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Abstract: In this paper, the joint impact of the interior heating and chemical reaction on the double
diffusive convective flow in porous membrane enclosures soaked by a non-Newtonian Maxwell fluid
is investigated applying linear and nonlinear stability techniques. The porous enclosures are square,
slender and rectangular. Using the linear stability analysis, the expression for the critical thermal
Rayleigh–Darcy number, above which the convective movement occurs, is derived analytically in
terms of associated physical parameters. A nonlinear stability examination reliant on the Fourier
double series is executed to calculate the convective heat and mass transports of the arrangement. It
is observed that the pattern of convective activity is oscillatory only in the occurrence of a relaxation
parameter and the threshold value of the relaxation parameter for the occurrence of the oscillatory
pattern depends on the other physical parameters. The onset of convective instability accelerates with
the increasing chemical reacting parameter, the interior heating parameter, the solute Rayleigh–Darcy
number, the Lewis number, the Vadasz number, and the relaxation parameter, while it delays with
the heat capacity ratio. The convective heat and mass transfers increase with the solute Rayleigh–
Darcy number, the Vadasz number, the relaxation parameter, and the aspect ratio (for rectangular
enclosure), while it decreases with the heat capacity ratio and the aspect ratio (for slender enclosure).
Additionally, the convective heat transfer enhances with the interior heating parameter, while the
convective mass transfer enhances with the chemical reacting parameter and the Lewis number. The
effects of Vadasz number, heat capacity ratio, and relaxation parameter are witnessed only on the
oscillatory pattern of convection and unsteady convective heat and mass transfers. Further, some
existing literature results are compared with the current findings.

Keywords: convective instability; Maxwell fluid; porous membrane enclosure; mass transfer; internal
heating; chemical reaction

1. Introduction

Double diffusive convective motion is encouraged by two components whose densi-
ties are different. These density gradients result in two different diffusion rates which are
very crucial for this type of convection. Convection that occurs due to concentration and
temperature gradients has gained popularity in previous years because of its realistic appli-
cations in science and engineering. Some of the vital sectors of relevances in engineering
contain foodstuff and chemical processes [1–4], casting of metals [5–7], crystal growth [8],
petroleum production [9–11], biomechanical and geosciences applications [12–15]. The

Membranes 2022, 12, 338. https://doi.org/10.3390/membranes12030338 https://www.mdpi.com/journal/membranes

https://doi.org/10.3390/membranes12030338
https://doi.org/10.3390/membranes12030338
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://orcid.org/0000-0001-8404-2053
https://orcid.org/0000-0001-7975-0709
https://doi.org/10.3390/membranes12030338
https://www.mdpi.com/journal/membranes
https://www.mdpi.com/article/10.3390/membranes12030338?type=check_update&version=1


Membranes 2022, 12, 338 2 of 26

problem of the double diffusive convective progress in a porous layer was explored by
Poulikakos [16]. He derived the boundaries describing the areas of direct and overstable
styles in terms of critical parameters. The anisotropic effect on the double diffusive convec-
tive movement in a porous surrounding substance was explored by Gaikwad et al. [17].
They considered the impacts of anisotropy parameters, solute Rayleigh number, the Soret,
and the Dufour factors on the stationary and oscillatory convections as well as on the
warmth and mass carrying. Kuznetsov and Nield [18] investigated the heterogeneity effect
on the beginning of double diffusive convective movement analytically exploiting linear
stability theory. The impact of throughflow on the onset of double-diffusive motion in
a permeable layer was explored by Kiran [19] and Shivakumara and Khalili [20]. They
found that the consequence of throughflow has either to become stable or to unsettle the
arrangement. It depends on the direction of throughflow. Javaheri et al. [21] deliberated
the double diffusive convective flow as a purpose for the geological congregation of carbon
dioxide. The exponential discrepancy of boundary conditions on the unsteady double
diffusive natural convective progress inside the porous enclosures was investigated by
Al-Mudhaf [22]. Altawallbeh et al. [23] calculated the power of internal heating on binary
instability in a permeable layer. They obtained the critical Rayleigh number and wave num-
ber for the stationary and oscillatory mode of convections exploiting the linear hypothesis.
Malashetty and Biradar [24] examined the consequence of chemical feedback on the binary
diffusive instability in a porous medium layer. They found that the chemical feedback
may have a stabilizing or destabilizing influence on the stability criterion. An outstanding
review of the studies associated with the double-diffusive instability has been provided by
Nield and Bejan [13], Yadav [25], Mojtabi and Charrier-Mojtabi [26], and Vafai [27].

It is known that fluids that take place in the majority of the above-mentioned ap-
plications and in nature exhibit non-Newtonian fluid features [28–38]. The problem of
double-diffusive instability in a porous medium layer drenched by non-Newtonian fluid
taking an Oldroyd model was explored by Malashetty and Swamy [39]. They derived
the arrival conditions for stationary, oscillatory, and finite amplitude convective motions
analytically. They found a contrast amid the progression of thermal transmission, solute
transmission, and viscoelasticity to establish the convective motion as an oscillatory pat-
tern. Malashetty et al. [40] and Kumar and Bhadauria [41] extended this problem with
the thermal non-equilibrium effect. The linear stability examination of a Maxwell liquid
with double-diffusive motion was undertaken by Awad et al. [42]. They demonstrate that
the critical Darcy–Rayleigh number reduces with the relaxation time. Wang and Tan [43]
inspected the dual-diffusive instability for non-Newtonian liquid in an absorbent medium
considering an amalgamation of Maxwell and Darcy models. They observed that the Soret
outcome and relaxation time sped up the onset of convection. The consequence of interior
heating on the beginning of double diffusive instability in a coupled stress non-Newtonian
liquid flooded porous layer was scrutinized by Gaikwad and Kouser [44]. They found
that the arrival of both stationary and oscillatory convective movement is increased by the
interior Rayleigh number. Gaikwad and Dhanraj [45] scrutinized the combined weight
of anisotropic and interior heating on the binary flow in a non-Newtonian Maxwell liq-
uid flooded permeable layer. They observed that the inner Rayleigh number, mechanical
anisotropy factor, and relaxation parameter sped up the start of convective activity, while
the thermal anisotropy factor delayed it. Very recently, the impact of larger frequency pul-
sation in the gravity force on the double-diffusive convective activity with non-Newtonian
viscoelastic liquid-filled porous matrix was inspected by Zhao et al. [46].

From the literature inspection, clearly no effort has been made to determine the mutual
impact of chemical response and interior heating on the beginning of double diffusive
convective motion in a permeable layer flooded by a non-Newtonian fluid. However,
there are several practical applications in enhanced oil recovery systems (such as during
polymer-flooding practices), a packed bed reactor, chemical privilege equipment, food
manufacturing, metal casting procedures, and geophysical arrangements where the porous
material may offer its source of warmth and the chemical reaction can take place among



Membranes 2022, 12, 338 3 of 26

the chemical species in the porous substance and the non-Newtonian fluid. Therefore,
the present effort intends to inspect the mutual effect of the interior heating and chemical
reaction on the double diffusive convective motion in permeable enclosures flooded by
a non-Newtonian fluid applying linear and nonlinear stability techniques. To model the
non-Newtonian behavior of the fluid, the Maxwell model is used. This is a rate variety
of non-Newtonian fluid models in which stress relaxation is known. The Maxwell fluid
model acceptably describes the flow behavior of non-Newtonian fluids consisting of a
substructure, for instance lubricants with polymer additions, electro-rheological fluids,
liquid crystals, blood, and suspension fluids [47–50]. This work is presented as follows:
In Section 1, an introduction of the problem under investigation is provided. In Section 2,
the mathematical formulation of the problem is presented. The perturbation equations are
obtained in Section 3. In Section 4, the conditions for the start of binary convective flow
are derived. The convective heat and mass transports are derived in Section 5. Section 6
presents key results and discussion. At last, this work is completed with a conclusion in
Section 7.

2. Mathematical Formulation

The system examined is a non-Newtonian Maxwell fluid-saturated porous cavity of
length Hx and width Hz with a third dimension infinitely extended so that the fluid flow
and heat and mass transport can be taken as two dimensional [29,51], as demonstrated in
Figure 1.
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Figure 1. Physical configuration of the problem: (i) square enclosure, (ii) slender vertical enclosure,
and (iii) rectangular.

It is assumed that the porous cavity is subjected to an internal heat supply of strength
S and first-order chemical response of rate KR among a chemical genus in the permeable
matrix and the Maxwell fluid. The temperatures θL and θU , and solute concentrations φL
and φU , are consistently forced on the bottom and top boundary walls such that θL > θU
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and φL > φU , while other boundary walls are accepted to be insulated and impermeable
to mass transmission. It is specified that the porous cavity is homogeneous and in local
thermal balance with Maxwell fluid.

The continuity equation for the Maxwell fluid in a porous cavity is [52–54]:

∇.VD = 0. (1)

Here, VD is Darcy’s velocity of the Maxwell fluid, ∇ = ix
∂

∂x + iz
∂
∂z and, ix and iz are

unit vectors in x and z paths.
The momentum equation by taking the Darcy rule for the porous medium, the Maxwell

model for non-Newtonian fluid, and the Boussinesq approximation for density disparity
with temperature and solute concentration in the buoyancy force is [55–57]:

µ

K
VD =

(
1 + γ1

∂

∂τ

)[
−ρ0

ε

∂VD
∂τ
−∇P + ρ0

{
1− βθ(θ − θU)− βφ(φ− φU)

}
g
]

. (2)

where, τ represents the time, θ symbolizes the temperature, φ represents the solute con-
centration, ρ0 symbolizes the density at θU , K represents the permeability of the porous
medium, γ1 symbolizes the stress relaxation feature time constant, µ symbolizes the vis-
cosity of Maxwell fluid, P symbolizes the pressure, βθ and βφ symbolize the thermal and
solute expansion coefficients, respectively.

The energy equation for a Maxwell fluid in a heat-generating permeable cavity is [31,58,59]:[
(ρc)E

∂

∂τ
+ (ρc)(VD.∇)

]
θ = kE∇2θ + S(θ − θU). (3)

Here, S symbolizes the power of the interior heating, kE symbolizes the effectual
thermal conductivity of the porous medium, (ρc) and (ρc)E symbolize the heat capacities
of the Maxwell fluid and effectual permeable medium, correspondingly.

The conservation equation for the solute with the chemical reaction of rate KR in the
porous matrix is [60] [

∂

∂τ
+

1
ε
(VD.∇)

]
φ = DS∇2φ + KR(φ− φU). (4)

Here, DS is the solutal diffusivity and ε is the porosity of the permeable medium.
On eliminating the pressure term and using the stream function χ as u = −∂χ/∂z and

w = ∂χ/∂x, the Equations (1)–(4) can be written as:

µ

K
∇2χ =

(
1 + γ1

∂

∂τ

)[
−ρ0

ε

∂

∂τ

(
∇2χ

)
+ ρ0βθ g

∂

∂x
(θ − θU) + ρ0βφg

∂

∂x
(φ− φU)

]
, (5)

(ρc)E
∂θ

∂τ
+ (ρc)

(
∂χ

∂x
∂θ

∂z
− ∂χ

∂z
∂θ

∂x

)
= kE∇2θ + S(θ − θU), (6)

∂φ

∂τ
+

1
ε

(
∂χ

∂x
∂φ

∂z
− ∂χ

∂z
∂φ

∂x

)
= DS∇2φ + KR(φ− φU). (7)

The boundary situations are:

χ = 0, θ = θL, φ = φL at z = 0 for 0 < x < Hx,
χ = 0, θ = θU , φ = φU at z = Hz for 0 < x < Hx,
ψ = ∂θ/∂x = φ/∂x = 0 at x = 0, Hx for 0 < z < Hz.

(8)

For no-dimensional examination, the dimensionless variables are described as:

(x̃, z̃) =
(

x
Hx

,
z

Hz

)
, τ̃ =

αE

εHz2 τ, χ̃ =
χ

αE
, θ̃ =

(θ − θU)

(θL − θU)
, φ̃ =

(φ− φU)

(φL − φU)
. (9)
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where αE = kE
(ρc) . Then, the dimensionless forms of Equations (5)–(8) become:

∇̃A
2χ̃ =

(
1 + γ

∂

∂τ̃

)[
− 1

Va
∂

∂τ̃

(
∇̃A

2χ̃
)
+ ARDT

∂θ̃

∂x̃
+ ARDS

∂φ̃

∂x̃

]
, (10)

m
∂θ̃

∂τ̃
+ A

∂
(
χ̃, θ̃
)

∂(x̃, z̃)
=
(
∇̃A

2 + SN

)
θ̃, (11)

∂φ̃

∂τ̃
+ A

∂(χ̃, φ̃)

∂(x̃, z̃)
=

(
1
Le
∇̃A

2 + KRN

)
φ̃, (12)

χ̃ = 0, θ̃ = 1, φ̃ = 1 at z̃ = 0 for 0 < x̃ < 1,
χ̃ = 0, θ̃ = 0, φ̃ = 0 at z̃ = 1 for 0 < x̃ < 1,
χ̃ = ∂θ̃/∂x̃ = ∂φ̃/∂x̃ = 0 at x̃ = 0, 1 for 0 < z̃ < 1.

 (13)

Here, ∇̃A
2 = A2 ∂2

∂x̃2 + ∂2

∂z̃2 ,
∂(χ̃,θ̃)
∂(x̃,z̃) = ∂χ̃

∂x̃
∂θ̃
∂z̃ −

∂χ̃
∂z̃

∂θ̃
∂x̃ , γ = γαE

εHz2 (relaxation parameter),

Va = ε2µHz
2

ρ0αEK (Vadasz number), A = Hz
Hx

(aspect ratio), RDT = ρ0gβθ(θL−θU)KHz
µαE

(thermal

Rayleigh–Darcy number), m =
(ρc)E
ε(ρc) (heat capacity ratio), RDS =

ρ0gβφ(φL−φU)KHz
µαE

(so-

lute Rayleigh–Darcy number), SN = SHz
2

kE
(interior heating parameter), Le = αE

εDS
(Lewis

number), and KRN = εKR Hz
2

αE
(chemical reacting parameter).

Basic Condition

For a time-free calm solution of Equations (10)–(12), it is assumed that the temperature
and solute distributions for the basic solution are:

χ̃b = 0, θ̃b = θ̃b(z̃), φ̃b = φ̃b(z̃). (14)

On solving the Equations (11)–(13) for the basic solution, we have:

θ̃b = cos
[
z̃
√

SN

]
− cot

[√
SN

]
sin
[
z̃
√

SN

]
, (15)

φ̃b = cos
[
z̃
√

KRN Le
]
− cot

[√
KRN Le

]
sin
[
z̃
√

KRN Le
]
. (16)

In the lack of interior heating and chemical reaction, Equations (15) and (16) give:

θ̃b = φ̃b = 1− z̃. (17)

Equation (17) is the one found by Kuznetsov and Nield [61] for the case of pure fluid.

3. Perturbation Equation

Now, perturbation on the basic condition is imposed as:

χ̃ = χ̃′, θ̃ = θ̃b + θ̃′, φ̃ = φ̃b + φ̃′. (18)

where, χ̃′, θ̃′, and φ̃′ are the perturbed variables on their basic estimates. Replacing
Equation (18) into Equations (10)–(13), we have:

∇̃A
2χ̃′ =

(
1 + γ

∂

∂τ̃

)[
− 1

Va
∂

∂τ̃

(
∇̃A

2χ̃′
)
+ ARDT

∂θ̃′

∂x̃
+ ARDS

∂φ̃′

∂x̃

]
, (19)

m
∂θ̃′

∂τ̃
+ A

∂χ̃′

∂x̃
∂θ̃b
∂z̃

+ A
∂
(
χ̃′, θ̃′

)
∂(x̃, z̃)

=
(
∇̃A

2 + SN

)
θ̃′, (20)

∂φ̃′

∂τ̃ + A ∂χ̃′

∂x̃
∂φ̃b
∂z̃ + A

∂(χ̃′ ,φ̃′)
∂(x̃,z̃) =

(
1
Le ∇̃A

2 + KRN

)
φ̃′, (21)
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χ̃′ = θ̃′ = φ̃′ = 0 at z̃ = 0, 1 for 0 < x̃ < 1,
χ̃′ = ∂θ̃′/∂x̃ = ∂φ̃′/∂x̃ = 0 at x̃ = 0, 1 for 0 < z̃ < 1.

(22)

4. Linear Stability Consideration

In this segment, the thresholds of the marginal and oscillatory type of convective flows
are determined applying linear theory. Now, it is supposed that the amplitudes of the
perturbation are extremely small and expressed as [13,29,60,62]:

χ̃′ = χ(z̃)eiστ̃ cos λx̃, θ̃′ = θ(z̃)eiστ̃ sin λx̃, φ̃′ = φ(z̃)eiστ̃ sin λx̃. (23)

where λ and σ represent the wavenumber and enlargement rate of disturbances, correspondingly.
On using Equation (23) in Equations (19)–(22) and avoiding the nonlinear terms with

perturbed variables, we have:(
D2 − A2λ2

)
χ− (1 + iγσ)

[
− iσ

Va

(
D2 − A2λ2

)
χ + AλRDTθ + AλRDSφ

]
= 0, (24)

λAχDθ̃b +
(

D2 − A2λ2 + SN − iσm
)

θ = 0, (25)

λAχDφ̃b +

[
1
Le

(
D2 − A2λ2

)
+ KRN − iσ

]
φ = 0, (26)

χ = θ = φ = 0 at z̃ = 0, 1 for 0 < x̃ < 1. (27)

Here, d
dz̃ ≡ D. To find an approximate solution to the system of Equations (24)–(27), the

Galerkin routine is utilized [63–68]. The trial functions (fulfilling the boundary circumstances)
are picked as:

χ = F sin πz̃, θ = E sin πz̃, φ = G sin πz̃. (28)

where, E, F, and G are unidentified coefficients. On applying Equation (28) into Equations
(24)–(26) and for the non-singular solution, we have:∣∣∣∣∣∣∣∣∣

Q1(−iσ+γσ2−Va)
2Va

1
2 λARDT(−1− iγσ) 1

2 λARDS(−1− iγσ)

Q2
1
2 (SN −Q1 − imσ) 0

Q3 0 − (Q1+iσLe−KRN Le)
2Le

∣∣∣∣∣∣∣∣∣ = 0. (29)

where, Q1 = π2 + λ2 A2, Q2 = 2λAπ2

(SN−4π2)
and Q3 = 2λAπ2

(KRN Le−4π2)
.

Now, from Equation (25), we have:

RDT = N1 + iσN2. (30)

where,

N1 = − LeQ3RDS[Q1(Q1−SN)+Le{mσ2+KRN(SN−Q1)}]
[Le2(KRN 2+σ2)−2KRN LeQ1+Q1

2]Q2

+mσ2Q1+γ2mσ4Q1−γmσ2Q1Va−Q1
2Va+Q1SNVa

2λAQ2Va+2λAσ2γ2Q2Va ,
(31)

N2 = LeQ3RDS [KRN Lem−mQ1+Le(Q1−SN)]
[Le2(KRN 2+σ2)−2KRN LeQ1+Q1

2]Q2

+
Q1{γ(Q1−SN)−m}Va−Q1(Q1−SN)(1+γ2σ2)

2λA(1+γ2σ2)Q2Va .
(32)

4.1. Marginal Pattern of Convection

The marginal pattern of convection can happen, if σ = 0. Thus, Equation (30) gives
the marginal thermal Rayleigh–Darcy number RM

DT as:

RM
DT =

(λ2 A2+π2)(λ2 A2+π2−SN)(4π2−SN)
4λ2 A2π2 − LeRDS(λ2 A2+π2−SN)(4π2−SN)

(λ2 A2+π2−KRN Le)(4π2−KRN Le) . (33)
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The threshold of the RM
DT signifying the beginning of marginal convection occurs at λc

where λc =
√

a satisfies the equation:

A8(KRN Le− 4π2)a4 − 2A6(KRN Le− 4π2)(KRN Le− π2)a3 + A4{KRN Le(
KRN

2Le2 − 6KRN Leπ2 + 8π4 − 4π2LeRDS
)
+ π2(KRN Le− 4π2 + 4LeRDS

)
SN}a2

+2A2π2(π2 − KRN Le
)(

4π2 − KRN Le
)(

π2 − SN
)
a + π2(4π2 − KRN Le

)
(
π2 − KRN Le

)2(
π2 − SN

)
= 0.

(34)

In the nonattendance of chemical response ( KRN → 0), Equations (33) and (34) turn into:

RM
DT =

(λ2 A2+π2)(λ2 A2+π2−SN)(4π2−SN)
4λ2 A2π2 − LeRDS(λ2 A2+π2−SN)(4π2−SN)

4π2(λ2 A2+π2)
, (35)

A8a4 + 2A6π2a3 + A4SN

(
π2 − LeRDS

)
a2 + 2A2π4

(
SN − π2

)
a− π8 + π6SN = 0. (36)

For the case of a single component ( RDS → 0), Equations (35) and (36) give:

RM
DT =

(
λ2 A2 + π2)(λ2 A2 + π2 − SN

)(
4π2 − SN

)
4λ2 A2π2 , (37)

λc =

√
π
√
(π2 − SN)

A
. (38)

The Equations (37) and (38) are the same as found by Yadav and Maqhusi [29] for the
lack of viscosity variation.

In the nonattendance of interior heating ( SN → 0), Equations (35) and (36) provide:

RM
DT =

(
λ2 A2 + π2)2

λ2 A2 − LeRDS, (39)

λc =
π

A
. (40)

Equations (39) and (40) are the standard results for a dual diffusive convective motion
in a permeable medium for cases A = 1 [13,50,69].

For the case of one component ( RDS → 0), Equations (39) and (40) offer the critical
marginal thermal Rayleigh–Darcy number RM

DT,c as:

RM
DT,c = 4π2. (41)

This coincides with the conclusion of Nield and Kuznetsov [70] for the convection in a
rectangular box. Additionally, Equation (41) agrees with the experimental results obtained
by Horton and Rogers [71] and Katto and Masuoka [72].

4.2. Oscillatory Pattern of Convection

The oscillatory pattern of convective motion occurs when σ 6= 0 and N2 = 0. Then,
Equation (30) proposes the oscillatory thermal Rayleigh–Darcy number ROs

DT as:

Ros
DT = − LeQ3RDS[Q1(Q1−SN)+Le{mσ2+KRN(SN−Q1)}]

[Le2(KRN 2+σ2)−2KRN LeQ1+Q1
2]Q2

+mσ2Q1+γ2mσ4Q1−γmσ2Q1Va−Q1
2Va+Q1SNVa

2λAQ2Va+2λAσ2γ2Q2Va ,
(42)

Additionally, from Equation (30), the rate of oscillation σ satisfies the following disper-
sion relation:

β1

(
σ2
)2

+ β2

(
σ2
)
+ β3 = 0. (43)
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Here, β1 = γ2Le2Q1Q2(SN −Q1),

β2 = 2λAγ2LeQ2Q3RDS{KRN Lem −mQ1 + Le (Q1 − SN)}Va + Q1Q2[−{(1 + γ2 KRN
2)Le2

−2γ2KRN LeQ1 + γ2 Q1
2}(Q1 − SN)− Le2{m + γ(SN −Q1)}Va],

β3 = Q1Q2(Q1 − KRN Le)2{SN − (m + SNγ)Va + Q1(γVa− 1)}
+2λALeQ2Q3RDS{KRN Lem −mQ1 + Le (Q1 − SN)}Va

From Equation (43), it is clear that the oscillatory manner of convective flow is con-
ceivable only if σ2 > 0. The analytical appearance for ROs

DT specified by Equation (42) is
minimized respecting the wave number λ numerically when σ2 > 0 for diverse estimates
of involved physical parameters to identify their impacts on the start of the oscillatory type
of convective motion.

5. Weak Nonlinear Stability Investigation

The linear stability inquiry offers the threshold for the start of convective movement
of the Maxwell fluid in terms of RDT,c but does not calculate the convective heat and mass
transport. To get these extra details, here the weak nonlinear stability analysis is used
as [17,44,56,60,73]:

χ̃′ = B11(τ̃) sin(λx̃) sin(πz̃), (44)

θ̃′ = C11(τ̃) cos(λx̃) sin(πz̃) + C02(τ̃) sin(2πz̃), (45)

φ̃′ = D11(τ̃) cos(λx̃) sin(πz̃) + D02(τ̃) sin(2πz̃). (46)

where, B11(τ̃), C11(τ̃), C02(τ̃), D11(τ̃), and D02(τ̃) are undetermined amplitudes and to
be determined. On replacing Equations (44)–(46) into Equations (19)–(21), we obtain the
nonlinear stability equations as:

d2B11
dτ̃2 = − 1

γ
dB11
dτ̃ + Va

Q1γ [−Q1B11 + λA(RDTC11 + RDTγ dC11
dτ̃ + RDSD11 + RDSγ dD11

dτ̃

)]
, (47)

dC11

dτ̃
=

λAπB11C02 − 2Q2B11 − (Q1 − SN)C11

m
, (48)

dC02

dτ̃
=

λAπ[4πC02 −Q2B11C11]

2mQ2
, (49)

dD11

dτ̃
= λAπB11D02 − 2Q3B11 + KRN D11 −

Q1D11

Le
, (50)

dD02

dτ̃
=

λAπ[4πD02 −Q3LeB11D11]

2Q3Le
, (51)

where Q1 = π2 + λ2 A2, Q2 = 2λAπ2

(SN−4π2)
and Q3 = 2λAπ2

(KRN Le−4π2)
.

The above nonlinear equations are not fit for analytical inspection for the time-reliant
variables. Thus, we solved it numerically utilizing the Runge–Kutta–Fehlberg technique
(RKF45). The results are also validated with ODE45 solver in MATLAB. For the initial state,
we select B11 = 1, C11 = 0, C02 = 0, D11 = 0, and D02 = 0.

5.1. Steady Motion

For steady motion, Equations (47)–(51) become:

B11 =
λA
Q1

[RDTC11 + RDSD11], (52)

λAπB11C02 − 2Q2B11 − (Q1 − SN)C11 = 0, (53)

4πC02 −Q2B11C11 = 0, (54)

λAπB11D02 − 2Q3B11 + KRN D11 −
Q1D11

Le
= 0, (55)
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4πD02 −Q3LeB11D11 = 0. (56)

On solving Equations (52)–(56) analytically, we have:

B11 =

√
−Q5 +

√
Q52 − 4Q4Q6

2Q4
, (57)

C11 =
8Q2B11

4SN − 4Q1 + λAQ2B11
2 , (58)

C02 =
2Q2

2B11
2

4πSN − 4πQ1 + λAπQ2B11
2 , (59)

D11 =
8LeQ3B11

4KRN Le− 4Q1 + λALe2Q3B11
2 , (60)

D02 =
2Le2Q3

2B11
2

4πKRN Le− 4πQ1 + λAπLe2Q3B11
2 . (61)

Here, Q1 = π2 + λ2 A2, Q2 = 2λAπ2

(SN−4π2)
, Q3 = 2λAπ2

(KRN Le−4π2)
, Q4 = λ2 A2Le2Q1Q2Q3,

Q5 = 4λA
{

KRN LeQ1Q2 −Q1
2(Q2 + Le2Q3

)
− 2λALeQ2Q3(RDS + RDT Le) + Le2Q1Q3SN

}
,

Q6 =−16
{
−Q1

3 − 2λAQ1(LeQ3RDS + Q2RDT) + Q1
2SN + 2λALeQ3RDSSN

+KRN Le
(
Q1

2 + 2λAQ2RDT −Q1SN
) }

.

5.2. Convective Heat and Mass Transports

Convective heat and mass transfers play a very vital role in detecting the convective
motion in more early stages. Heat and mass transfers can be calculated in spans of Nusselt
number Nu and Sherwood number Sh, individually, and described as [17,44,56,60,73]:

Nu(τ̃)= 1+

 2π/λ∫
0

(
∂θ̃′

∂z̃

)
dx̃

/ 2π/λ∫
0

(
∂θ̃b
∂z̃

)
dx̃


z̃=0

, (62)

Sh(τ̃)= 1+

 2π/λ∫
0

(
∂φ̃′

∂z̃

)
dx̃

/ 2π/λ∫
0

(
∂φ̃b
∂z̃

)
dx̃


z̃=0

. (63)

On applying Equations (15), (16), (45) and (46) into Equations (62) and (63), we have:

Nu(τ̃) = 1−
2πC02(τ̃) tan

[√
SN
]

√
SN

, (64)

Sh(τ̃) = 1−
2πD02(τ̃) tan

[√
KRN Le

]
√

KRN Le
. (65)

6. Results and Discussion

The impact of interior heating and chemical reaction on the beginning of dual diffusive
convective motion and the convective heat and mass transfers in non-Newtonian Maxwell
fluid-saturated permeable square (A = 1), slender (A < 1), and rectangular (A > 1) en-
closures were explored. Employing the linear stability philosophy, the criteria for the start
of the marginal and oscillatory pattern of convective motions were derived analytically in
terms of RDT,c, which is the function of physical parameters KRN , SN , RDS, Le, m, Va, A,
and γ. Applying the weakly nonlinear theory, the convective heat and mass transports
were calculated in spans of the Nusselt number Nu and Sherwood number Sh, individually.
The results are presented in Figures 2–12 and Tables 1–4. To create the numerical results and
figures, the MATLAB software (R2018b) was used. The range of the physical parameters
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that were considered for making the results are given in the figure captions and obtained
from the available literature [31,50,55,60,73–75].
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Figure 2. Distributions of basic state temperature (Le) and solute concentration (φ̃b ) with the depth
of Maxwell fluid layer z̃.

Figure 2 illustrates the impact of SN on the distribution of basic state temperature
θ̃b, and the impact of KRN and Le on the allocation of basic state solute concentration φ̃b.
From Figure 2i, it is recognized that the power of the basic temperature allocation increases
with accumulating interior heating parameters SN and the profile of basic temperature
allocation alters from linear to nonlinear with SN . This happened because the increasing
SN provides more warming to the Maxwell fluid layer, which enhances the strength of
buoyancy force and as a result, more disturbances are seen in the system. From Figure 2ii,
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we observed a similar result on the allocation of basic state solute concentration φ̃b with
increasing KRN and Le. This happened because an increase in the strength of KRN and Le
creates more disturbances in the system.
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Figure 3. The effect of KRN , SN , RDS, and A on the neutral stability curves at Le = 2, γ = 0.5, m = 1.5,
A = 1, RDS = 3, SN = 0.5, KRN = 0.5, and Va = 3 with variation in one of these parameters.

Figures 3 and 4 exhibit the neutral curves for diverse values of the chemical react-
ing parameter KRN (Figure 3i), the interior heating parameter SN (Figure 3ii), the so-
lute Rayleigh–Darcy number RDS (Figure 3iii), the aspect ratio A (Figure 3iv), the relax-
ation parameter γ (Figure 4i), the Lewis number Le (Figure 4ii), the heat capacity ratio m
(Figure 4iii), and the Vadasz number Va (Figure 4iv). From these plots, it is found that the
neutral curves are linked in a topological way. This establishes that the linear stability of
the arrangement is specified in the span of RDT,c, which at lower values the arrangement
is stable and at RDT somewhat greater than RDT,c, convective activity starts. From these
figures, it is also established that by increasing the values of KRN , SN ,RDS, γ, Le, and Va,
the estimate of RDT,c tends to lessen, i.e., the arrangement goes to destabilize, while m has a
stabilizing impact on the stability of the structure. The aspect ratio A does not affect RDT,c.
The marginal pattern of the convective motion is found to be free with m, Va, and γ.
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Figure 5 illustrates the variations in RDT,c, λc, and σ as a function of γ for varied
estimates of the chemical reacting parameter KRN and the interior heating parameter SN .
From Figure 5i,ii, we found that with a boost in the values of KRN , SN , and γ, the critical
thermal Rayleigh–Darcy number RDT,c diminishes. This shows that the chemical reacting
parameter KRN , the interior heating parameter SN , and the relaxation parameter γ speed
up the beginning of convective activities. This is due to the fact that increasing the chemical
reacting parameter KRN and the interior heating parameter SN creates more disturbances by
increasing the energy supply to the system. Further, the destabilizing effect of the relaxation
parameter γ is found because thermal diffusivity of the system increases with γ (from the
definition of γ). From Figure 5iii,iv, it is noted that the critical wave number λc decreases
with KRN , SN , and γ. This illustrates that the magnitude of convection cells increases
with KRN , SN , and γ. From Figure 5v,vi, we detected that the frequency of oscillations σ
decreases with accumulating KRN and SN , while an opposite result is seen with γ.

Figure 6 exhibits the impact of RDS and Le on the stability of the scheme. From
Figure 6i,ii, it is noticed that an improvement in the estimation of RDS and Le is to speed
up the marginal and oscillatory patterns of convective motions.
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Figure 5. Variation in RDT,c, λc, and σ with γ for different values of KRN and SN at Le = 2, m = 1.5,
A = 1, RDS = 3, SN = 0.5, KRN = 0.5, and Va = 3.

This is on the ground that the disturbance to the arrangement increases with RDS
and Le. Furthermore, an increase in the estimate of Le increases the threshold estimate of
γ at which the pattern of instability is amended. From Figure 6iii,iv, it is found that the
critical wave number λc declines with RDS and Le for a marginal pattern of convection,



Membranes 2022, 12, 338 14 of 26

while a reverse result is seen for an oscillatory pattern of convection. From Figure 6v,vi, it
is established that the frequency of oscillations σ shrinks with RDS and Le.
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The impacts of the heat capacity ratio m and the Vadasz number Va on RDT,c, λc,
and σ are exposed in Figure 7. From Figure 7i,ii, it is found that RDT,c surges with m for
oscillatory pattern of convection, while this result is opposite with Va. This appears that
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the outcome of m delays the start of an oscillatory pattern of convection. This is due to
fact that the energy restoring capacity of arrangement enhances with escalating the heat
capacity ratio m.

Further, the Vadasz number Va advances the start of the oscillatory type of movement.
A similar result of the Vadasz number Va on the system was also observed by Kumar
and Bhadauria [41] and Malashetty and Biradar [76]. From Figure 7iii,iv, it is proven that
the critical wave number λc increases with m and Va. The frequency of oscillations σ
diminishes with m, while this result is opposite with Va as found from Figure 7v,vi. From
Figure 7, it is also noticed that increasing Va decreases the threshold estimate of γ at which
the pattern of instability alters, while this result is reversed with m.
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Figure 8 demonstrates the power of the aspect ratio A on the stability of the system.
From this graph, it is found that λc reduces with escalating A. This illustrates that the
dimension of convective cells enhances with increasing the aspect ratio A. From Figure 8, it
is also found that A has no control on RDT,c and σ.
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Membranes 2022, 12, 338 17 of 26Membranes 2022, 12, x FOR PEER REVIEW 22 of 30 
 

 

 

Figure 9. Disparity of the steady Nu  and Sh  with DTR  at 2Le = , 1A= , 3DSR = , 

0.5NS = , and 0.5RNK =  for different values of one of these parameters. 

Figure 9. Disparity of the steady Nu and Sh with RDT at Le = 2, A = 1, RDS = 3, SN = 0.5, and
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To observe the effect of KRN , SN , RDS, Le, and A on steady-state heat and mass
spreads, the Nusselt number Nu and Sherwood number Sh are plotted in Figure 9 as a
function RDT for diverse values of these parameters. From this figure, we recognize that if
RDT increases from one to five or six times of RDT,c, the heat and mass transport increased
significantly, and if RDT increases more, it remains moderately constant.
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Figure 10. Disparity of the unsteady Nu and Sh with τ̃ for different values of KRN , KRN , RDS, Le,
RDT , and Va at Le = 2, m = 1.5, A = 1, RDS = 3, SN = 0.5, γ = 0.5,KRN = 0.5, and Va = 3.

The convective steady mass transfer increased with increasing KRN , RDS, Le, and A
for the slender enclosure (A < 1), while it decreased with A for rectangular enclosure
A. From Figure 9, it is also found that increases in the values of SN , RDS, and A for the
slender enclosure (A < 1) amplify the convective heat transport in the scheme, while for a
rectangular enclosure (A > 1), convective heat transport decreases with A.
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Figure 11. Disparity of the unsteady Nu and Sh with τ̃ for different values of γ, m, and A at Le = 2,
m = 1.5, A = 1, RDS = 3, SN = 0.5, γ = 0.5,KRN = 0.5, and Va = 3.

The nonlinear unsteady ordinary differential Equations (47)–(51) are solved numer-
ically by applying the RKF45 method with realistic initial circumstances. The achieved
outcomes are presented in Figures 10 and 11. It is noticed that the greatest increase in
Nusselt number Nu and Sherwood number Sh appear near to the opening time; it reveals
the spatial progress of increasing frequency. Lastly, the oscillations reach the steady sit-
uation for a sufficiently large amount of time. From Figures 10 and 11, it is also found
that increases in the estimates of KRN , SN , RDS, RDT , Le, Va,A for the slender enclosure
(A < 1) and γ enhance the convective unsteady mass transmission in the arrangement,
while it decreases with A for rectangular enclosure (A > 1) and m. The convective un-
steady heat transportation in the structure increases with increasing SN , RDS, RDT , Va,A
for the slender enclosure (A < 1) and γ, whereas it reduces with A for the rectangular
enclosure (A > 1) and m.
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Table 1. Comparison of RDT,c, λc, and σ for different values of γ, KRN , and SN at Le = 2, m = 1.5,
A = 1, RDS = 3, SN = 0.5, KRN = 0.5, and Va = 3.

KRN γ
SN = 0 SN = 0.5 SN = 1.0

RDT,c λc σ RDT,c λc σ RDT,c λc σ

0

0 33.48 3.14 0.00 32.21 3.11 0.00 30.96 3.07 0.00

0.3 33.48 3.14 0.00 32.21 3.11 0.00 30.96 3.07 0.00

0.6 19.48 3.42 1.26 18.85 3.40 1.26 18.23 3.38 1.25

0.9 10.30 3.35 1.34 9.95 3.33 1.34 9.61 3.30 1.34

0.5

0 32.99 3.13 0.00 31.74 3.09 0.00 30.50 3.06 0.00

0.3 32.99 3.13 0.00 31.74 3.09 0.00 30.50 3.06 0.00

0.6 19.10 3.41 1.26 18.49 3.39 1.25 17.88 3.37 1.25

0.9 9.90 3.33 1.34 9.56 3.31 1.34 9.23 3.29 1.33

1.0

0 32.44 3.11 0.00 31.21 3.08 0.00 29.98 3.04 0.00

0.3 32.44 3.11 0.00 31.21 3.08 0.00 29.98 3.04 0.00

0.6 18.70 3.40 1.25 18.09 3.38 1.25 17.49 3.36 1.24

0.9 9.45 3.30 1.33 9.13 3.28 1.33 8.81 3.26 1.33

1.5

0 31.81 3.09 0.00 30.59 3.05 0.00 29.39 3.02 0.00

0.3 31.81 3.09 0.00 30.59 3.05 0.00 29.39 3.02 0.00

0.6 18.24 3.39 1.24 17.65 3.37 1.24 17.07 3.34 1.23

0.9 8.95 3.27 1.33 8.65 3.26 1.32 8.35 3.24 1.32

Table 2. Comparison of RDT,c, λc, and σ for diverse values of γ, RDS, and Le at Le = 2, m = 1.5,
A = 1, RDS = 3, SN = 0.5, KRN = 0.5, and Va = 3.

RDS γ
Le = 2 Le = 4 Le = 6

RDT,c λc σ RDT,c λc σ RDT,c λc σ

0

0 37.98 3.10 0.00 37.98 3.10 0.00 37.98 3.10 0.00

0.3 37.98 3.10 0.00 37.98 3.10 0.00 37.98 3.10 0.00

0.6 24.37 3.37 1.27 24.37 3.37 1.27 24.37 3.37 1.27

0.9 15.54 3.29 1.35 15.54 3.29 1.35 15.54 3.29 1.35

2

0 33.82 3.10 0.00 28.95 3.07 0.00 23.18 3.01 0.00

0.3 33.82 3.10 0.00 28.95 3.07 0.00 23.18 3.01 0.00

0.6 20.45 3.38 1.26 17.89 3.55 1.14 16.67 3.89 0.96

0.9 11.56 3.30 1.34 8.43 3.49 1.26 6.20 3.86 1.15

4

0 29.66 3.09 0.00 19.90 3.04 0.00 8.31 2.92 0.00

0.3 29.66 3.09 0.00 19.90 3.04 0.00 8.31 2.92 0.00

0.6 16.52 3.40 1.25 11.17 3.71 1.04 7.60 4.22 0.73

0.9 7.57 3.31 1.33 1.14 3.66 1.20 −4.21 4.21 1.03

6

0 25.50 3.09 0.00 10.85 3.01 0.00 −6.63 2.83 0.00

0.3 25.50 3.09 0.00 10.85 3.01 0.00 −6.63 2.83 0.00

0.6 12.60 3.41 1.23 4.27 3.84 0.94 −6.63 2.83 0.00
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Table 3. Comparison of RDT,c, λc, and σ for diverse values of γ, m, and Va at Le = 2, m = 1.5, A = 1,
RDS = 3, SN = 0.5, KRN = 0.5, and Va = 3.

m γ
Va = 2 Va = 4 Va = 6

RDT,c λc σ RDT,c λc σ RDT,c λc σ

1

0 31.74 3.09 0.00 31.74 3.09 0.00 31.74 3.09 0.00

0.3 31.74 3.09 0.00 31.74 3.09 0.00 20.71 3.58 2.28

0.6 29.01 3.28 0.48 11.93 3.35 1.78 6.29 3.44 2.46

0.9 16.64 3.23 0.91 5.56 3.30 1.68 1.91 3.38 2.19

1.5

0 31.74 3.09 0.00 31.74 3.09 0.00 31.74 3.09 0.00

0.3 31.74 3.09 0.00 31.74 3.09 0.00 22.78 3.75 2.07

0.6 30.36 3.35 0.35 12.56 3.43 1.73 6.66 3.51 2.42

0.9 17.18 3.28 0.89 5.77 3.34 1.67 1.99 3.41 2.18

2.0

0 31.74 3.09 0.00 31.74 3.09 0.00 31.74 3.09 0.00

0.3 31.74 3.09 0.00 31.74 3.09 0.00 25.05 3.94 1.87

0.6 31.74 3.09 0.00 13.26 3.51 1.69 7.08 3.59 2.39

0.8 21.14 3.35 0.80 7.75 3.42 1.68 3.28 3.47 2.25

0.9 17.75 3.33 0.86 6.00 3.38 1.65 2.08 3.43 2.17

2.5

0 31.74 3.09 0.00 31.74 3.09 0.00 31.74 3.09 0.00

0.3 31.74 3.09 0.00 31.74 3.09 0.00 27.48 4.13 1.67

0.6 31.74 3.09 0.00 14.02 3.60 1.65 7.56 3.67 2.36

0.8 21.94 3.41 0.76 8.11 3.47 1.66 3.46 3.52 2.23

0.9 18.37 3.38 0.84 6.26 3.43 1.64 2.19 3.47 2.16

Table 4. Comparison of RDT,c, λc, and σ for diverse values of γ, A, and RDS at Le = 2, m = 1.5,
A = 1, RDS = 3, SN = 0.5, KRN = 0.5, and Va = 3.

A γ
RDS = 0 RDS = 2 RDS = 4

RDT,c λc σ RDT,c λc σ RDT,c λc σ

0.5

0 37.98 6.20 0.00 33.82 6.19 0.00 29.66 6.18 0.00

0.3 37.98 6.20 0.00 33.82 6.19 0.00 29.66 6.18 0.00

0.6 24.37 6.74 1.27 20.45 6.77 1.26 16.52 6.79 1.25

0.9 15.54 6.57 1.35 11.56 6.60 1.34 7.57 6.63 1.33

0.75

0 37.98 4.13 0.00 33.82 4.13 0.00 29.66 4.12 0.00

0.3 37.98 4.13 0.00 33.82 4.13 0.00 29.66 4.12 0.00

0.6 24.37 4.49 1.27 20.45 4.51 1.26 16.52 4.53 1.25

0.9 15.54 4.38 1.35 11.56 4.40 1.34 7.57 4.42 1.33

1.0

0 37.98 3.10 0.00 33.82 3.10 0.00 29.66 3.09 0.00

0.3 37.98 3.10 0.00 33.82 3.10 0.00 29.66 3.09 0.00

0.6 24.37 3.37 1.27 20.45 3.38 1.26 16.52 3.40 1.25

0.9 15.54 3.29 1.35 11.56 3.30 1.34 7.57 3.31 1.33

1.25

0 37.98 2.48 0.00 33.82 2.48 0.00 29.66 2.47 0.00

0.3 37.98 2.48 0.00 33.82 2.48 0.00 29.66 2.47 0.00

0.6 24.37 2.70 1.27 20.45 2.71 1.26 16.52 2.72 1.25

0.9 15.54 2.63 1.35 11.56 2.64 1.34 7.57 2.65 1.33
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In Figure 12, a comparison is made between the obtained results and the experimental
results offered by Serkitjis [77] for normal fluid. From this figure, it is noticed that the heat
spread observed by the experiment are very close to our outcomes if RDT ≥ RDT,c, whereas
for RDT < RDT,c, the experimental results are slightly lower, here RDT,c = 4π2.
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7. Conclusions

The double diffusive convective progress in a Maxwell fluid occupying the interior
heat-generating and chemical reacting porous enclosures was investigated analytically as
well as numerically taking linear and weak nonlinear stability theories. The considered
enclosures were rectangular (A > 1), square (A = 1), and slender (A < 1). The impact of
various parameters on the onset of the convective flow, and on the convective heat and
mass transports of the system were achieved. The important conclusions are as follows:

• Increasing the chemical reacting parameter KRN , the interior heating parameter SN ,
the solute Rayleigh–Darcy number RDS, the relaxation parameter γ, the Lewis number
Le, and the Vadasz number Va accelerates the onset of double diffusive convective
motion, while it delays with increasing the heat capacity ratio m.

• The dimension of convective cells enhances by increasing the aspect ratio A, the
chemical reacting parameter KRN , the interior heating parameter SN , and the relaxation
parameter γ, while it decreases with the heat capacity ratio m.

• Increasing RDS and Le enhances the size of marginal convective cells, while this result
is opposite for oscillatory convection.

• The convective mass transfer in the system is augmented with increasing KRN , SN , RDS,
RDT , Le, Va, A (for the slender enclosure) and γ, while it reduces with A (for rectan-
gular enclosure) and m.

• The convective heat transport in the system is enhanced with increasing SN , RDS, RDT ,
Va, A (for the slender enclosure) and γ, whereas it reduces with A (for rectangular
enclosure) and m.

• The marginal pattern of the convective motion and steady heat and mass transport are
observed to be free with m, Va, and γ.
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Nomenclature

A aspect ratio

c specific heat
(

J · kg−1 ·K−1
)

DS solutal diffusivity
(
m2/s

)
g gravity vector

(
m/s2

)
Hx dimensional Maxwell fluid layer length (m)
Hz dimensional Maxwell fluid layer width (m)
K permeability of the porous matrix

(
m2)

km effectual thermal conductivity of the porous matrix
(

Wm−1K−1
)

KR chemical reaction rate
(
s−1)

KRN chemical reacting parameter
Le Lewis number
m heat capacity ratio
P pressure (Pa)
RDT thermal Rayleigh–Darcy number
RDS solute Rayleigh–Darcy number

S strength of the internal heat supply
(

Wm−3K−1
)

SN interior heating parameter
Va Vadasz number
VD Darcy’s velocity

(
ms−1)

(x, y, z) space coordinates (m)
Greek symbols
αE effectual thermal diffusivity

(
m2/s

)
βθ the thermal expansion coefficient

(
K−1

)
βφ the solute expansion coefficient
γ relaxation parameter
γ1 the stress relaxation

(
s−1)

λ dimensionless wave number
µ viscosity (Pa · s)
ρ density

(
kg/m3)

θ temperature (K)
φ concentration of solute
χ stream function

(
m2/s

)
ε the porosity of the porous matrix
σ enlargement rate of disturbance
τ time (s)
Superscripts
′ perturbed quantities
∼ dimensionless variables
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Subscripts
o reference estimate
E effectual estimate
L estimate at the lower boundary
U estimate at the upper boundary
b basic flow
c critical
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