thickness of only a few tens of nanometers. Therefore, the measurement and evaluation
were performed on a small-sized (10 × 10 mm) pellicle. However, it is expected that a
similar dependency will be observed even with a full-size pellicle.

Figure 1 presents a schematic of the fabrication process for the Ru/SiNx pellicle
composite used in this study. A 40-nm-thick silicon nitride (SiNx) film was deposited by
low-pressure chemical vapor deposition (LPCVD) onto a 725-µm-thick (100) silicon wafer
using ammonia (NH3) and dichlorosilane (DCS, SiH2Cl2) gas at 830 ◦C. Subsequently, a
DPD-200 photoresist was coated on the backside, and photolithography was performed.
This was followed by reactive ion etching using CF4, CHF3, and O2 gas to form a backside
window for wet etching. Furthermore, free-standing SiNx membranes with a size of
10 × 10 mm were fabricated by silicon wafer back-etching in a 30 wt% potassium hydroxide
(KOH) solution at 60 ◦C. A 4-nm-thick Ru film was then deposited onto the SiNx free-
standing membrane by DC magnetron sputtering. The target used was a 4-inch disk of Ru
(99.95%) metal, and the chamber was evacuated to a base pressure of less than 7 × 10–7 Torr
prior to deposition. The Ru films were deposited in pure Ar gas (99.9999%) at a pressure
of 10–3 Torr, and the substrate temperature was kept constant at 25 ◦C. Thereafter, the
Ru/SiNx pellicle composite was annealed at 300 and 500 ◦C for 30 min in a gas mixture of
96% Ar and 4% hydrogen (H2) of 99.999% purity in a vacuum furnace. The chamber was
evacuated to a base pressure of 5 × 10–3 Torr, and the flow rate of the Ar and H2 mixture
was fixed at 1 sccm. The heating rate was fixed at 10 ◦C min–1, and cooling was also done
in a vacuum environment.
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Figure 1. Fabrication of the Ru/SiNx pellicle composite: (a) SiNx film deposition using low-pressure
chemical vapor deposition (LPCVD) and backside patterning by reactive ion etching, (b) fabrication
of the SiNx free-standing membrane using the Si wet etching process, (c) Ru layer deposition by
magnetron sputtering and annealing at 300 and 500 ◦C using a vacuum furnace.

The thickness of the Ru film with respect to the annealing temperature was confirmed
by a cross-view image acquired using transmission electron microscopy (TEM, JEM 2100F,
JEOL, Tokyo, Japan). To compare the grain size, top-view TEM images of the Ru films
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deposited on SiNx grids (21515-10, TED PELLA, Redding, CA, USA) were obtained, and
the sizes of 40 grains were averaged. Atomic force microscopy (AFM, XE-100, Park systems,
Suwon, Korea) was used to confirm the surface roughness for a 1 × 1 µm probing area.
Lastly, the sheet resistance of the Ru film was measured with a 4-point probe and multiplied
with the film thickness to confirm the resistivity.

3.2. Heat Load Test

Figure 2 shows a schematic of the heat load test equipment used to evaluate the
thermal properties of the EUV pellicle composite. The thermal properties were evaluated
by measuring the membrane temperature according to the absorbed heat load when a
355-nm ultraviolet (UV) laser was exposed to the membrane.
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Figure 2. Schematic of the heat load test equipment.

During the exposure, EUV light was incident on the pellicle with uniform intensity. An
environment similar to the exposure process is required to obtain the reliability of the heat
load test. Therefore, the Gaussian beam profile of the UV laser was tuned to a top-hat profile
with uniform intensity by applying a diffractive optical element, as shown in Figure 3.
To emulate the EUV exposure, the chamber was evacuated to less than 6 × 10–6 Torr, and
EUV pellicle was exposed to 0.1-s heating and 0.9-s non-heating conditions per cycle by
the rotating slit at the top of the vacuum chamber. In this study, the heat load test was
performed for 60 cycles at various absorbed heat loads.

Iabs =
P
D
× α (6)

The absorbed heat load of the pellicle composite by the UV laser was calculated
using Equation (6). Here, P is the laser power, D is the area of the incident laser, and
α is the absorbance of the pellicle composite at a wavelength of 355 nm. In this study,
D was kept constant at 6 mm. Thereafter, the absorbed heat load was calculated by
measuring the absorbance of the pellicle composite using a UV-visible spectrophotometer.
The temperature of the pellicle composite was measured using a 2-channel pyrometer
during the heat load test, and the average of the peak temperature was calculated. The
measurement accuracy of the 2-channel pyrometer was ±2%, and the detection range was
400–1500 ◦C.

Furthermore, the heat load test was performed in a high-vacuum environment, and
the pellicle composite was at the nanometer scale thickness. Therefore, the cooling mecha-
nism by convection and conduction can be excluded and the emissivity can be evaluated
from the heat load test results. The emissivity of the pellicle composite was calculated
from the absorbed heat load and average peak temperature using the heat transfer equa-
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tion shown in Equation (7), wherein the effects of heat conduction and convection were
excluded [12,24,25].

dT
dt

=
1

c·m ·
[
α·P− ε·σ·S·

(
T4 − T4

s

)]
(7)

Here, c is the specific heat, m is the mass of membrane, ε is emissivity, σ is Stefan–
Boltzmann constant (5.67 × 10–8 Wm−2 K−1), T is the temperature of membrane, and Ts is
the temperature of the surrounding air.
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4. Results and Discussion
4.1. Resistivity Parameter Analysis

Figure 4 shows the cross-sectional TEM images of the Ru/SiNx composite membranes
as deposited and after annealing at 300 and 500 ◦C. Under each annealing condition, the
thickness of the Ru thin film was maintained at approximately 4.1 nm. Figure 5 presents
the surface roughness of the Ru film as a function of annealing temperature, and the root-
mean-square values of the surface roughness were 0.775, 0.805, and 0.709 nm, respectively.
The thickness and surface roughness are factors that affect the surface scattering of the thin
metal film according to Equation (5) [26,27]. In this study, the effect of surface scattering on
the change in resistivity was excluded because the corresponding factor was constant at
varying annealing temperatures.
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Figure 5. AFM images of the Ru films: (a) as deposited, (b) after annealing at 300 ◦C, and (c) after
annealing at 500 ◦C.

Figure 6 shows the calculated average grain size of the Ru films after annealing
treatment. The average grain size increased from 4.0 to 8.1 and 10.6 nm owing to the grain
growth due to annealing at 300 and 500 ◦C, respectively. According to Equation (5), the
grain boundary scattering is inversely proportional to the grain size [26,27]. Therefore, the
resistivity of the Ru film was expected to decrease as the annealing temperature increased.
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4.2. Resistivity and Emissivity

Figure 7a presents the results of the resistivity measurements for the Ru thin films.
Due to the annealing treatment, the resistivity decreased from 130 to 83 and 66 µΩ·cm,
which was expected from the grain boundary scattering model. Figure 7b shows the
heat load test results for the Ru/SiNx pellicle composites under the same absorbed heat
load of 1 W cm–2. After the annealing process, the average peak temperatures of the
pellicle composite increased from 507 to 514 and 528 ◦C. Then, the emissivity of the pellicle
composite was calculated using Equation (7). Here, the emissivity of the SiNx thin film
was approximately 0.003, and the absorbance in the IR region was close to 0. Therefore,
the calculated emissivity of the Ru/SiNx pellicle composite was assumed to be the same as
that of the Ru thin film [13]. After the annealing treatment at 300 and 500 ◦C, the emissivity
of the Ru film decreased from 0.48 to 0.46 and 0.43, respectively. From these results, the
proportionality between the resistivity and emissivity based on the Lorentz–Drude model
was experimentally verified.
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Figure 7. (a) Resistivity, and (b) peak temperature measured from the heat load test and calculated
emissivity of the Ru/SiNx pellicle composite: As deposited, after 300 ◦C annealing, and after
500 ◦C annealing.

5. Conclusions

The relationship between the resistivity and emissivity of the Ru thin film according to
microstructural changes (grain size) was confirmed. Due to the post-deposition annealing
process at 300 and 500 ◦C, grain growth was observed while the film thickness and surface
roughness were unchanged. Reduced grain boundary scattering decreases the resistivity
of the Ru thin film. A decreased emissivity of the pellicle was also observed through the
heat load test emulating an EUV scanner environment that excludes the cooling effect by
heat conduction and convection. From these results, the proportional relationship between
the resistivity and emissivity of a thin metal film based on the Lorentz–Drude model was
experimentally verified. In this paper, a small-sized pellicle membrane was studied due to
the technical difficulties of the pellicle fabrication process, but a similar tendency is expected
to be observed in a full-size pellicle which is needed in the EUV lithography process.

As the emissivity data for nanomaterials are currently difficult to obtain, the results of
this study provide insight that facilitates the prediction of emissivity from the resistivity,
which is relatively easier to measure. Therefore, the emissivity can be improved by changing
the microstructure in the direction of increasing thin film resistance.
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